
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Video-based Attack for Android Pattern Lock

GUIXIN YE, ZHANYONG TANG, DINGYI FANG, XIAOJIANG CHEN, Northwest University, China

WILLY WOLFF, Lancaster University, U. K.

ADAM J. AVIV, Naval Academy, U.S.A.

ZHENG WANG, Lancaster University, U. K.

Pattern lock is widely used for identification and authentication on Android devices. This article presents a novel video-based side
channel attack that can reconstruct Android locking patterns from video footage filmed using a smartphone. As a departure from
previous attacks on pattern lock, this new attack does not require the camera to capture any content displayed on the screen. Instead, it
employs a computer vision algorithm to track the fingertip movement trajectory to infer the pattern. Using the geometry information
extracted from the tracked fingertip motions, the method can accurately infer a small number of (often one) candidate patterns to
be tested by an attacker. We conduct extensive experiments to evaluate our approach using 120 unique patterns collected from 215
independent users. Experimental results show that the proposed attack can reconstruct over 95% of the patterns in five attempts. We
discovered that, in contrast to most people’s belief, complex patterns do not offer stronger protection under our attacking scenarios.
This is demonstrated by the fact that we are able to break all but one complex patterns (with a 97.5% success rate) as opposed to 60% of
the simple patterns in the first attempt.

We demonstrate that this video-side channel is a serious concern for not only graphical locking patterns but also PIN-based passwords,
as algorithms and analysis developed from the attack can be easily adapted to target PIN-based passwords. As a countermeasure, we
propose to change the way the Android locking pattern is constructed and used. We show that our proposal can successfully defeat
this video-based attack. We hope the results of this article can encourage the community to revisit the design and practical use of
Android pattern lock.

CCS Concepts: • Information security → Side-channel attacks; Privacy; Passwords; • Privacy →Privacy leakage;

Additional Key Words and Phrases: Pattern lock, Fingertip movement, Video-based attack, Sensitive information, Object tracking,

Authentication mechanism

Extension of Conference Paper: a preliminary version of this article entitled “Cracking Android Pattern Lock in Five Attempts" by G. Ye et al. appeared in
The Network and Distributed System Security Symposium (NDSS), 2017 [Ye et al. 2017].
The extended version makes the following several additional contributions over the conference paper, providing new contributions to the original paper:
(1) It evaluates the security strength of patterns using an alternative security metric (section 7.1.3); (2) It provides new evaluations to understand the
impact of the screen size and the camera model on the success of the attack (section 7.7); (3) It extends the attacking method to break PIN-based passwords,
demonstrating the applicability of the attack on PIN-based passwords (section 7.9); (4) It includes a limited study to evaluate the effectiveness of the
attack, where the video footage only captures the fingertip (section 7.10); (5) It proposes a simple, yet effective countermeasure. By making some small
modifications to the way a pattern lock is generated, the success rate of the attack will drop significantly (section 8.2); (6) It extends the related work to
discuss some of the recent studies on the security of Android pattern lock in depth (section 10).
Authors’ addresses: Guixin Ye, Zhanyong Tang, Dingyi Fang, Xiaojiang Chen, Northwest University, China, gxye@stumail.nwu.edu.cn, {zytang,dyf,
xjchen}@nwu.edu.cn; Willy Wolff, Lancaster University, U. K., w.wolff@lancaster.ac.uk; Adam J. Aviv, Naval Academy, U.S.A., aviv@usna.edu; Zheng
Wang, Lancaster University, U. K., z.wang@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Ye, G. et al

ACM Reference Format:
Guixin Ye, Zhanyong Tang, Dingyi Fang, Xiaojiang Chen, Willy Wolff, Adam J. Aviv, and Zheng Wang. 2017. A Video-based Attack for
Android Pattern Lock. ACM Comput. Entertain. 9, 4, Article 39 (October 2017), 30 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Graphical-based passwords, like the Android pattern lock, are widely used as a protection mechanism to prevent
sensitive information leakage from mobile devices. It is preferred by many users over PIN- or text-based passwords, as
psychology studies show that the human brain remembers and recalls visual information better than numbers and
letters [De Angeli et al. 2005; Standing et al. 1970; Weiss and De Luca 2008]. According to a recent study, 40% of the
Android users use patterns to protect their devices instead of a PIN [Bruggen 2014]. Pattern lock is also used by many
critical applications for authentication. For example, Alipay, the largest third-party online-payment platform with over
450 million users in China, uses pattern lock as part of the login authentication. Considering its widespread usage, a
security breach of the pattern lock could lead to serious consequences.

Security experts have demonstrated several ways to launch an attack for pattern lock in the past. These include
thermal [Abdelrahman et al. 2017], smudge [Aviv et al. 2010] and WiFi attacks [Zhang et al. 2016]. However, these
previous attacks all rely on assumptions that are often too strong to realize in practice, and as a result, the attack
is unlikely to be successfully launched. For examples, thermal and smudge attacks can be easily disrupted by other
on-screen operations after drawing the PIN or pattern, and they are less effective on lock patterns that contain multiple
overlaps; wireless based attacks, on the other hand, require the environment to remain static, because any moving
object nearby can interfere the wireless signal.

Recently, video-based analysis is shown to be effective in reconstructing PIN- or text-based passwords. Some
of the early successes in this area rely on video footage filmed using a camera directly facing the screen or the
keyboard [Balzarotti et al. 2008; Kuhn 2002]. Latest work shows that this limitation can be lifted by exploiting spatial-
temporal dynamics of the hands during typing [Shukla et al. 2014]. Despite the success of video-based attacks on PIN-
and text-based passwords, no work so far has exploited video-based side-channels to crack pattern lock. To do so, the
attacker must deal with the fundamental difference between graphical patterns and PIN-or text-based passwords 1. He
must be able to map the user’s fingertip movements to a graphical structures and to translate the graphical structure
into locking patterns. To overcome these challenges requires new methods and analysis to be constructed in the new
application context of pattern lock.

In this article, we present a novel approach to crack Android pattern lock using video footage that captures the user’s
fingertip motions when drawing the pattern. Unlike prior work on pattern lock attacks such as the thermal [Abdelrahman
et al. 2017] and smudge attacks [Aviv et al. 2010], our approach does not require the video footage or images to be
captured by a camera directly faced the screen. Furthermore, the video can be filmed at a distance of two meters away
from the user in public places. Such a distance is less likely to raise suspicion compared to shoulder surfing [Rogers
2007] that requires a closer observation distance to have a clear sight of the content displayed on the screen. A recent
study has shown that shoulder surfing is not perceived as a serious threat by many mobile users because to launch the
attack an adversary has to stay close to the target [Eiband et al. 2017]; and as a result, many users do not take extra
protection when entering sensitive information in public spaces. As a departure from prior approaches, our attack is
more likely to succeed because the adversary can stay further away from the target and the attack does not rely on any
information on the screen.
1A pattern essentially is a graphical shape with continuous points. This is different from a PIN-or text-based password consisting of discrete characters

Manuscript submitted to ACM

https://doi.org/0000001.0000001

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Video-based Attack for Android Pattern Lock 3

Approach. To infer the user’s locking pattern, the attack uses a computer vision algorithm to track the fingertip
motions from the video. Using the geometry information extracted from the fingertip motions, it then maps the tracked
fingertip locations to a small number of candidate patterns to be tested on the target device. We show that an adversary
can employ a set of empirical heuristics and algorithms developed in other domains to overcome a range of practical
issues to successfully launch the attack. This set of issues include how to translate the video footage from the camera’s
perspective to the user’s, how to identify the start and the end of pattern drawing, how to rank candidate patterns, etc.

Results. We thoroughly evaluate our approach on a large number of locking patterns, including 120 unique patterns
collected from independent users. The experiment results show that our approach is highly accurate in inferring
candidate patterns and as a result, an attacker can unlock the target device with a success rate of over 95% (up to 97.5%)
in five attempts. We demonstrate that, in contrast to many people’s belief, complex locking pattern is less secure than a
simpler one under our attacking methodology. We also show that the algorithms and analysis developed in this attack
can be used to target PIN-based passwords with a high success rate. As a countermeasure, we propose to change the
way how a locking pattern is formed and used. We show that by adding some randomness to pattern drawing, our
countermeasure can significantly increase the difficulties for launching the video-based attacks.

Contributions. The key contribution of this article are summarized as follows.

— This is the first work to exploit the video side-channel to automatically reconstruct Android pattern lock using
computer vision algorithms. (Section 4).

— We identify a new vulnerability. In our attacking scenario, filming can be carried out at a distance of two
meters away from the user and the camera does not need to directly face the target device (Section 3). Such a
camera setting makes our attack less likely to raise suspicion, but is more likely to succeed when compared to
direct observation, e.g. shoulder surfing.

— We discover a counter-intuitive finding. The experimental results suggest that complex patterns are more
vulnerable under video-based attacks (Section 7.1). This finding debunks many people’s conception that more
complex patterns lead to stronger protection. Therefore, this work sheds new insights on the practical use of
pattern lock.

— We present a new countermeasure. We show that by making some small modifications to how the pattern
lock is formed, a simple yet effective countermeasure can be proposed to significantly reduce the risk of the
presented attack.

2 ANDROID PATTERN LOCK

Pattern lock is a popular authentication mechanism for Android touch-screen devices such as mobile phones, smart
watches and tablets. Many users prefer to use pattern lock because they are easier to be recalled over alphanumeric
characters [Standing et al. 1970; Weiss and De Luca 2008]. To unlock a device protected with pattern lock, the user is
asked to draw a predefined sequence of connected dots on a pattern grid2 (see Figure 2e).

There are several rules for creating an Android pattern: (1) a pattern must consist of at least four dots; (2) each dot
can only be visited once; and (3) a previously unvisited dot will become visited if it is part of a horizontal, vertical
or diagonal line segment of the pattern. Considering these constraints, the total number of patterns on a 3 × 3 grid
is 389,112 [Uellenbeck et al. 2013]. Given the large number of possible patterns, performing brute-force attacks is

2In this article we use the Android default pattern grid with 3 × 3 dots, unless otherwise stated.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Ye, G. et al

(a) The video was
recorded from a distance
of 2.5 meters.

(b) The device screen
seen from the video
filmed in (a).

(c) An outdoor scenario. (d) The device screen
seen from the video
filmed in (d).

Fig. 1. Examples of scenarios in which a mobile phone camera is used to film the unlocking process. In these scenarios, the camera
does not need to have a clear sight of the screen.

ineffective, especially for the patterns with complex structures [Kelley et al. 2012; Mazurek et al. 2013], because the
device will be automatically locked after five failed tries. Previous works also show that a brute-force attack is likely to
fail on patterns with complex structures [Kelley et al. 2012; Mazurek et al. 2013].

3 THREAT MODEL

In our threat model, we assume an adversary wants to access some sensitive information from or to install malware
on a target device that is protected by pattern lock. This type of attack is mostly likely to be performed by an attacker
who can physically access to the target device for a short period of time (e.g. via attending a meeting or a party where
the user is present). To quickly gain access to the device, the attacker would like to obtain the user’s locking pattern in
advance.

The attack starts from filming how the user unlocks the device. Video recording can be done on-site or ahead of time.
Because filming can be carried out from a distance of as far as 2 meters using a mobile phone camera (or about 9 meters
using a DSLR camera) and the camera does not need to directly face the target device, this activity often will not be
noticed by the user. Moreover, given that many users use the same pattern across devices and applications, the pattern
obtained from one device may also be used to break the user’s other devices.

Examples of Attacking Scenarios. Figure 1 illustrates two day-to-day scenarios where filming can be performed
without raising suspicion to many users. The filming camera had a left- or right-front view angle from the target device
indoor or outdoor and did not directly face the screen of the target device. Due to the filming distance (2-3 meters), the
recoded video typically does not have a clear vision of the content displayed on the screen as shown in Figure 1.

Assumptions. Our attack requires the video footage to have a vision of the user’s fingertip that was involved in
pattern drawing as well as part of the device. We believe this is a reasonable assumption because in practice many users
often do not fully cover their fingers and the entire device when drawing a pattern. This is particularly true when
holding a large-screen device by hands. To launch the attack, the attacker needs to know the layout of the grid, e.g.
whether it is a 3 × 3 or a 6 × 6 grid. This can be simply decided by seeing target device.

4 OVERVIEW OF OUR ATTACKING SYSTEM

In this section, we give an overview of our attacking system which analyzes the user’s fingertip movement to infer
the locking pattern 3. The system takes in a video segment that records the entire unlocking process. It produces a
small number of candidate patterns to be tested on the target device. Figure 2 depicts the five key steps of our attack:
3A simple variant method of the system can also break PIN-based passwords. This is demonstrated in Section 7.9

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Video-based Attack for Android Pattern Lock 5

-60 -30 0 30 60

-60

-30

0

30

60

-60 -30 0 30 60

-60

-30

0

30

60

(a) Video footage

1 2

(b) Marked tracking areas (c) Fingertip trajectory
(camera’s perspective)

3

(d) Transformed trajectory
(user’s perspective)

4

(e) Candidate patterns

5

(f) Correct pattern

Attacker AttackerOur system

Fig. 2. Overview of the attack. Our system takes in a video segment that records the unlocking process (a). The adversary first marks
two areas of interest on the first video frame (b): one contains the fingertip involved in pattern drawing, and the other contains part
of the device. Our system then tries to track the fingertip’s location w.r.t. to the device. The tracking algorithm produces a fingertip
movement trajectory from the camera’s perspective (c) which is then transformed to the user’s perspective (d). Finally, the resulted
trajectory in (d) is mapped to several candidate patterns (e) to be tested on the target device (f).

1 Video Filming and Preprocessing: The attack begins from filming how the pattern is drawn. This can be done
at a distance of 2 – 3 meters away from the user using a mobile phone rear camera. After recording, our system can
automatically cut out a video segment that contains the entire unlocking process (Section 5.1). The attacker then need
to mark two areas of interest from a video frame: one area consists of the fingertip used to draw the pattern, and the
other consists of part of the device (see Figure 2 (b)).
2 Track Fingertip Locations: Once the areas of interest are highlighted, a computer vision algorithm will be applied
to locate the fingertip from each video frame (Section 5.2.2). The algorithm aggregates the successfully tracked fingertip
locations to produce a fingertip movement trajectory. This is illustrated in Figure 2 (c). Keep in mind that at this stage
the tracked trajectory is presented from the camera’s perspective.
3 FilmingAngle Transformation: This step transforms the tracked fingertip locations from the camera’s perspective
to the user’s. We use an edge detection algorithm to automatically calculate the filming angle which is then used
to perform the transformation (Section 5.3). For example, Figure 2 (c) will be transformed to Figure 2 (d) to obtain a
fingertip movement trajectory from the user’s perspective.
4 Identify and Rank Candidate Patterns: In this step, our software automatically maps the tracked fingertip
movement trajectory to a number of candidate patterns (Section 5.4). We rank the candidate patterns based on a
heuristic described in Section 5.4.2. For instance, the fingertip movement trajectory in Figure 2 (d) could be mapped to a
number of candidate patterns shown in Figure 10. We show that our approach can reject most patterns to leave no
more than five candidate patterns to be tried out on the target device.
5 Light Weight Trials: In this final step, the attacker tries the candidate patterns one by one on the target device.

5 IMPLEMENTATION DETAILS

5.1 Video preprocessing

This step aims to identify the unlocking process from the video footage. While all our participants (see Section 6.1)
consider this as a straightforward manual task, we developed a simple yet effective heuristic to automatically detect
the video segment in some typical scenarios. Our heuristic is based on the following observations: (1) before or after
unlocking, users often pause for a few seconds; (2) two consecutive on-screen operations (e.g. swiping, zooming etc.)
typically expose some spatial-temporal motion characteristics.

In our initial test, we find that there exists at least 1.5 seconds pause before or after pattern drawing due to delay of
the user or the device. We also found that identical on-screen activities often follow closely. These consecutive on-screen

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Ye, G. et al

−40 −20 0 20 40
−20

−10

0

10

20

(a) a
horizontal-swiping

gesture

−50 −25 0 25 50
−30

−20

−10

0

10

20

(b) two consecutively
horizontal-swiping

gestures

−40 −20 0 20 40
−30

−15

0

15

30

(c) a zooming gesture
−40 −20 0 20 40

30

15

0

−15

−30

(d) two consecutive
zooming gestures

Fig. 3. Spatial-temporal characteristics for performing an on-screen gesture once (a, c) and twice (b, d).

Algorithm 1: Unlocking process identification heuristic
Input:

IV : Video footage
f rameCount : Pause threshold before or after unlocking

Output:
<start,end>: Start and end of the unlocking video segment

1: f rames[]← дetV ideoFrames (IV)
2: LEN ← дet F ramesLen (f rames[])
3: for i = 1 : LEN − f rameCount do
4: sL ← hasF inдer t ipChanдed (f rames[i : i + f rameCount])
5: if !sL then
6: sNo = i + f rameCount
7: for j = sNo : LEN do
8: if checkLoop (f rames[j : LEN]) then
9: eNo = i
10: break;
11: else if !hasF inдer t ipChanдed (f rames[j : j + f rameCount]) then
12: eNo = i
13: break;
14: end if
15: end for
16: break;
17: end if
18: end for
19: < star t, end >← дetT arдetV ideo (f rames[], sNo, eNo)

operations have some spatial-temporal motion characteristics that are different from pattern drawing. Figure 3 shows
the spatial-temporal motion structure for two gestures, swiping and zooming, when they are performed once (a, c) and
twice (b, d). This diagram indicates that the spatial-temporal motion of two identical on-sreen activities contains one or
more looping structures for which pattern drawing does not have.

Our heuristic for identifying the pattern drawing process is described in Algorithm 1. The input to the algorithm is
a video capturing the unlocking process, and the output of the algorithm is a time-stamp tuple, <start, end>, which
marks the start and the end of a video segment. To locate the video segment, we first filter out on-screen activities
where the fingertip location does not change within a timeframe of 1.5 seconds (lines 4 and 11). This allows us to
exclude some basic on-screen activities such as clicking. Figure 4 shows that all our participants paused at least 1.5
seconds before or after pattern drawing due to delay of the user or the device. We use the number of video frames,
frameCount, as a proxy to estimate the time interval between two on-screen operations. Here, a time interval of 1.5s
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Video-based Attack for Android Pattern Lock 7

1.5 1.6 1.7 1.8
0

0.2

0.4

0.6

0.8

1

The time interval (s)

C
D

F
Fig. 4. The cumulative distribution function (CDF) of the time interval between pattern drawing and other on-screen activities.

translates to 45 frames or 90 frames when the video was shot at 30 or 60 frames per second (FPS) respectively. We also
use the spatial-temporal characteristics described above to exclude two consecutive swiping or zooming gestures (line
8). Finally, we exploit the observation that users typically paused at least 1.5s before or after unlocking to locate the
start and end points of pattern drawing (line 19).

Limitations. Our heuristic is not perfect. It is likely to fail if the user was typing using a Swype-like method (i.e.
entering words by sliding a finger from the first letter of a word to its last letter) during video recording. In this case,
our method will identify multiple video segments of which one may contain the pattern unlock process. If multiple
segments are detected, the algorithm will ask the user to confirm which video segment to use. In this scenario, the first
identified segment is likely to be the correct one. In practice, an experienced attacker would wait patiently to avoid this
complicated situation by finding the right time for filming (e.g. for a screen lock, the time is just after the device is
retrieved). The attacker could also watch the video to manually cut it to ensure to obtain the correct video segment.

5.2 Track fingertip locations

After cutting out the video segment of pattern drawing, we need to track the finger motions from the video segment.
We achieve this by employing a video tracking algorithm called Tracking-Learning-Detection (TLD) [Kalal et al. 2011].
This algorithm automatically detects objects defined by a boundary box. In our case, the objects to be tracked are the
user’s fingertip and an area of the device. These are supplied to the algorithm by simply highlighting two areas on the
first frame of the video segment (see Figure 2 b). The algorithm tries to localize the fingertip from each video frame and
aggregates the successfully tracked locations to produce a fingertip movement trajectory as an output (see Figure 2 c).

5.2.1 Generate The Fingertip Movement Trajectory. The TLD algorithm [Kalal et al. 2011] automatically detects
objects based on the examples seen from the first frame. For each tracked object, the algorithm generates a confidence
between 0 and 1. A tracking is considered to be successful if the confidence is greater than a threshold. We set this
threshold to 0.5 which is found to give good performance in our initial design experiments using 20 patterns 4. TLD has
three modules: (1) a tracker that follows objects across consecutive frames under the assumption that the frame-to-frame
motion is limited and objects are visible; (2) a detector to fully scan each individual frame to localize all appearances
of the objects; and (3) a learner that estimates errors of the detector and updates the detector to avoid these errors in
future frames.

In some specific cases, the algorithm may fail to detect the objects in many video frames due to poor selections of
interesting areas. If this happens, our system will ask the user to re-select the areas to track. We have also extended
TLD to report when a fingertip position is seen on the footage. This temporal information is recorded as the number of

4To provide a fair evaluation, the patterns used in our initial test runs in the design phase are different from the ones used later in evaluation.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Ye, G. et al

x=265.00 y=364.00

x=156.00 y=454.00
∆x=109.00 ∆y= -90.00

(a) The first video frame

x=275.62 y=324.86

x=156.22 y=456.98
∆x= -119.40 ∆y=132.12

(b) A middle video frame

x=310.70 y=278.00

x=157.40 y=437.94
∆x= -153.30 ∆y=159.94

(c) The last video frame
-60 -30 0 30 60

-60

-30

0

30

60

(d) Fingertip trajectory

Fig. 5. Tracking the fingertip movement trajectory. For each video frame, the system tracks two areas: one surrounds the fingertip
and the other covers the edge of the device. The fingertip position is determined by computing the relative coordinates of the central
points of the two areas. The red points highlighted in the final results (d) are the touching points tracked from the three video frames.

video frames seen with respect to the first frame of the video segment. This is used to separate two possibly overlapping
line segments described in Section 5.4.

5.2.2 Camera Shake Calibration. By default, the TLD algorithm reports the position of a tracked object with respect
to the top-left pixel of the video frame. However, videos recorded by a hand-held device are not always perfectly steady
due to camera shake. As a result, the top-left pixel of a video frame may appear in a different location in later frames.
This can drastically affect the precision of fingertip localization, leading to misidentification of patterns.

Our approach to cancel camera shake is to record the fingertip location with respect to a fixed point of the target
device. To do so, we track two areas from each video frame. One area is an edge of the device and the other is the
fingertip. Both areas are highlighted on the first frame by the user. The location of a successfully tracked fingertip is
reported as the relative coordinates of the two center points of the marked areas. This approach can also be used to
calibrate the minor motions of the target device during pattern drawing.
Example: To illustrate how our camera-shake calibration method works, consider Figure 5 where two areas are firstly
marked by two bounding boxes in subfigure (a). Both areas will then be automatically detected by the TLD algorithm in
following video frames as shown in subfigures (b) and (c). The coordinates of the two center points of each box are
the values of x and y, and their relative positions are represented by △X and △Y . For each frame where both areas are
successfully tracked, we compute the relative coordinates, (△X , △Y), which are reported as the location of the tracked
fingertip.

5.3 Filming angle transformation

In practice, the filming camera will not directly face the target device to avoid raising suspicion by the target user.
As a result, the fingertip movement trajectory generated by the tracking algorithm will look different than the actual
pattern. For example, for the pattern presented in Figure 2 (a), if the video is filmed from the attacker’s front-left to the
target device (i.e. with a filming angle of approximate 45 degrees), we get the trajectory shown in Figure 2 (c). Using
this trajectory without any postprocessing will lead to misidentification of candidate patterns. Therefore, we must
transform the resulting trajectory to the user’s view point. To do so, we need to estimate the angle between the filming
camera and the target device. Our approach is described as follows.

We use an edge detection algorithm called Line Segment Detector (LSD) [Grompone et al. 2010] to detect the longer
edge of the device. The filming angle is the angle between the detected edge line and a vertical line. This is illustrated
in Figure 6. In Section 7.5, we show that a minor estimation error of the filming angle has little impact on the attacking
success rate. By default, we assume that the pattern grid is presented in the portrait mode5. If this is not the case, i.e.
5The pattern grid of the Android native pattern lock is always presented in the portrait mode regardless of the orientation of the device.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Video-based Attack for Android Pattern Lock 9

100 200 300 400

150

100

50

�

Fig. 6. Filming angle calculation. The filming angle, θ , is the angle between the edge line of the device and a vertical line.

the pattern grid is shown in the landscape mode, we need to use the shorter edge of the device to calculate the filming
angle. We believe that an attacker interested in a particular target device would have some knowledge of how the
pattern grid is presented under different orientation modes and be able to identify the device orientation by watching
the video. There are also other methods to be used to identify the filming angle [Torralba and Oliva 2002].

Based on the estimated filming angle, θ , we use the following formula to transform the tracked fingertip movement
trajectory from the camera’s view point to the user’s:

S = TS
′

, T =


cosθ − sinθ
sinθ cosθ


(1)

where T is a Transformation Matrix, S
′

is the coordinate of a point of the tracked trajectory, and S is the resulting
coordinate after the transformation. For each video frame, our algorithm individually calculates the filming angle and
perform the transformation, because the filming angle may change across video frames.

5.4 Identify and rank candidate patterns

In this step, the fingertip movement trajectory will be mapped to a number of candidate patterns to be tested on the
target device. Our goal in this step is to exclude as many patterns as possible and only leave the most-likely patterns to
be tried out on the target device. Our approach is to use the geometry information of the fingertip movement trajectory,
i.e. the length and direction of line segments and the number of turning points, to reject patterns that do not satisfy
certain criteria. In this section, we first describe how to identify overlapping line segments and extract length and
direction information before presenting how to use the extracted information to identify and rank candidate patterns.

5.4.1 Extracting Structure Information. A pattern can be defined as a collection of line segments where each line
segment has two properties: the length of the line, l , and the direction of the line, d . We define a pattern, P , as a collection
of line segment prosperities, P = {L,D}. Here L = {l1, l2, · · · , ln } is a collection of the lengths of all line segments (that
are numbered from 1 to n) of the pattern, and D = {d1,d2, · · · ,dn } is the collection of directions for all line segments in
L. We extract the length and the direction of each line segment from the tracked fingertip movement trajectory and
store them into arrays L[] and D[] respectively.

Identify Line Segments. The first step of geometry information extraction is to identify individual line segments from
the trajectory. This can be achieved by finding turning points, the start and the end points of the pattern, because two
points define a line segment. For example, turning points, A and B, in Figure 7 define a line segment, AB. We use a
linear fitting method [Kutner et al. 2004] to discover turning points. A specific challenge here is how to separate two
overlapping line segments. It is to note that up to two lines can be overlapped on a pattern grid. The naive linear fitting
algorithm would consider two overlapping segments to be a single line as their points stay close to each other. We

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Ye, G. et al

-100 -50 0 50 100
-100

-50

0

50

100
A

BC

D

S

E

(a) tracked fingertips

� �

��

� �

(b) pattern example

Fig. 7. The tracked fingertip movement trajectory (a) of a pattern
(b).

-100 -50 0 50 100
-40

-20

0

20

40

Line 1

Line 2

Line 3

timeframes

(a) overlapping lines
90 100 110

24

25

26

Line 1 Line 2

1

8
11

1310

9

12

88888888888
111111

13100

9

12 14

(b) zoom-in view

Fig. 8. Separating two overlapping line segments.

Table 1. Mappings from line slopes and fingertip-horizontal movements to direction numbers

Direction No. 1 2 3 4 5 6 7 8
slope (L→ R) +∞ 2 1 1

2 0 − 1
2 −1 −2

Direction No. 9 10 11 12 13 14 15 16
slope (R→ L) −∞ 2 1 1

2 0 − 1
2 −1 −2

overcome this problem by using the temporal information (that is recorded by the tracking algorithm) to separate two
overlapping points.

Example: As an example, consider a fingertip movement trajectory shown in Figure 8 (a). The red rectangle on the
figure is a timeframe consisting of 20 tracked points. If we zoom in on the timeframe, we get Figure 8 (b) where a point
is labelled with a frame number according to when the point was seen, starting from 1 for the earliest point. In this
example, there are more than 6 overlapping points in the timeframe, which are marked by a green circle. We use the
center point (No.10) of the overlapping points as the turning point to separate the two line segments.

Extract the Line Length. The physical length of a line segment depends on the sizes of the screen and the pattern
grid, and the space between two touch dots. To ensure our approach is independent of the device, we normalize the
physical length of a line segment to the shortest line found on the tracked trajectory. For the example as shown in
Figure 7 (a), the line lengths for segments, SA, AB, BC, CD, and DE, are 2ls , ls , 2ls , l , 2ls , respectively. Here segments AB
and CD have the shortest length, ls . The physical length of a line segment is calculated by computing the Euclidean
distance between the start and the end points of a segment.

Extract Direction Information. In addition to the line length, we also want to know to which direction the finger
moves. This information is useful for inferring which dots are selected to unlock the pattern. Figure 9 (a) shows all
possible 16 directions on a 3 × 3 pattern grid. The directions are numbered from 1 to 16 in clockwise. For each line
segment of the tracked trajectory, we calculate its line slope and the horizontal movement of the finger (i.e. left→ right
or vice versa). This information will then be checked against Table 1 to determine the direction number of the line
segment. The horizontal movement of the fingertip is determined by first using the temporal information to find out
the start and the end points of the line and then comparing the horizontal coordinates of the two points. The line slope
is also computed based on the coordinates of the start and the end points of the line segment. Figure 9 (b) gives the
direction number of each tracked line segment of a fingertip movement trajectory.
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Video-based Attack for Android Pattern Lock 11

16

114 3 4

5

67

8

11

13

15

12

2

10

9

(a) line direction number
-100 -50 0 50 100

-100

-50

0

50

150

9

5

13

1

9

S

A
B

CD

(b) numbering line segment

Fig. 9. All possible line directions (a) and an example trajectory (b).

5.4.2 Map the Tracked Trajectory to Candidate Patterns. In this step, we use the extracted geometry information to
map the fingertip movement trajectory to a small number of candidate patterns which will then be ranked using a
heuristic.

Identify Candidate Patterns. Our implementation simply enumerates all possible patterns for a given pattern grid to
identify candidate patterns, starting from the top-left touch point. We reject patterns that do not meet the requirements
that the correct pattern is expected to have. The requirements are the number of line segments (this is checked by
counting the number of turning points), and the length and the direction for each line segment. This is an automatic

process performed by our software system without any user involvement. We consider two line segments having
the same length and slope if the difference between them is less than a threshold. Specifically, the relative length
threshold, lenдthTh, is set to 1.12 and the slope threshold, directionTh, is set to 0.25. To determine the thresholds, we
have evaluated a range of possible settings using 30 patterns in our initial design experiments 6. We found that our
chosen thresholds lead to good performance – our attack only fails on 1 out of the 30 patterns due to blur motions of
the video footage.

Example: We use the pattern depicted in Figure 2 as an example to describe our algorithm. Figure 10 gives several
possible mappings for the fingertip movement trajectory shown in Figure 2 (d). For this particular trajectory, the
collections of lengths and directions are L = {l ,

√
2l , l } and D = {5, 11, 5} respectively. Any pattern that does not meet L

or D should not be considered as a candidate pattern for this trajectory. For this reason, Figure 10 a(1)–a(9) will be
rejected. Take Figure 10 a(1) as an example, the line lengths and directions for all four line segments of this pattern are
{l ,
√
5
2 l , l } and {5, 12, 5} respectively.

Rank Patterns. Candidates patterns are then ranked using a simple heuristic. The heuristic assumes a pattern starting
from a left dot of the grid is more likely to be the correct pattern over a pattern starting from a right dot. This assumption
is supported by recent studies which show that people tend to select a left dot as the starting point to construct a
pattern [Løge 2015; Uellenbeck et al. 2013]. If two candidate patterns start from the same dot, we consider the pattern
with a longer total line length is more likely to be the correct pattern. We also considered other additional ranking
heuristics by giving a higher priority to patterns that starts from a left dot and has a longer line or starting from the
median dot and has shorter line. In total, we considered five ranking heuristics that give a higher priority to patterns

6In most cases, our participants start from the center of the dots when drawing a pattern.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Ye, G. et al

a(1) a(2) a(3) a(4) a(5) a(6) a(7)

a(8) a(9) b(1) b(2) b(3) b(4) b(5)

Fig. 10. Possible mappings for the trajectory presented in Figure 2 (d).

of different starting dots and line lengths. Different ranking heuristics would rank the candidate patterns in different
order; and we found that our chosen heuristic can lead to a successful attack using the least number of attempts on our
test data. We stress that since our attack generates no more than five candidates on a 3 × 3 grid, the order of which
candidate patterns to be tested first has negligible impact on the success rate. This is because the Android system by
default allows more than five fail attempts and an attacker can test all the five patterns in a short period of time.

6 EXPERIMENTAL SETUP

6.1 Data Collection

The patterns used in our evaluation were collected from users who use at least one Android device (a smartphone or
a tablet) on a daily basis. Our participants include 95 females and 120 males who were undergraduate or postgraduate
students in our institution. The majority of our participants are in an age group of under 30.

To collect the patterns, we have conducted a “pen-and-paper" survey by asking participants to fill in an anonymized
questionnaire. The questionnaire and survey were approved by the research ethics board (REB) of the host institution.
We have made sure that our survey complied with strict privacy regulations. For example, we did not collect any
personally identifiable information other than the gender and age group of the participant. Our participants were well
informed on the purpose of the study and how the data will be managed and used. The survey forms were distributed as
voluntary homework so that the participants can take the survey form away to fill in. Users were invited to return the
survey form anonymously within three weeks to a dedicated, locked mailbox, if they wish to participate in the study.
To avoid a user submits multiple copies of the same form, each survey form is given a unique, randomly generated
32-digital number.

We have distributed over 1,000 survey forms to be taken to fill at home, for which 220 forms have been returned. The
return rate of our questionnaires is in line with the standard survey return rate of 20% [Fox et al. 1988]. By excluding 5
incomplete forms, we have obtained 215 valid forms. These result in 120 unique patterns7.

Overall, 37.6% of our participants confirmed that they use pattern lock as the screen lock to protect their Android
devices on a daily basis; and 33% of those who do not use a pattern as their screen lock said that they are often required
to use a pattern for authentication by an application like Alipay. Furthermore, 60% of our participants also indicated
that the pattern they provided is currently being used or have been used in the past by themselves. Other participants
(often those did not use a locking pattern on a daily basis) indicated that they have provided a pattern which they
7Available to be downloaded from: https://dx.doi.org/10.17635/lancaster/researchdata/113

Manuscript submitted to ACM

https://dx.doi.org/10.17635/lancaster/researchdata/113

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Video-based Attack for Android Pattern Lock 13

(a) Example patterns belong to the simple category.

(b) Example patterns belong to the median category.

(c) Example patterns belong to the complex category.

Fig. 11. Examples of patterns collected from our participants. Patterns are grouped into simple, median and complex categories,
according to their complexity scores.

would like to use if a locking pattern is required. While we cannot guarantee that the self-reported patterns are actually
used, most of participants confirm that the supplied patterns are the ones that have been used in the past, are currently
being used, or somethings they would like to use for sensitive applications. Based on this information, we are confident
that the patterns we collected represent some of the real world patterns. Finally, all participants believe that a complex
pattern provides stronger protection than a simple counterpart.

6.2 Pattern Complexity Classification

We quantify the complexity of a pattern using the complexity (strength) score proposed in [Sun et al. 2014]. The
complexity score, CSP , of a pattern, P , is defined as:

CSP = SP × log2 (LP + IP +OP) (2)

where SP is the number of connected dots, LP is the total length of all line segments that form the pattern, IP is the
number of intersections (which are also termed as "knight moves" in some prior work [Von Zezschwitz et al. 2015])
and OP is the number of overlapping linear segments. To calculate the line length, we assume the length between two
horizontally or vertically adjunct dots is one. Thus, our method is independent of the size of the screen and the grid.

Intuitively, the more connected dots (SP), line segments (LP), intersections (IP) and overlapping line segments (OP)
that a pattern has, the more complex it is. There are other methods to quantify the complexity score of pattern locks,
including the methods proposed by Song et al. [Song et al. 2015] and Andriotis et al. [Andriotis et al. 2014]. These
methods in general suggest that patterns with more connected dots and intersections are considered to provide stronger
security strengths [Aviv and Susanna 2016].

Pattern Grouping. Based the complexity score, we divide the collected patterns into three complexity categories:
simple, median and complex. A simple pattern has a score of less than 19, a median complex pattern has a score between
19 and 33, and a complex pattern must have a score greater than 33. This classification gives us roughly 40 patterns per
category. Figure 11 gives some examples for each category while Figure 12 shows the distribution of these patterns

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Ye, G. et al

6.34 13.08 19.82 26.56 33.30 40.04
0

2

4

6

8

N
u
m
b
er
o
f
p
at
te
rn
lo
ck
s

Complexity score

Fig. 12. The distribution of complexity scores for the collected patterns.

Table 2. Screen sizes for the test phones

Screen size MI4 Honor7 Note4

Height(cm)×Width(cm) 13.9 × 6.9 14.3 × 7.2 15.4 × 7.9

according to their complexity scores. Based on this definition, the complexity scores of the patterns we collected range
from 6.4 to 46.8.

6.3 Video Recording and Preprocessing

Recording Devices. We used three smartphones for video recording: an Apple iPhone4S, a Xiaomi MI4 and a Meizu2.
Each mobile phone was used to record 40 patterns with a 1080p HD resolution of 30 FPS under different settings
described as follows.

Video Recording Setup. By default, we used the Android 3 × 3 native pattern grid, but we evaluated our approach
using other pattern grids with different sizes in Section 7.6. We recorded each pattern under three filming angles, 45, 90
and 135 degrees, by placing the camera on the left-front, front, and right-front of the target device respectively. By
default, videos were recorded at a distance of 2 meters from the target device and we evaluated the impact of the filming
distance in Section 7.2.

Recording Participators. We recruited ten postgraduate students (five male and five female students) from Northwest
University to reproduce the 120 patterns and the 60 most complex patterns (see Section 7.1) on three target mobile
phones: a Xiaomi MI4, a Huawei Honor7 and a Samsung Note4. Table 2 lists the screen size for each target mobile
phone.

Video Filming and Pattern Drawing. Before recording, our participants were given the opportunity to practice a
pattern several times (on average, 10 trials), so that they can draw the pattern at their natural speed. In the experiments,
our participants could use any of their fingers for drawing, and they could use more than one finger for drawing. Most
of our participants used their index fingers for drawing, one user used his middle finger and one used index and middle
fingers for drawing. When drawing the pattern, some participants sat, while others stood, some hold the device by
hands, while others placed it on a table. Each pattern was drawn on three target devices and recorded under three
filming angles. Thus, for the 120 patterns collected from users, we recorded 1,080 videos in total.

We compare the drawing speed of our participants when they practiced a pattern for 10 times against the speed
when they practiced the same pattern for 50 times. We found that there is little difference in the drawing speed. We
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Video-based Attack for Android Pattern Lock 15

have also asked our participants to draw five locking patterns used by five different users, and compared the drawing
speedup after 10 trails against the drawing speed of the pattern owners. We found that 10 trails are sufficient to achieve
a similar drawing speed.

Video Preprocessing. For each video stream, we used the algorithm described in Section 5.1 to cut out the video
segment of the unlocking process. We left around 200 to 300 milliseconds of the video segment before and after the
pattern unlocking process. To track the fingertip locations, we used Windows Movie Make to highlight two areas of
interest on the first frame of the video segment: one area surrounds the fingertip, and the other contains an edge of the
phone (see Section 5.2.2).

Experimental Tools and Platform. Our prototyped attacking system built upon a TLD library [Kalal [n. d.]]. The
developed software ran on an Intel Core i5 PC with 8GB RAM. The operating system isWindows 10. Our implementation
can be ported onto Android or Apple iOS systems, which is our future work. On our evaluation platform, our software
takes less than 30 seconds to process a video to produce candidate patterns.

7 EXPERIMENTAL RESULTS

In this section, we first present the overall success rate for cracking the 120 patterns collected from our participants
plus the top 60 most complex patterns on a 3 × 3 pattern grid. We then analyze how the success rate is affected by
various filming conditions: the filming distance and angle, the camera shake effect, lighting, the screen size of the
mobile device, and the filming cameras. Next, we conduct a limited study to understand how our attack performs when
the video only captures the user’s fingertip. Finally, we demonstrate that our video-based attack can also be used to
crack PIN-based passwords.

7.1 Overall Success Rate

Result 1:We can successfully crack over 95% of the patterns in five attempts and complex patterns are less secure compared

to simple patterns under our attack.

In this experiment, videos were recorded from a distance of 2 meters away from the target device. This mimics a
scenario where the adversary sits at the next table to the user in a public space (e.g. a restaurant). The smartphones
used for filming in this experiment were hand-held.

7.1.1 Evaluation using collected user patterns. Figure 13 shows the success rate for cracking different types of patterns
within 1, 2, 3, 4 and 5 attempts. We used the 120 patterns that have been collected through our user studies in this
experiment. For all the patterns used in this evaluation, our approach does not generate more than five candidate
patterns. For complex patterns, we are able to crack all except one (with a 97.5% success rate) in the first attempt. For
simple and median patterns, the success rate increases with more tries. Using five attempts, we are able to crack all
simple patterns and all but one median patterns. The reason that we failed on one median and one complex patterns is
because of some blur motions of the video footage (probably caused by the video compressing algorithm), which leads
to many tracking failures. But we are able to crack the same pattern using a video filmed by a different device. It is
important to note that the native Android system allows up to five failed tries before locking the device [Egelman et al.
2014]. This means, in practice, our approach is able to successfully crack most locking patterns.

Another interesting observation is that in contrast to many people’s intuition, complex patterns do not provide
stronger protection under our attack – as can be seen by the fact that most of the complex patterns can be cracked in one
attempt. This is because although complex patterns can better protect the user against direct observation techniques

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Ye, G. et al

S i m p l e M e d i a n C o m p l e x0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cra
cki

ng
suc

ces
s ra

te

T h e c o m p l e x i t y o f p a t t e r n l o c k s

 1 a t t e m p t
 2 a t t e m p t s
 3 a t t e m p t s
 4 a t t e m p t s
 5 a t t e m p t s

Fig. 13. For each pattern category, the figure shows
the success rate using no more than 1, 2, 3, 4 and 5
attempts.

1 2 3 4 5
0

10

20

30

40

N
u

m
b

er
o

f
p

at
te

rn
s

Number of candidate patterns

Simple

Median

Complex

Fig. 14. The distribution of candidate patterns for
each category.

complexity
score: 43.8

complexity
score: 44.7

complexity
score: 46.8

Fig. 15. Three most complex patterns on a 3 × 3 grid based on Equation 2.

like shoulder surfing [Rogers 2007], their unique graphical structures help our algorithms to narrow the possible options
down. This is confirmed by Figure 14. It shows that for most median and all complex patterns, our system produces one
candidate pattern – the correct one for most of our test cases.

7.1.2 Evaluation on the most complex patterns. We also evaluated our approach using the top 60 most complex
patterns (according to Equation 2) on a 3 × 3 grid. To evaluate our approach on a wide range of patterns, we exclude
patterns that are simply a rotation to an already chosen pattern. Figure 15 illustrates three highly complex patterns
which have a complexity score between 43.8 and 46.8. The three patterns use all the nine dots of the grid and have a
larger number of line segments, intersections and overlapping lines when compared to simpler patterns. Because of
their complex graphical structures, remembering these patterns using direct observation techniques would be difficult.
In this experiment, we can crack all the complex patterns in one attempt. This result reinforces our claim that complex
patterns are less secure under video-based attacks.

7.1.3 Evaluation using alternative security metric. In addition to using the complexity metric defined by Equation 2,
we also evaluate our attack based on how likely a pattern will be used by users. For this purpose, we use the guessing
probability proposed in [Aviv and Susanna 2016]. This metric measures the pattern’s strength by considering how
likely a pattern is to be guessed. The guessing probability is the likelihood estimation from the hidden Markov model
trained on collected, real-world data [Uellenbeck et al. 2013]. The larger the likelihood, the more likely the pattern
would have been selected by a user. We choose this metric because a similar security metric based on statistical analysis
of real-world passwords haven been widely used in prior studies of text-based passwords [Bonneau 2012; Kelley et al.
2012].

To translate the guessing probability to a frequency score, we first sort all the 120 testing patterns used in this
experiment in ascending order, based on their guessing probabilities. By doing so, patterns with a higher probability
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Video-based Attack for Android Pattern Lock 17

High Median Low
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Likelihood of patterns to be used

1 attempts

2 attempts

3 attempts

4 attempts

5 attempts

Fig. 16. The success rate when grouping patterns
based on Equation 3.

1 1.5 2 2.5 3 3.5
0%

20%

40%

60%

80%

100%

Distance (Meter)

C
ra

ck
in

g
su

cc
es

s
ra

te

1 attempt
2 attempts
3 attempts
4 attempts
5 attempts

Fig. 17. Impact of the filming distance.

Table 3. % of identical patterns in each category using Equations 2 vs 3

Group simple v.s. high median v.s. median complex v.s. low

% of overlap 72.5% 67.5% 80%

(i.e. more commonly used patterns) will appear after those with a lower probability (less commonly used patterns) on
the sorted list. Next, we give each pattern a numeric number (termed guessing number), starting from 1 for the first
pattern of the sorted list, and we increase the number by 1 as we move down to next (more commonly used) pattern on
the sorted list. We then use the following formula to calculate the frequency score, fP , of a pattern, P :

fP = log10GP (3)

where GP is the guessing number of pattern P .
Less commonly used patterns have a smaller guessing number and thus will have a lower frequency score using

Equation 3. With this metric in place, we divide our 120 patterns collected from our participants into three groups: low,
median and high. Patterns in the high group are more likely to be used by users than the patterns in the low group. The
high group has a value of less than 4.2, themedian group has a score between 4.2 and 5.1, and the low group must have a
score greater than 5.1. Using this partition strategy, each group has around 40 patterns. Table 3 counts the percentage of
identical patterns for each group classified using Equations 2 and 3 respectively. As can be seen from the diagram, while
there is a significant degree of overlap, the resulted categorizations are not identical using the two different metrics.

Figure 16 illustrates the cracking success rate for different categories under numbers of attempts. As can be seen
from the diagram, the success rate with one attempt for the patterns in the high group is 42.5%. This success rate is
lower than patterns in other groups. This is because the patterns in the high frequently used group are typically simple
and symmetry patterns, for which our tracking algorithm produces more than one candidate pattern. This is in line
with our observation using the complexity metric defined in Equation 2. Nonetheless, our attack can successfully crack
over 90% of the pattern of each group. This confirms that the video-side channel is a real threat for the Android locking
pattern.

7.2 Impact of Filming Distances

Result 2: We can crack over 80% of the patterns in five attempts, if the video was filmed using a smartphone within a

distance of 2.5 meters away from the target.

To illustrate how the filming distance affects the attacking success rate, we used all the 120 collected patterns and
we varied the filming distance from 1 meter to 3.5 meters. Figure 17 shows how the cracking success rate changes as

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Ye, G. et al

Table 4. Tracking precision vs filming distance

Distance 1 m 2 m 3 m 3.5 m

fingertip 100% 98.7% 80.9% 68%
device edge 100% 99.4% 90.6% 69%

the filming distance increases. There are minor discrepancies in the success rate between this diagram and Figure 13
because we used less patterns in this experiment. When the filming distance is less than 2 meters, our approach can
crack all patterns in five attempts. The success rate drops significantly when the filming distance is greater than 2.5
meters. Beyond this point, the quality of the video filmed by a mobile phone tends to drop significantly with many
object deformations. The degradation of the video quality makes it difficult for the TLD algorithm to successfully track
objects across video frames. This is confirmed by Table 4 which shows that the tracking precision for the fingertip
and the device edge drops from around 99% to 68% when the filming distance increases from 2 meters to 3.5 meters.
The increased tracking failures result in an increased number of missing points on the tracked trajectory, leading to a
deteriorative performance in identifying candidate patterns. Nonetheless, our approach can achieve a high success rate
when the filming distance is within 2.5 meters. Such a distance allows an attacker to record the video without raising
suspicions in many day-to-day scenarios.

We also evaluated our approach on videos filmed using a entry-level single-lens reflex (SLR) camera, Nikon D90,
with a low-end 105mm lens. The SLR camera was placed from a distance of 9 meters away from the target device. For
this set of videos, we are able to achieve the same performance when compared to using videos filmed by a mobile
phone camera with a 2-meter filming distance. Therefore, in practice, an attacker can also use a professional video
recording device to launch the attack from a further distance.

7.3 Impact of Camera Shake

Result 3: Our method can tolerate a certain degree of camera shake in the hand-held mode.

In this experiment, we used an IPhone4S smartphone to record how a pattern is drawn on a Huawei Honor7
phone. This experiment was carried out under three settings: fixed, hand-held and shaky, where the filming device was
respectively fixed using a tripod, hand-held, and hand-held but with constant movements of approximate 2cm in the
horizontal or the vertical directions. The recording device was placed on the left-front, front, and right-front of the
target device. In the experiment, we affixed the target device on a table using double-sided tapes.

We use a reference point to quantify camera shake. The point is the center position of an area of the target device.
The area is marked by a boundary box on the first frame (see Figure 5). We calculate the difference (in terms of pixels)
for where the reference point was seen in two consecutive video frames. We then use the difference to measure the
degree of camera shake. Figure 18 shows the cumulative distribution function (CDF) of camera shake under the three
different filming settings. Here, the wider the distribution is, the less steady the filming is. The shaky mode is least
stable where the difference of the reference point between two video frames can be up to 250 pixels.

Figure 19 shows that our approach has the same performance under the hand-held and the fixed modes. The modest
camera shake under the hand-held mode has little impact on performance thanks to our camera-shake calibration
method. We observe deteriorative performance under the shaky mode, but the performance degradation is modest (80%
vs 97% in 5 attempts). In reality, an attacker would avoid drastic camera shake by firmly holding the video recording
device.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Video-based Attack for Android Pattern Lock 19

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

The distance between video frames

C
D

F

fixed
hand−held
shaky

Fig. 18. CDF for different video recording modes.

1 2 3 4 5
0%

20%

40%

60%

80%

100%

C
ra

c
k
in

g
su

c
c
e
ss

ra
te

The number of successful attempts

shaky hand-held fixed

Fig. 19. Impact of camera shake.

Table 5. Lighting Conditions

Scenarios Indoor Indoor Indoor Outdoor

Time nighttime nighttime daytime daytime
Light Source warm LED white fluorescent sunlight sunlight
Light Intensity (Lux) 55 − 70 70 − 100 150–240 500–9500

7.4 Impact of Lighting Conditions

Result 4: Low-light has a negative impact on the success rate of the attack

In this experiment, videos were recorded under different lighting conditions both indoor and outdoor. The experi-
mental settings are given in Table 5. For each setting, we tested all the 120 patterns on a Xiaomi MI4 phone and used
an iPhone4S phone to record the video. The filming camera was placed on the left-front, front, and the right-front of
the target device from a distance of 2 meters. Figure 20 shows that the success rate increases when video filming was
performed in a brighter lighting condition as the light intensity changes from 55 lux to 9500 lux. This is expected as
low-light leads to increased video noise, blurred motions and poor focus, which all have a negative impact on the TLD
algorithm. Nonetheless, our attack can still crack over 70% of the patterns in a filming environment of low light. We
stress that the impact of the lighting conditions are also camera-dependent where some cameras can better tolerate
low-lights than others.

7.5 Impact of Filming Angle Estimation

Result 5: Our attack performs well when the error of filming angle estimation is less than 5 degrees.

Recall that our attack needs to transform the fingertip movement trajectory to the user’s perspective based on an
estimation of the filming angle (Section 5.3). Because our filming angle estimation algorithm gives highly accurate
results, we did not find the estimation error to be an issue in our experiments. Nonetheless, it is worth studying how
the estimation error affects the success rate of our attack. To do so, we deliberately added an error of 5-10 degrees to
the estimation in this experiment.

Figure 21 shows the results of this experiment. When the error is less than ±5 degrees, there is little impact on
complex patterns and no impact at all on simple and median patterns. However, an estimation error of more than 10
degrees can significantly affect the success rate. Given such errors, the resulting trajectory after transformations will be
significantly different from the correct pattern. For example, when the estimation error is 10 degrees from the true
value, on average, 0.8, 2.6 and 4.2 line segments per pattern respectively will be incorrectly labelled for simple, median

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Ye, G. et al

5 5 7 0 1 5 0 - 2 4 0 5 0 0 - 9 5 0 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cr
ack

ing
 su

cce
ss

rat
e

D i f f e r e n t l i g h t c o n d i t i o n s (L u x)

 S i m p l e M e d i a n C o m p l e x

Fig. 20. The cracking success rate within five attempts
under different lighting conditions.

0 degree 5 degrees 10 degrees

20%

40%

60%

80%

100%

0%

Estimation errors of filming angles

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple Median Complex

Fig. 21. Impact of estimation errors of filming angles.

Simple Median Complex

60%

80%

100%

0%

20%

40%

C
ra

ck
in

g
su

cc
es

s
ra

te

4*4 5*5 6*6

(a) success rate for different locking grids
1 a t t e m p t 5 a t t e m p t s 2 0 a t t e m p t s0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cra
cki

ng
suc

ces
s ra

te

 O u r s A v i v ' s

(b) success rate for a 4 × 4 locking grid

Fig. 22. Success rates for different locking grids.

and complex patterns. This explains why the success rate for complex patterns drops significantly when the filming
angle estimation error is greater or equal to 10 degrees.

7.6 Evaluation on Other Pattern Grids

Result 6: A pattern grid with more dots provides stronger protection but our attack can still crack most of the patterns.

There are a few applications (such as CyanLock) and customized ROMs available to increase the size of the pattern
grid from 3 × 3 to 4 × 4, 5 × 5, and 6 × 6. Although a 3 × 3 grid remains a popular choice (as it is supported by the
native Android OS), it is worth studying whether having more touch dots on a pattern grid leads to stronger security.
In this experiment, we first ranked all possible patterns for each grid setting in ascending order according to their
complexity scores. We then equally divided the patterns into three groups, simple, medium and complex, and asked
our participants to randomly select 20 patterns from each group for evaluation. We report the success rate of our
attack within five attempts. In the experiments, we have adapted our algorithms for each grid setting by adjusting the
algorithm parameters (such as the line direction numbers).

Figure 22 (a) shows the success rate of our attack for different grids. Similar to a 3 × 3 grid, our approach achieves a
higher success rate for complex patterns over simple ones. On average, we can crack 90% of the complex patterns. We
observed that a grid with more dots does provide stronger protection. For complex patterns, the success rate of our
attack drops from 95% on a 4 × 4 grid to 87% on a 6 × 6 grid. For simple patterns, the success rate of our attack drops
from 85% on a 4 × 4 grid to 75% on a 6 × 6 grid. This is because a fingertip trajectory in general could be mapped to a
larger number of candidates on a grid with more dots. For instance, the pattern shown in Figure 2 (f) can be mapped to
55 candidate patterns on a 6 × 6 grid as opposite to 5 on a 3 × 3 grid. Overall, our attack can crack over 75% (up to 95%)
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Video-based Attack for Android Pattern Lock 21

1 2 3 4 5
0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

MI4 Vivo X7 Note4 IPhone6 Nikon

(a) camera brands

1 2 3 4 5
0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Canon Nikon iPhone8 iPhone7

(b) iPhones and SLR cameras

Fig. 23. The cracking success rate for different target screen sizes and filming cameras.

Table 6. Filming camera specs

Parameters Nikon D90 Canon XC10 iPhone8 iPhone7 IPhone6 Vivo X7 MI4 Note4

Frame Rate (fps) 24 30 30 30 30 30 30 30
Pixels 12.3mp 12mp 12mp 12mp 8mp 13mp 13mp 16mp
Focus (mm) 8 10 5 5 4.15 4 4 4.2
Sensitivity (ISO) 400 500 2500 2500 3200 3200 3000 5000

of the patterns within five attempts. One of the purposes of introducing pattern grids with more dots is to allow users
to use more complex patterns. However, this experiment suggests that complex patterns remain less security on these
grids under our attack.

We also compared our attack against the guessing based attack presented by Aviv et al. [Aviv et al. 2015]. This
experiment is conducted on a 4 × 4 locking grid using 30 patterns from the dataset used in [Aviv et al. 2015]. The result
is shown in Figure 22 (b). Our attack achieves a success rate of over 80% (up to 97%), while the attacking mechanism
proposed by Aviv et al. gives a success rate of under 20%. It is to note that our attack fails to reconstruct one pattern
using 20 attempts because our approach produces more than 20 candidate patterns to be tested. Nonetheless, our attack
significantly outperforms the attack described in [Aviv et al. 2015] by effectively exploiting the visual information of
pattern structures.

7.7 Impact of Different Camera Brands

Result 7: The difference in cameras has little impact on the success rate.

Intuitively, the effectiveness of our attack can be affected by the video-quality of the filming camera. To understand
the impact of the filming camera, we asked 10 participants to draw 90 randomly chosen patterns (30 patterns per pattern
category). We record the drawing using eight devices, including two SLR cameras and six mobile phones. Table 6
gives these recording devices and their main performance specs. In this experiment, our target device is a Huawei
Honor7 mobile phone. The filming distance is 2 and 9 meters from target device when using a mobile phone and a SLR
respectively.

Figure 23 (a) shows that our method can reconstruct all patterns within five trials when using a Nikon SLR, an
iPhone6 and a Note4 phone as the recording device. Furthermore, our attack remains effective when using other mobile
cameras by giving a success rate of over 97% under five attempts. Figure 23 (b) compares the success rate of our attack
when using two other generations of iPhones and different SLR cameras. Again, our method can crack all the testing
patterns within five attempts regardless of which filming device is used, albeit a more recent mobile camera does help

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Ye, G. et al

1 2 3 4 5

0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple
Median
Complex

(a) video watching

1 2 3 4 5

0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple
Median
Complex

(b) direct observations

Fig. 24. Success rates of guessing patterns through watching the video (a) or direct observations (b).

to achieve a slightly higher success rate using less trials. The experimental results show that our attacking method can
work effectively on mainstream mobile phones and SLR cameras.

7.8 Guessing Patterns with Eyes

Result 8: Our attacking methodology is more likely to succeed compared to direct observation techniques.

In this experiment, we investigate whether an attacker can infer the pattern by simply watching the video or through
direct observations. To answer this question, we asked each of our 10 participants to watch 60 videos (where a pattern
was drawn by other participants) to guess the pattern. We only played the video segment during which a pattern is
drawn to the participant (around 3 seconds per video). To familiarize participants with the process, we played five
sample videos and showed the correct patterns at the end of each video to our participants before the experiment. Each
participant then had 10 minutes to watch a video and five chances to guess a pattern. They could adjust the playing
speed and replay the video multiple times as they wished.

Figure 24 (a) shows the success rate of pattern guessing with bare eyes. Our participants correctly guessed for nearly
half of the simple patterns in five attempts. However, they found that it is difficult to infer complex patterns with many
line segments, overlapping lines and intersections [Von Zezschwitz et al. 2015]. The success rate of guessing complex
patterns is less than 10% in five attempts. This is not a surprising result because although it is possible to correctly
guess patterns with simple structures by watching the video, doing so for patterns with more complex structures is
much harder.

In accordance with attacking setup, we also asked participants to directly observe how a pattern was drawn from a
distance of two meters away from the target device. The intuition behind this evaluation is that human eyes can catch
richer information over a digital video camera. The results of this experiment are shown in Figure 24 (b). As can be
seen from the diagram, although the success rate is improved compared to directly watching the video, the chances for
guessing the correct pattern in 5 attempts are quite low. In fact, the success rates are 48.3%, 38.3% and 11.7% respectively
for simple, median and complex patterns.

Note that the success rate of shoulder surfing attacks is relatively low because the asked participants to stand at the
same direction as our filming camera faces (the left-front corner from the target device). The observation angle and
distance affect the success rate. In practice, an attacker will need to stay much closer to launch the attack, but doing so
is more likely to raise suspicion.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Video-based Attack for Android Pattern Lock 23

Table 7. PIN-based passwords used in our experiments

Category PIN-based Passwords

1234 1111 1212 1004 2000
6969 4321 1122 2001 2580Commonly used PINs
1357 2468
1205 3570 0729 3719 9867
5946 3451 7403 2209 3560
1043 4628 5372 2830 7102Randomly generated PINs

6193 2941 3471

−20 −10 0 10 20
−15

−7.5

0

7.5

15

(a) password: 1234
−20 −10 0 10 20

−30

−15

0

15

30

(b) password: 3570

Fig. 25. Examples of tracked fingertip trajectory comprised of touching points. The red circle represents the touching points.

7.9 Attacking PIN-based Passwords

Result 9: PIN-based passwords are also vulnerable under our video-side channel attack. We can break over 85% of the

pin-based passwords within five attempts using a variant method based on our approach.

An interesting question to ask is, could this method be used to attack PIN-based passwords? To answer this question,
we apply our attacking method on 30 4-digital passwords. Among these passwords, 12 of them are most common used
passwords (given by a PIN analysis survey conducted by Berry [Berry 2012]). The remaining passwords are randomly
selected. For each password, we ask our participants to type in the password on a Xiaomi MI4 phone. Table 7 lists all
PIN-based passwords considered in this experiment. In this experiment, we used an Sony 6X phone to record the video
from three angles of the target device: the left-front, front and right-front. The filming distance is 2 meters.

Variant Methodology. Because the differences between the PIN-based password and the pattern lock, we need to
adapt our method. The two main differences are summarized as follow: (1) the number of the touch dots is different; and
(2) each dot on the PIN pad can be visited multiple times, while each dot can only be visited once on pattern lock. The
later difference requires us to identify dots that have been visited multiple times. Our preliminary experiments suggest
that we can reconstruct the trajectory of PIN-based password by connecting the touching points8. We can obtain the
location of touching point by tracking the up-and-down motion direction of the fingertip. This is inspired by the prior
work conducted by Shukla et al. [Shukla et al. 2014]. To reconstruct PIN-based passwords, our attacking method records
some additional geometric information, including the direction and length information. Figure 25 shows the tracked
fingertip trajectory using the new attacking method.

8Touching points are the points that are tracked when the user’s fingertip touches the screen.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Ye, G. et al

0 5 1 010 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cra
cki

ng
suc

ces
s ra

te

N u m b e r o f a t t e m p t s

 S h u k l a ' s O u r s

Fig. 26. The success rate of cracking PIN-based pass-
words with different number of attempts.

1 2 3 4 5
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cra
cki

ng
suc

ces
s ra

te

N u m b e r o f a t t e m p t s

 o n l y f i n g e r t i p
 o n l y h a n d m o v e m e n t s

Fig. 27. The cracking success rate drops significantly
when the video footage only captures the user’s fin-
gertip or hand movements.

Figure 26 compares our method against the attack proposed by Shukla et al [Shukla et al. 2014]. With the first
attempt, the success rate of our approach is around 52% because most of evaluated passwords have two or more
candidates, which is slightly lower compared to the 62% accuracy given by Shukla’s. However, both approaches achieve
a comparable accuracy when using more than three attempts. This shows that our findings are in line with prior studies
on video-based side-channel for PIN-based passwords.

7.10 Limited Study

Our attacking method requires the user’s fingertip and part of the device to be seen in the video footage. As described
in Section 5.2.2, this is essential for calculating the coordinates of the fingertip and for camera shake calibration. An
interesting question to ask is that: “can we relax this requirement?" That is, will the attack still be effective if the
video footage only captures the user’s fingertip or hand movements. If our findings suggest that the success of the
attack requires seeing part of the device, a potential countermeasure is to educate users to cover their devices when
entering their patterns. To conduct this limited study, we ensure that the video only captures the user’s fingertip or
hand movements during recording. This experiment is performed on 20 patterns randomly selected by our participants.

Figure 27 shows the success rate of our attacking method is low when the device is not seen in the video footage.
The success rate is even lower when the camera only captures the hand movements but not the fingertips. With only
the fingertip or the hand location, our attack fails to cancel the camera shake effect, leading to a low-quality fingertip
movement trajectory. This leads to a worse success rate (less than 50%, 30% and 20% for simple, medium and complex
patterns respectively).

8 COUNTERMEASURES

In this section, we first analyze the dominating factors of our attack. According to these factors, we illustrate the
reasons that some possible countermeasures approved by the public are also vulnerable. At last, we propose a possible
remedy, a variant of pattern lock mechanism, which can effectively protect the mobile phone from the video-based
attacks.

8.1 Possible Countermeasures

The success of our attack depends on the following three factors: (1) knowledge of the pattern grid; (2) a decent
quality video footage allowing the algorithm to track the fingertip movement; (3) successfully identifying a video
segment that captures the entire process of pattern drawing.
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Video-based Attack for Android Pattern Lock 25

(a) (b) (c)
−90 −45 0 45 90

−100

−50

0

50

100

(d)
−90 −45 0 45 90

−100

−50

0

50

100

(e)
−90 −45 0 45 90

−100

−50

0

50

100

(f)

Fig. 28. Examples of our new pattern lock mechanism. A true pattern of solid lines is shown in (a). We propose to make two changes
to form a pattern. Our first change allows the user to skip some dots when creating a pattern. For example, in (a) the central dot in
the first line is skipped. Our second change requires the user to draw a given random pattern structure (e.g. the dash lines in b and c)
before or after drawing the true pattern. The tracked fingertip trajectories of a, b, and c are shown in d, e, f respectively. forces the
attacker to use multiple video recordings to identify the true pattern. As a result, this new pattern lock mechanism decreases the
effectiveness of the video-based attack.

For the first factor, the attacker can obtain the relevant information by simply looking at the pattern grid of the
target operating system or application. Randomization techniques such as randomized pictures [Biddle et al. 2012;
Schneegass et al. 2014; Siadati et al. 2015; Zezschwitz et al. 2013], which randomly shuffle the location of touch points
each time, could be a solution. However, randomization-based solutions often come at the cost of poorer usability. This
can prevent them to be used at a large scale. Regarding the second factor, there are ways, such as KALEIDO [Zhang
et al. 2015], to prevent unauthorized videotaping by dynamically changing the colour and brightness of the screen to
confuse the filming camera. A non-technical solution for this aspect would be to educate users to fully cover their
fingers when drawing a pattern. But doing this on a large-screen device could be awkward especially when the device
is held by one hand.

For the third factor, the attacker’s solution depends on the type of the pattern. For a screen lock, pattern drawing is
the first activity (except for receiving a phone call or making an emergency call) when the device is retrieved. Therefore,
identifying the video segment is straightforward. When the pattern is used by applications, we have observed that users
typically pause for a few seconds before or after entering the pattern. Therefore, an experienced attacker should also be
able to identify the video segment in case our automatic algorithm (presented in Section 5.1) fails to do so. A potential
countermeasure is to mix pattern unlocking with other on-screen activities. For examples, before and after pattern
drawing, the system can ask the user to type in a sentence using a Swype-like method or to draw some graphical shapes.
The problem of this approach is it may annoy users by asking them to do more, especially for screen unlocking – an
activity that is performed many times a day.

8.2 A Feasible Remedy

We propose a countermeasure to make it difficult to obtain a meaningful video footage. When designing the approach,
we try to find a balance between the usability and the security. Our approach requires making two changes to the
pattern lock: (1) when forming a pattern the user can skip some of the dots in a vertical, horizontal, or diagonal line (e.g.
the central dot of the top line is skipped in Figure 28 a); (2) before or after drawing the correct pattern, the user is asked
to draw a given random pattern to confuse the attacker (e.g. sub-figures b and c in Figure 28). For the second change,
we relax the rules for creating a pattern to allow a touching dot to be visited multiple times (e.g. the bottom-left dot at
Figure 28 c is visited twice). Further, for purpose of increasing the number of candidate patterns, we also change the
rule that a previously unvisited dot can be bypassed if it is part of a horizontal, vertical or diagonal line segment of the
pattern.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Ye, G. et al

5

8

4

1 0

1 0

1 3

1 0

1 5

9

8

9

4

5

1

5

1

1

2

5

8

4

1 0

1 0

1 3

1 0

1 5

9

8

9

4

5

1

5

1

1

2

C h a n g e 1

C h a n g e 2

B o t h

A n d r o i d p a t t e r n

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

A

 0 1 2 3 4 5

Fig. 29. The usability of our countermeasure has little
negative effect comparing to Android pattern lock.

0 . 9 6 7

0 . 0 3 3 0 . 0 6 7 0
A n d r o i d P a t t e r n C h a n g e 1 C h a n g e 2 B o t h0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Fig. 30. The cracking success rate drops significantly
when using our countermeasure.

The two changes mentioned above can significantly decrease the effectiveness of the attack. Our first change allows
the user to skip some dots, which makes it difficult for the tracking algorithm to identify which dots are skipped
(because the video-camera is not able to precisely capture depth information). The second change makes it harder for
the attacker to identify which part of the track pattern is the true pattern. Figures 28 (d) - (f) respectively show the
tracked fingertip trajectory of the patterns shown in Figures 28 (a) - (c). As can be seen from the tracked trajectories,
using a pattern that is directly mapped from the trajectory will lead to a failed attempt. Because each time the system
will ask the user to draw a random pattern structure, directly use the tracked pattern (ignore the skipping dots) will not
be accepted by the system.

8.3 Usability Study of the Proposed Countermeasure

To understand the usability of our countermeasures, we conduct a user study. We ask each of our 30 volunteers to
apply the countermeasure to three randomly assigned Android patterns (90 unique patterns in total). Among the three
revised patterns came up by a participant, two must contain one of the changes we proposed, and the other one must
contain both changes. We ask our participants to draw their revised patterns 10 times. We then ask our participants to
rate their experience on using the revised patterns. The rating is based on a score ranging between 0 and 5 – where 5
means there is a significant impact on their experience and 0 means there is no impact on their experience.

Figure 29 shows that comparing to the original pattern lock mechanism, our proposed changes have little impact
on the user experience. On average, it takes 2.5 seconds for a user to draw a new pattern. This is slightly longer than
drawing an standard Android pattern, which takes 2 seconds on average. Nevertheless, 21 out of our 30 participants
consider the increased time to be negligible and think there is no impact on their experience; and other 7 users think
the changes are acceptable. There are two users who specifically see two patterns that combine both changes to be
a poor design, and one of them also rates a pattern that contains the first change to result in poor user experience.
However, these two users also consider one of the original patterns to be difficult to draw, because the pattern has a
complex structure; therefore, we think the poor user experience is largely due to the complexity of the original pattern.
Based on the user study, we conclude that our countermeasure does not significantly affect the user experience for
most of our participants.

To evaluate the strength of our countermeasure, we applied our attacking method to reconstruct the revised and
the original patterns. Figure 30 shows that our countermeasure significantly reduces the success rate of the attack.
The attack can successfully crack 96.7% of the original patterns. However, it can only successfully reconstruct two of
the revised patterns, leading to a success rate of less than 7%. After having a close look at the two successful cracked
revised patterns, we found that little changes have been introduced to the original patterns. In other words, better
Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

A Video-based Attack for Android Pattern Lock 27

changes could be introduced by the users to increase the strength of the revised patterns. This experiment confirms
that randomness can improve the security of pattern lock under our attack.

We stress that our countermeasure is not a panacea. In fact, finding a balance between the usability and security for
graphical passwords remains an open problem [Abdullah et al. 2008]. Even with our countermeasure, an attacker can
still use multiple videos that record the same user when doing pattern drawing to find the common pattern structure
(which will likely to be the true pattern). Therefore, while our countermeasure is simple to implement and can increase
the overhead for performing the attack, an experienced adversary could still successfully launch the attack.

9 IMPLICATIONS

While pattern lock is preferable by many users [Bruggen 2014], this work shows that it is vulnerable under video-
based attacks. Our attack is able to break most patterns in five attempts. Considering Android allows five failed attempts
before automatically locking the device, our work shows that this default threshold is unsafe. We demonstrated that, in
contrast to many users’ perception, complex patterns actually do not provide stronger protection over simple patterns
under our attack.

It is worth mentioning that our approach is only one of the many attacking methods that researchers have demon-
strated. Examples of these attacks include video-based attacks on keystroke-based authentication [Shukla et al. 2014;
Yue et al. 2014], sensor-based attacks for pattern lock [Zhang et al. 2016]. Authentication methods that combine different
authentication methods [Ling et al. 2016; Luca et al. 2012; Mannan and van Oorschot 2007; Stefan et al. 2012] to
constantly check the user’s identity could be a solution.

10 RELATEDWORK

Our work lies at the intersection between computer vision based attacks and cracking graphical- and touch-based
authentication methods. This work brings together techniques developed in the domain of computer vision and motion
tracking to develop a new attack. Our work is the first attempt of reconstructing a locking pattern from a video footage
without capturing the content displayed on the screen.

Computer Vision-based Attacks. No work has targeted using video footage to crack Android pattern lock and this
is the first to do so. Our work is inspired by the work presented by Shukla et al. [Shukla et al. 2014] on video-based
attacks of PIN-based passwords. In addition to addressing the new challenges highlighted in Section 1, our work differs
to their approach in two ways. Firstly, we target a different authentication method, i.e. graphical-based passwords are
fundamentally different from PIN-based passwords. Secondly, our approach does not require knowledge of the size
of the screen or the grid. Other work in the area including [Yue et al. 2014] which attacks PIN-based passwords by
analyzing how the screen brightness changes when entering a password. But the subtle changes of the screen brightness
can be dramatically affected by the lighting condition. This restricts the application of their approach. There is a body
of work using reflections to recover information typed by the user [Backes et al. 2009; Kuhn 2002; Raguram et al. 2011;
Xu et al. 2013]. These schemes require having a clear vision of the content displayed on the screen while our approach
does not have such a requirement.

Attacks on Touch-based Authentication. Ballard et al. implemented a forgery attack on handwriting authentication [Bal-
lard et al. 2007]. Using a small number of training examples, they achieve a high success rate for this attack. More
recently, Serwadda et al. show that a simple robot can achieve high penetration rates against touch-based authentication
systems by analyzing on-screen gestures including swiping and zooming [Serwadda and Phoha 2013]. Maggi et al.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Ye, G. et al

present a fast, automatic shoulder surfing attack against touchscreen keyboards [Maggi et al. 2011]. In this article, we
present a new, video-based attack for graphical-based passwords. Research in this area all demonstrates the need for a
closer look at the security risks of touch-based authentication.

Cracking Graphical-based Passwords. Aviv et al. demonstrated that it is possible to reconstruct a locking pattern
by analyzing the oily residues left on the screen [Aviv et al. 2010]. This method is highly restricted as oily residues
can be messed up by any on-screen activities after pattern drawing. Abedlrahman et al. explored the fact that PINs or
patterns are likely to be recognized by tracking the heat left on the screen [Abdelrahman et al. 2017]. Likewise, their
approach is significantly disrupted by other on-screen operations after drawing the PIN or pattern. Zhang et al. exploit
the WiFi signal interferences caused by finger motions to recover patterns [Zhang et al. 2016]. Their method requires a
complex setup and is highly sensitive to moving objects of the environment because the WiFi signal can be disrupted
by a moving object.

Study of Android Pattern Lock. Uellebenk et al. study how people use Android pattern lock on a daily basis [Uellenbeck
et al. 2013]. They found that although there is a large number of Android patterns, in practice many people only use a
small set of them due to users’ bias in generating patterns. Løge explored the correlation between human’s characteristics
(e.g. ages and genders) and the choice of patterns [Løge 2015]. Her study shows that users have a bias in selecting the
starting dot to form a pattern and people tend to use complex patterns for sensitive applications. Aviv et al. conducted a
large user study to understand the security of the Android graphical based passwords [Aviv and Fichter 2014]. They
analyzed the security and usability preference of users, using six visual features of the pattern lock including pattern
length, number of crosses, etc. After conducting a larger user study, they developed a brutal-force algorithm to crack
the pattern lock [Aviv et al. 2015]. Their results show that 15% and 20% of the patterns generated on a grid of 3 × 3 and
4 × 4 dots respectively can be cracked within 20 guesses.

Motion Tracking. In addition to TLD, there are other methods proposed in the past for tracking object motions. Some
of them apply image analysis to track the hand and gesture motions from video footage [Beh et al. 2014; Stenger et al.
2006; Yang et al. 2002]. In this article we do not seek to advance the field of motion tracking. Instead we demonstrate
that a new attack can be built using classical motion tracking algorithms. We show that the attack presented in this
work can be a serious threat for Android pattern lock. This has never been attempted in prior work on motion tracking.

11 CONCLUSIONS

This article has presented a novel video-based side-channel attacking method for Android pattern lock. The proposed
method is able to successfully break most locking patterns in five attempts, based on the video footage of the entire
unlocking process, filmed a distance of 2 – 3 meters away from the target device using a mobile phone rear camera. The
attack is achieved by employing a computer vision algorithm to track the fingertip movement from the video, and then
using the geometry information of the fingertip movement trajectory to identify the most likely patterns to be tested
on the target device. Our approach was evaluated using 120 unique patterns collected from 215 independent users
and some of the most complex patterns. The experimental results show that our approach is able to successfully crack
over 95% of the patterns in five attempts. We show that, in contrast to many people’s belief, complex pattern actually
provides weaker protection over simple patterns under our attack. Our study demonstrate that Android pattern lock
is vulnerable to video-based side-channel attacks and redesigning of pattern-based authentication is needed to offer
Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A Video-based Attack for Android Pattern Lock 29

stronger security guarantee. In order to remit this attack, we analyze the successful factors of our attack and propose to
a variant of the Android pattern lock mechanism. We show that our countermeasure can effectively protect mobile
devices from video-based attacks.

REFERENCES
Yomna Abdelrahman, Mohamed Khamis, Stefan Schneegass, and Florian Alt. 2017. Stay cool! understanding thermal attacks on mobile-based user

authentication. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 3751–3763.
Muhammad Daniel Hafiz Abdullah, Abdul Hanan Abdullah, Norafida Ithnin, and Hazinah Kutty Mammi. 2008. Towards Identifying Usability and Security

Features of Graphical Password in Knowledge Based Authentication Technique. In Second Asia International Conference on Modelling & Simulation.
396–403.

Panagiotis Andriotis, Theo Tryfonas, and George Oikonomou. 2014. Complexity Metrics and User Strength Perceptions of the Pattern-Lock Graphical
Authentication Method. 115–126 pages.

Adam J Aviv, Devon Budzitowski, and Ravi Kuber. 2015. Is Bigger Better? Comparing User-Generated Passwords on 3x3 vs. 4x4 Grid Sizes for Android’s
Pattern Unlock. In Computer Security Applications Conference. 301–310.

Adam J Aviv and Dane Fichter. 2014. Understanding visual perceptions of usability and security of Android’s graphical password pattern. In Computer
Security Applications Conference. 286–295.

Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith. 2010. Smudge attacks on smartphone touch screens. In Proceedings of
the 4th USENIX conference on Offensive technologies. 1–7.

Adam J. Aviv and Heidt Susanna. 2016. Refining Graphical Password Strength Meters for Android Phones. In USENIX Twelfth Symposium on Usable
Privacy and Security (SOUPS).

Michael Backes, Tongbo Chen, Markus Duermuth, Hendrik P. A Lensch, and Martin Welk. 2009. Tempest in a Teapot: Compromising Reflections Revisited.
In Security and Privacy, 2009 IEEE Symposium on. 315–327.

Lucas Ballard, Daniel Lopresti, and Fabian Monrose. 2007. Forgery Quality and Its Implications for Behavioral Biometric Security. IEEE Transactions on
Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society 37, 5 (2007), 1107–1118.

Davide Balzarotti, Marco Cova, and Giovanni Vigna. 2008. ClearShot: Eavesdropping on Keyboard Input from Video. In IEEE Symposium on Security and
Privacy. 170–183.

Jounghoon Beh, David Han, and Hanseok Ko. 2014. Rule-based trajectory segmentation for modeling hand motion trajectory. Elsevier Science Inc.
1586âĂŞ1601 pages.

Nick Berry. 2012. PIN analysis. Available: http://www.datagenetics.com/blog/september32012/index.html. (2012).
Robert Biddle, Sonia Chiasson, and P C Van Oorschot. 2012. Graphical passwords: Learning from the first twelve years. ACM Computing Surveys (CSUR)

(2012).
Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords. In Proceedings of the 2012 IEEE Symposium

on Security and Privacy (SP ’12). 538–552.
Dirk Van Bruggen. 2014. Studying the Impact of Security Awareness Efforts on User Behavior. Ph.D. Dissertation. University of Notre Dame.
Antonella De Angeli, Lynne Coventry, Graham Johnson, and Karen Renaud. 2005. Is a picture really worth a thousand words? Exploring the feasibility of

graphical authentication systems. International Journal of Human-Computer Studies 63, 1âĂŞ2 (2005), 128–152.
Serge Egelman, Sakshi Jain, Rebecca S Portnoff, Kerwell Liao, Sunny Consolvo, and David Wagner. 2014. Are You Ready to Lock?. In ACM Sigsac

Conference on Computer and Communications Security. 750–761.
Malin Eiband, Mohamed Khamis, Emanuel Von Zezschwitz, Heinrich Hussmann, and Florian Alt. 2017. Understanding Shoulder Surfing in the Wild:

Stories from Users and Observers. In CHI Conference on Human Factors in Computing Systems.
Richard J. Fox, Melvin R. Crask, and Jonghoon Kim. 1988. MAIL SURVEY RESPONSE RATE A META-ANALYSIS OF SELECTED TECHNIQUES FOR

INDUCING RESPONSE. Public Opinion Quarterly 52, 4 (1988), 467–491.
von Gioi R Grompone, J Jakubowicz, J. M. Morel, and G Randall. 2010. LSD: a fast line segment detector with a false detection control. IEEE Transactions

on Pattern Analysis & Machine Intelligence 32, 4 (2010), 722–32.
Zdenek Kalal. [n. d.]. TLD: Tracking-Learning-Detection. Available: http://kahlan.eps.surrey.ac.uk/featurespace/tld/. ([n. d.]).
Zdenek Kalal, Mikolajczyk K, and Matas J. 2011. Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis & Machine Intelligence 34, 7 (2011),

1409–22.
Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio

Lopez. 2012. Guess Again (and Again and Again): Measuring Password Strength by Simulating Password-Cracking Algorithms. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (SP ’12). 523–537.

Markus Guenther Kuhn. 2002. Compromising emanations: eavesdropping risks of computer displays. Ph.D. Dissertation. University of Cambridge.
Michael H. Kutner, Christopher J. Nachtsheim, and John Neter. 2004. Applied Linear Regression Models (5th Ed.). Technometrics 26, 4 (2004).
Zhen Ling, Junzhou Luo, Qi Chen, Qinggang Yue, Ming Yang, Wei Yu, and Xinwen Fu. 2016. Secure fingertip mouse for mobile devices. In IEEE INFOCOM

2016 - the IEEE International Conference on Computer Communications. 1–9.

Manuscript submitted to ACM

http://www.datagenetics.com/blog/september32012/index.html
http://kahlan.eps.surrey.ac.uk/featurespace/tld/

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Ye, G. et al

Marte Dybevik Løge. 2015. Tell Me Who You Are and I Will Tell You Your Unlock Pattern. Master’s thesis. Norwegian University of Science and Technology.
Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Hussmann. 2012. Touch me once and i know it’s you!: implicit

authentication based on touch screen patterns. In Sigchi Conference on Human Factors in Computing Systems. 987–996.
Federico Maggi, Alberto Volpatto, Simone Gasparini, Giacomo Boracchi, and Stefano Zanero. 2011. Poster: fast, automatic iPhone shoulder surfing. In

ACM Conference on Computer and Communications Security. 805–808.
Mohammad Mannan and Paul C van Oorschot. 2007. Using a personal device to strengthen password authentication from an untrusted computer. In

Financial Cryptography and Data Security. Springer, 88–103.
Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase

Ur. 2013. Measuring Password Guessability for an Entire University. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 173–186.

Rahul Raguram, Andrew M. White, Dibyendusekhar Goswami, Fabian Monrose, and Jan Michael Frahm. 2011. iSpy:automatic reconstruction of typed
input from compromising reflections. In ACM Conference on Computer and Communications Security. 527–536.

J Rogers. 2007. Please enter your four-digit pin. Financial Services Technology (2007).
Stefan Schneegass, Frank Steimle, Andreas Bulling, Florian Alt, and Albrecht Schmidt. 2014. SmudgeSafe: geometric image transformations for

smudge-resistant user authentication. In ACM International Joint Conference on Pervasive and Ubiquitous Computing. 775–786.
Abdul Serwadda and Vir V. Phoha. 2013. When kids’ toys breach mobile phone security. In ACM Sigsac Conference on Computer & Communications

Security. 599–610.
Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V Phoha. 2014. Beware, Your Hands Reveal Your Secrets!. In ACM CCS. 904–917.
Hossein Siadati, Payas Gupta, Sarah Smith, Nasir Memon, and Mustaque Ahamad. 2015. Fortifying Android Patterns using Persuasive Security Framework.

In UBICOMM 2015, The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies.
Youngbae Song, Geumhwan Cho, Seongyeol Oh, Hyoungshick Kim, and Jun Ho Huh. 2015. On the Effectiveness of Pattern Lock StrengthMeters:Measuring

the Strength of Real World Pattern Locks. In ACM Conference on Human Factors in Computing Systems. 2343–2352.
Lionel Standing, Jerry Conezio, and Ralph Norman Haber. 1970. Perception and memory for pictures: Single-trial learning of 2500 visual stimuli.

Psychonomic Science 19, 2 (1970), 73–74.
Deian Stefan, Xiaokui Shu, and Danfeng Yao. 2012. Robustness of keystroke-dynamics based biometrics against synthetic forgeries. Computers & Security

31, 1 (2012), 109–121.
B Stenger, A Thayananthan, P. H. Torr, and R Cipolla. 2006. Model-based hand tracking using a hierarchical Bayesian filter. IEEE Transactions on Pattern

Analysis & Machine Intelligence 28, 9 (2006), 1372–84.
Chen Sun, Yang Wang, and Jun Zheng. 2014. Dissecting pattern unlock: The effect of pattern strength meter on pattern selection. Journal of Information

Security & Applications 19, 4âĂŞ5 (2014), 308–320.
Antonio Torralba and Aude Oliva. 2002. Depth Estimation from Image Structure. Pattern Analysis & Machine Intelligence IEEE Transactions on 24, 9 (2002),

1226–1238.
Sebastian Uellenbeck, Christopher Wolf, and Thorsten Holz. 2013. Quantifying the security of graphical passwords:the case of android unlock patterns. In

ACM Sigsac Conference on Computer & Communications Security. 161–172.
Emanuel Von Zezschwitz, Alexander De Luca, Philipp Janssen, and Heinrich Hussmann. 2015. Easy to Draw, but Hard to Trace?: On the Observability of

Grid-based (Un)lock Patterns. In ACM Conference on Human Factors in Computing Systems. 2339–2342.
Roman Weiss and Alexander De Luca. 2008. PassShapes: utilizing stroke based authentication to increase password memorability. In Nordic Conference on

Human-Computer Interaction: Building Bridges. 383–392.
Yi Xu, Jared Heinly, Andrew MWhite, Fabian Monrose, and Jan Michael Frahm. 2013. Seeing Double: Reconstructing Obscured Typed Input from Multiple

Compromising Reflections, Around the Corner. In ACM Conference on Computer and Communications Security. 1063–1074.
Ming Hsuan Yang, Narendra Ahuja, and Mark Tabb. 2002. Extraction of 2D Motion Trajectories and Its Application to Hand Gesture Recognition. (2002),

1061–1074.
Guixin Ye, Zhanyong Tang, Dingyi Fang, Xiaojiang Chen, Kwang In Kim, Ben Taylor, and Zheng Wang. 2017. Cracking Android pattern lock in five

attempts. In The Network and Distributed System Security Symposium (NDSS).
Qinggang Yue, Zhen Ling, Benyuan Liu, Xinwen Fu, and Wei Zhao. 2014. Blind Recognition of Touched Keys: Attack and Countermeasures. Computer

Science (2014).
Emanuel Von Zezschwitz, Anton Koslow, Alexander De Luca, and Heinrich Hussmann. 2013. Making graphic-based authentication secure against smudge

attacks. (2013), 277–286.
Jie Zhang, Xiaolong Zheng, Zhanyong Tang, Tianzhang Xing, Xiaojiang Chen, Dingyi Fang, Rong Li, Xiaoqing Gong, and Feng Chen. 2016. Privacy

Leakage in Mobile Sensing: Your Unlock Passwords Can Be Leaked through Wireless Hotspot Functionality. Mobile Information Systems 2016, 2 (2016),
1–14.

Lan Zhang, Cheng Bo, Jiahui Hou, Xiang Yang Li, Yu Wang, Kebin Liu, and Yunhao Liu. 2015. Kaleido: You Can Watch It But Cannot Record It. In
International Conference on Mobile Computing and NETWORKING. 372–385.

Manuscript submitted to ACM

