
Using Cooperative Artefacts as Basis for Activity 

Recognition 

Martin Strohbach, Gerd Kortuem, Hans-Werner Gellersen, Christian Kray 

Computing Department, Lancaster University, Lancaster LA1 4YR 
{strohbach, kortuem, hwg, kray}@comp.lancs.ac.uk 

Abstract. Ambient intelligent applications require applications to recognise 
user activity calmly in the background, typically by instrumentation of 
environments. In contrast, we propose the concept of Cooperative Artefacts 
(CAs) to instrument single artefacts that cooperate with each other to acquire 
knowledge about their situation in the world. CAs do not rely on external 
infrastructure as they implement their architectural components, i.e. perceptual 
intelligence, domain knowledge and a rule-based inference engine, on 
embedded devices. We describe the design and implementation of the CA 
concept on an embedded systems platform and present a case study that 
demonstrates the potential of the CA approach for activity recognition. In the 
case study we track surface-based activity of users by augmenting a table and 
household goods. 

1 Introduction 

Ambient Intelligence research aims to create environments that support the needs of 

people with ‘calm’ technology. [4, 31]. To this effect many ambient intelligence 

systems make use of knowledge about activities occurring in the physical 

environment to adapt their behaviour. Hence, one of the central research challenges of 

ambient intelligence research is how such systems acquire, maintain, and use models 
of their changing environment. Approaches to address this challenge are generally 

based on instrumentation of devices, physical artefacts or entire environments. 

Specifically, instrumentation of otherwise non-computational artefacts has been 

shown to play an important role, e.g. for tracking of valuable goods [9, 18, 26], 

detecting safety critical situations [28], or supporting human memory [17]. In most 

augmented artefact applications artefacts are instrumented to support their 

identification [18, 21, 26] while perception, reasoning and decision-making is 

allocated in backend infrastructures [1, 6] or user devices [23, 27]. This approach, 
however, makes artefacts reliant on supporting infrastructure, and ties applications to 

instrumented environments. 

In this paper we introduce the notion of Cooperative Artefacts (CAs) that combine 

sensing, perception, reasoning and communication. Such artefacts are able to 

cooperatively identify, track and interpret activities in dynamically changing 

environments without relying on external infrastructure. Cooperative artefacts model 

their situation on the basis of domain knowledge, observation of the world, and 



sharing of knowledge with other artefacts. Thus, knowledge about the real world 

becomes integral with the artefact itself. 

In section 2 we introduce the notion of Cooperative Artefacts and describe the 

structure and mechanisms by which CAs cooperate to acquire knowledge and reason 

about the world. In section 3 we describe an implementation of the CA concept on an 

embedded systems platform based on a case study to demonstrate the potential of our 
approach for activity recognition applications. In the case study an augmented table 

and household goods are used to track surface-based user activities. In section 4 we 

describe the interaction between involved artefacts. Finally, we discuss related work 

in section 5 and conclude our paper in section 6. 

2 Cooperative Artefacts  

Cooperative Artefacts (CAs) are self-contained physical entities that are able to 

autonomously observe their environment and reason about these observations, thus 

acquiring knowledge about their world. Most notably they cooperate by sharing their 

knowledge which allows them to acquire more knowledge collectively than each of 

them could acquire individually. It is a defining property of our approach that world 
knowledge associated with artefacts is stored and processed within the artefact itself. 

Although this structure is independent of any particular hardware platform, all 

components are intended to be implemented on low-powered embedded devices with 

inherent resource limitations. Figure 1 depicts the architecture of a Cooperative 

Artefact. 

 

Fig. 1. Architecture of a Cooperative Artefact 

• Sensors. Cooperative Artefacts include sensors which provide measurements of 

phenomena in the physical world. 

• Perception. The perception component associates sensor measurements with 

meaning, producing observations that are meaningful in terms of the application 

domain. 



• Knowledge base. The knowledge base stores the acquired knowledge of the 

artefact and externalises the artefact knowledge. 

• Inference. The inference component processes the knowledge of an artefact as 

well as knowledge provided by other artefacts to infer further knowledge. 

2.1 Structure of the Artefact Knowledge Base  

The artefact knowledge base is structured into facts and rules. Facts are the 

foundation for any decision-making and action-taking within the artefact, and rules 

allow inferring further knowledge based on facts and other rules (table 1). 

Table 1. Knowledge managed by a Cooperative Artefact. 

Domain 
Knowledge 

Domain knowledge built into the artefact, e.g. facts 
describing the physical nature of the artefact or general 

world knowledge.  

Observational 

Knowledge 

Knowledge describing the situation of an artefact in the 

world. It is based on facts that result from sensor-based 

observations. 

Inferred 

Knowledge 

Rules are used to infer further knowledge based on 

previously established facts, which may be based on 

domain knowledge, observation, previous inference, or 

knowledge made available by cooperating artefacts.  

2.2 Cooperation between Artefacts 

Activity recognition applications will rely on rich knowledge about users and their 

environment. It is therefore a desirable feature that artefacts cooperate to maximise 

the knowledge available about the physical world. Our model for cooperation is that 

artefacts share knowledge. More specifically, knowledge stored in an artefact’s 

knowledge base is made available to other artefacts where they feed into the inference 

process generating additional knowledge. Effectively, the artefact knowledge bases 
taken together form a distributed knowledge base on which the inference processes in 

the individual artefacts can operate.  

Although different artefacts may be able to observe the same physical 

phenomenon, the acquired knowledge is likely to be incomplete and different between 

observing artefacts. This is due to the nature and diversity of the used sensors and 

perception algorithms. However, the artefacts can use the distributed knowledge to 

exchange and reason about their knowledge. This leads to a synergetic effect: 

cooperating artefacts are able to acquire more knowledge collectively than each of 
them could acquire individually. This principle is illustrated in figure 2. 



 

Fig. 2. Cooperation of artefacts is based on sharing of knowledge 

3 CA Case Study: Tracking Surface-based User Activities  

Recent research has identified activity centres as areas in domestic settings where 
human activity is focused on [8]. This research suggests that the identified activity 

centres, such as surfaces provided by kitchen tables, should be considered as prime 

sites for technological augmentation. Other research has shown that tagged artefacts 

may reveal valuable information about users’ activity [17]. Based on this research we 

chose to track surface-based user activities as a case study for Cooperative Artefacts. 

The basic application idea is to track artefacts on and across tables to infer the user 

activity.  

 

Fig. 3. CA demonstrator 

The CA demonstrator (Fig. 3) was developed to show the potential of Cooperative 

Artefacts for activity recognition applications. Glasses and jugs were built as artefacts 

that are aware whether they are on surface or not. They cooperate with a load sensing 

table to infer their location on the table and, as a further synergetic effect of 

cooperation, they can infer their filling state. The picture in Fig. 3 shows the table, 



glasses and jugs as it was demonstrated at SIGGRAPH [13]. This setup also included 

chairs to measure the weight distribution of people sitting on them. A graphical 

representation of the position of the glasses and the jug on the table was projected on 

a screen in order to display the recognised interactions of visitors with the artefacts. 

This section describes the implementation of the CA architecture on an embedded 

device platform. 

3.1 Artefact Sensors and Perception 

As a first step, the artefacts involved in the demonstrator require some basic form of 

intelligence, i.e. they need sensors and computing power to implement perception. 

Fort this purposes we used the DIY Smart-its platform, an easy to use and highly 
customizable hardware platform for wireless sensing applications [11]. The modular 

design of the DIY Smart-its allows using a range of different sensors by plugging 

add-on boards on a basic processing and communication board.  

We used an add-on board to interface four industrial load cells that were put under 

each leg of the table. With this technology we can easily augment most tables in an 

unobtrusive way. We implemented a perception algorithm on the microcontroller of 

the DIY Smart-it to calculate events based on the weight changes on the table. Thus, 

we are able to recognise when an artefact has been put or removed from the table. In a 
second step, we use the load distribution on the four load cells to calculate the 

position of the artefact on the table surface. Additionally we obtain the weight of the 

artefact that has just been put or removed from the table. Further details about the 

implementation of context acquisition based on load sensing and its potential 

applications have been published in [24] and [25]. 

 
 

Fig. 4. Left: A mini Smart-its with battery attached to a water jug. The FSR sensor is mounted 

on the bottom of the jug. The glass was augmented in a similar way. Right: A DIY Smart-it 

with load add-on board attached to the frame of the table. The black cables connect to the four 

load cells. 

A smaller version of the DIY Smart-its has been used to augment jugs and glasses 

with force sensitive resistance sensors (FSR sensors). Thus the perception algorithm 
of glasses and jugs can observe if the artefact is put down on a surface or lifted up. 

Figure 4 shows the physical augmentation of the artefacts. 

Thus, each artefact is able to make individual observations about its world: 

• The load table observes the position and weight of artefacts on its top but does 

not know about their identity, i.e. is it a jug, glass or something else. 



• Jugs and glasses observe whether they have been put on a surface or lifted up, 

but they know nothing about their location. 

3.2 Artefact Knowledge Bases 

These observations are stored and managed in the knowledge bases embedded in the 

individual artefacts. They contain facts to represent the knowledge and rules to infer 

further knowledge. Each of the artefacts implements an inference engine similar to a 

simple Prolog interpreter that operates on these facts and rules expressed in a subset 

of Horn logic [14]. The inference engine uses backward-chaining with depth first 

search as inference algorithm. Compromises in terms of expressiveness and generality 

were necessary to facilitate the implementation on a micro-controller platform. The 
data structures for the predicate arguments provide information whether the argument 

refers to an external artefact which allows the inference engine to acquire knowledge 

from other artefacts using a query/reply protocol.  

Table 2. Knowledge base of a load table 

Domain 

Knowledge 
concurrent(<time>,<time>) 

Observational 

Knowledge 
location_and_weight(me, x, y, _, w, 
<added/removed>, <time>) 

Rules  
(R1) location_and_weight(me, X, Y, A, W, added, T2):- 

location_and_weight(me, X, Y, _, W, added, T1), 
location_and_weight(_, _, _, A, _, added, T2), 
concurrent(T1,T2). 

Table 3. Knowledge base of a jug/glass 

Domain 
Knowledge 

concurrent(<time>,<time>) 
above_weight_threshold(<weight>) 
below_weight_threshold(<weight>) 

Observational 

Knowledge 

location_and_weight(_, _, _, me, _, 
<added/removed>, <time>) 

Rules  
(R2) filling_state(me, full, T2):- 

location_and_weight(TABLE, X, Y, _, W, EVENT1, T1), 
location_and_weight(_, _, _, me, _, EVENT2, T2), 
concurrent(T1, T2), above_weight_threshold(W), EVENT1 
== EVENT2. 

(R3) filling_state(me, empty, T2):- 
location_and_weight(TABLE, X, Y, _, W, EVENT1, T1), 
location_and_weight(_, _, _, me, _, EVENT2, T2), 
concurrent(T1, T2), below_weight_threshold(W), EVENT1 
== EVENT2. 

Rules and some facts are specified by the developer. Other facts such as 
location_and_weight(<table>, <x>, <y>, <artefact>, <weight>, 
<added/removed>, <time>) model the observational knowledge acquired by the 

artefacts. This observation indicates the position and weight on a table on which an 

artefact has been added or removed at a certain time. Both kinds of artefacts, the load 



table and glasses/jugs, model their observation with the same fact; however with 

different levels of information according to their perception capabilities as described 

in the previous subsection. Table 2 lists the knowledge base of an load table while 

Table 3 lists the knowledge base of an jug or glass. Lowercase letters are constants 

and model a specific value of an argument, while we use the special character “_” to 

indicate an unknown or irrelevant value of an argument. Uppercase letters indicate 
variables. The special constant me always refers to the artefact that stores the fact or 

rule. Arguments put in brackets are to be replaced with the concrete values for each 

observation. Rule R1 can be verbalised as follows: 

R1: A table knows location, weight and identity of an artefact on its top if both, the 

table and the artefact, observe the event of putting the artefact on the table at 

approximately the same time. 

This rule relies on synchronised time between artefacts as each observation is time-

stamped to determine time relationships between two observations. 
concurrent(<time>, <time>) is semantically equivalent to the expression |T1-
T2|<time_th with an appropriate threshold time_th. The table perception 

algorithm for the location_and_weight observation takes a few milliseconds 

longer than the algorithms of the glasses and jugs. Consequently we take T2, the time 

of the glass (or jug respectively) observation as a timestamp for the inferred location 

and weight. Rules R2 and R3 can be verbalised as follows: 

R2 and R3: A glass or jug knows its filling state when it observes the same event at 

approximately the same time as the table. 

Rules R2 and R3 are a by-product of our initial goal to obtain location information 

about artefacts that are put on the table. This is due to the fact that we measured the 

weight distribution to calculate the position of artefacts. These rules also make use of 

additional domain knowledge: above_weight_threshold(<weight>) and 

below_weight_threshold(<weight>) model for each individual artefact a 

weight threshold to determine if a glass or jug is full or empty.  

4 Tracking User Activities with the CA Demonstrator  

In this section we describe a set of actions as they have occurred during the demo 

setup. We use an initially empty table with which users interact by putting and 

removing a conventional bottle and the augmented glass on and from the table. The 
glass is initially empty and located on a conventional table. We perform the following 

actions: 

Action 1. Put a conventional bottle in the middle of the table 

Action 2. Put an empty, augmented glass on top left corner of the table 

Action 3. Remove glass from table and fill it with water 

Action 4. Put the glass back on the bottom right corner of the table 

Initially the artefact knowledge bases only contain their respective domain knowledge 

entries (cf. Table 2 and Table 3). The knowledge base of the glass also reflects that it 



is put on the conventional table. After putting the conventional bottle on the table the 

perception component of the table adds the corresponding observation to the 

knowledge base and we obtain the observations as detailed in Table 4. 

Table 4. Observations after action 1 

Glass Table 
location_and_weight(_, _, 
_, me, _, added, 30) 

location_and_weight(me, 25, 
25, _, 400, added, 768) 

In order to detect the changes in the environment and update the screen display, a 

query for location_and_weight must be sent to the table. The query contains only 
one value, the table identifier to which the query should be sent. All other arguments 

contain variables representing the values we are interested in: 

location_and_weight(table, X, Y, A, W, EVENT, TIME) 

When the table receives this message it tries to unify the message with the entries in 

the knowledge base. The inference engine always finds the most specific answer and 
tries to evaluate rule R1. It checks the premises of the rule and unifies the table 

observation with the entry in the fact base. The external observation 

location_and_weight(_, _, _, A, _, added, T2) requires cooperation 

with an unknown artefact A. Therefore, the inference engine issues a broadcast query 

for this observation. The glass replies with its observation as detailed in table 3. 

However, rule R1 cannot be applied as the timestamps are not close in time. 

Therefore, the table replies with 

location_and_weight(me, 25, 25, _, 400, added, 768) 

not being able to provide information about the actual identity of the bottle. The 

visualization projected on the screen is now updated showing a question mark for the 

bottle. 

After the second action, both the table and the glass add new observations to their 

knowledge bases as shown in Table 5.  

Table 5. Observations after action 2 

Glass Table 
 location_and_weight(me, 25, 

25, _, 400, added, 768) 
location_and_weight(_, _, 
_, me, _, added, 2103) 

location and weight(me, 25, 
25, _, 131, added, 2105) 

Note, that the perception component of the glass always updates the knowledge base 
to reflect the latest observed state, i.e. there was an intermediate observation when the 

glass was lifted from the conventional table that is not displayed in the table. Queries 

to the table will now result in replies that provide information about the location of 

the glass:  

location_and_weight(table, 25, 25, glass, 400, added, 2105) 

This is a result from applying rule R2 which entails a broadcast query. This query is 

replied by the glass with the corresponding observation that was made at nearly the 



same time. The identity of the glass can now be used to query the glass about its 

filling state: 

filling_state(glass, FILLING_STATE, T2) 

In order to answer this query the glass must cooperate with the table: rules R2 and R3 

rely on the table’s observations. Again, the table issues a broadcast query asking for 

the observation made by the table. The table replies with his observations and the 

glass replies with the conclusion of rule R3: 

filling_state(glass, empty, 2103) 

Again the changes in the environment have been detected and the display can be 

updated: 

 

Fig. 5. Screenshot of the available knowledge after action 2. In the demonstrator 

question marks are used to represents unknown artefacts, their size is relative to their 
weight. Here the question mark represents the bottle. 

After the third action the knowledge bases of both artefacts are updated. In this state 

queries to the table always return the location of the unknown artefact (the bottle) as 

the observation stored in the glass relates to an earlier observation (cf. Table 6). 

Table 6. Observations after action 3 

Glass Table 
location_and_weight(_, _, 
_, me, _, removed, 2876) 

location_and_weight(me, 25, 
25, _, 400, added, 1325) 

As we fill the glass with water no new observations are added to either of the 

knowledge bases. After action 4, cooperation between artefacts is similar as after 
action 2 and we obtain the observations in Table 7: 

Table 7. Observations after action 4 

Glass Table 
 location and weight(me, 25, 

25, _, 400, added, 1325) 
location_and_weight(_, _, 
_, me, _, added, 3469) 

location_and_weight(me, 120, 
60, _, 400, added, 3472) 



5 Related Work 

Our work is generally related to other ubiquitous computing research concerned with 

instrumentation of the world and with systems that adapt and react to their 

dynamically changing environment [10, 22, 1]. In contrast to our work, most of these 

previously reported systems and infrastructures are based on instrumentation of 
locations (e.g. office [1, 7, 20], home [6, 15, 29], or of users and their mobile devices 

[19, 23, 27]). 

Wireless sensor networks are also generally related to our work as they use similar 

technology, i.e. wireless nodes with generic sensors [2]. However, they differ mainly 

in one point: functionalities implemented on wireless sensor nodes only include data 

acquisition and routing, i.e. taking measurements from sensors and sending the data to 

a backend infrastructure where it is processed and potential models of individual 

nodes are maintained. 
Previous research has also considered the role of artefacts in addition to locations 

and users, e.g. the Cooltown project provides a digital presence for people, places and 

things [16], and SPECs is a proximity sensing hardware platform for activity 

recognition [17]. Closer to our work are systems directly concerned with artefacts and 

their situations, e.g. for tracking of moveable assets [18, 26]. Particulary close in spirit 

is the eSeal system in which artefacts are instrumented with embedded sensing and 

perception autonomously monitor their physical integrity [9]. 

Several levels of integration of artefacts in ubiquitous computing systems have 
been explored, e.g. visual tags [21] and RFID tags [18, 26] to support unique 

identification. SPECs have been attached to artefacts to capture movement 

information of users [17]. Collective behaviour of augmented artefacts has been 

explored in the context of the Smart-its project, e.g. by integrating different kind of 

sensors in user’s belongings [12], furniture [3], and cups [5]. A more generic 

framework, based on event-condition-action rules (ECA rules), has been provided by 

the Ubiquitous Chip platform [30]. 

6 Conclusion 

In this paper we demonstrated the potential of the CA concept for activity recognition 

applications. We have described the design and implementation on an embedded 
systems platform in the context of a case study in which an augmented table and 

household goods can be used to track surface-based user activities. There are three 

innovative aspects to be noted: 

• It is a novel approach to acquire and maintain knowledge on activity and 

changes in the world, distinct in being entirely embedded in moveable artefacts. 

• Embedding of generic reasoning capabilities constitutes a new quality of 

embedded intelligence not previously demonstrated for otherwise non-

computational artefacts. 

• This approach has the potential to leverage activity recognition applications by 

providing rich knowledge about situations in the world that can be especially 



useful for deployment in users homes where installing external infrastructure 

might be critical. 

Currently we are working on a software framework for embedded devices called 

arteFACT that fully implements the CA architecture. Among power efficiency and 

responsive, our current prototype has also revealed the following two issues that we 

seek to address in our future work: 

• Activity recognition applications rely on timestamped data and history 

information. While we are currently extending our devices with FRAM and 

Flash memory to store history information, it will be crucial to include time 
as a fundamental concept. This will be especially important for querying 

history information. We are planning to look into possibilities of using 

temporal logic in our current implementation of the embedded inference 

engine. 

• In order to improve the scalability of our architecture, we plan to include 
subscriptions to changes in the artefact knowledge bases. This will entail to 

include forward reasoning as a more effective inference algorithm 
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