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Abstract

We employ a two-stage general dynamic factor model to analyze co-movements be-
tween returns and between volatilities of stocks from the US, European, and Japanese
financial markets. We find two common shocks driving the dynamics of volatilities – one
global shock and one US-European shock – and four local shocks driving returns, but no
global one. Co-movements in returns and volatilities increased considerably in the period
2007-2012 associated with the Great Financial Crisis and the European Sovereign Debt
Crisis. We interpret this finding as the sign of a surge, during crises, of interdependencies
across markets, as opposed to contagion. Finally, we introduce a new method for struc-
tural analysis in general dynamic factor models which is applied to the identification of
volatility shocks via natural timing assumptions. The global shock has homogeneous dy-
namic effects within each individual market but more heterogeneous effects across them,
and is useful for predicting aggregate realized volatilities.
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Universidad Carlos III de Madrid thanks to a Cátedra de Excelencia funded by the Banco Santander; the
hospitality of the Department of Statistics and the financial support of the Banco are gratefully acknowledged.



1 Introduction

In the last few decades characterized by increasing financial integration, growing attention
has been devoted to financial market dynamics as an international phenomenon. The strong
international co-movements observed across different stock markets during periods of turmoil
affirmed the idea of financial contagion, and an extensive literature has focused on correla-
tions and international spillovers in returns and volatilities. Examples, among many oth-
ers, are King and Wadhwani (1990), Lin et al. (1994), King et al. (1994), Karolyi (1995),
Wongswan (2006), Diebold and Yılmaz (2009), and Corradi et al. (2012), for volatility
spillovers, and Forbes and Rigobon (2002), Karolyi (2003), Corsetti et al. (2005), and the
surveys by Claessens et al. (2001) and Karolyi and Stulz (2003), with references therein, for
the analysis of contagion and return correlations.

Our goal here is to better understand the co-movements within and between different
stock markets. We do so by disentangling, from a large dataset containing US, European,
and Japanese stocks, the various sources, national and international, of return and volatility
dynamics. Our approach is based on dynamic factor models in presence of a block struc-
ture, which allows us to assess the importance of these sources. We also contribute to the
international finance literature by investigating whether the global financial crisis and the
European sovereign debt crisis were characterized by financial contagion or interdependence.
Furthermore, we develop a new methodology for structural analysis in dynamic factor mod-
els, allowing us to identify volatility shocks and their predictive power for aggregate realized
volatilities.

Our methodology is based on a two-step general dynamic factor model,1 which extends the
original Forni et al. (2000) model by tacking into account (i) the possibly distinct dynamics
in returns and volatilities, and (ii) the block structure induced by the various markets (US,
Europe, Japan). The two steps consist of a factor decomposition of the panel of returns,
followed by a further one for the resulting volatilities. Our analysis combines for the first
time the methods originally proposed by Hallin and Lǐska (2011) in presence of blocks, by
Forni et al. (2015) on one-sided estimation, and by Barigozzi and Hallin (2015) for the joint
analysis of returns and volatilities. Note that in this setting the common factors are in fact
mutually orthogonal white noise processes loaded by the data along with their lags, and for
this reason are referred to as common shocks.

When compared with alternative methodologies for the analysis of high-dimensional time
series, our dynamic factor approach enjoys a number of advantages. First, being based on
non-parametric estimation, it is not plagued by the well-known curse of dimensionality af-
fecting previous parametric approaches to multivariate volatilities (see the surveys by Asai
et al., 2006; Bauwens et al., 2006; Silvennoinen and Teräsvirta, 2009, and the literature cited
therein).

Second, our approach compares quite favorably to other existing factor models, mainly
of the static or the exact type. Unlike the static factor model of Chamberlain and Roth-
schild (1983), Stock and Watson (2002), and Bai and Ng (2002), the dynamic approach does
not impose any particular restrictions on factor dynamics, and takes into account the whole
second-order dynamic structure of the data rather than restricting to contemporaneous covari-
ances.2 Moreover, we do not require the assumption of cross-sectional or serial orthogonality

1“Generalized factor models” and “general factor models” are used interchangeably in the literature; for
simplicity, we are sticking to “general factor models”.

2Throughout, we call “static” a factor model in which factors are loaded in a static way, namely through
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of idiosyncratic components as in the exact factor models of Geweke (1977) and Sargent and
Sims (1977). Reflecting those features, the model is referred to as generalized or general
because it generalizes alternative factor models and arises naturally without particular as-
sumptions on the data-generating process (see Forni and Lippi, 2001 and Hallin and Lippi,
2013 for discussions of this point). In this sense, we extend previous studies which considered
static and/or exact factor models for analyzing large panels of financial data.3

Third, the approach consisting in a joint factor model analysis of returns and volatilities,
originally proposed by Barigozzi and Hallin (2015, 2017), has the advantage of allowing us to
compare the common shocks in returns with those in volatilities. Specifically, it is shown in
Barigozzi and Hallin (2015) that shocks which are common to volatilities do not necessarily
originate in the volatilities of the common components of returns, and that the volatilities of
the idiosyncratic components of returns also are affected, in a highly non-negligible way, by
those volatility shocks.

Fourth, the block-wise analysis originally exploited in general dynamic factor models by
Hallin and Lǐska (2011), is based on the canonical decomposition into orthogonal subspaces
of the Hilbert space spanned by the random variables considered. As such, the decomposition
always exists and is unique, thus allowing us to identify the origin of all common shocks
driving returns and volatilities. Specifically, we can classify those shocks into “global” and
“local” shocks, where the “global” shocks are driving the intersection between the common
spaces of the three markets under study, while the “local” ones are common to one single
market, or to two of them. As shown in this paper our approach nests the hierarchical factor
model of Moench et al. (2013), where by assumption factors can only be either global or local
to just one single market.

We consider a large panel of daily stock returns including the constituents of three major
market indices: Standard & Poor 500 for the US, Standard & Poor Europe 350 for Europe,
and Nikkei 225 for Japan. This yields daily observations for a total of N = 830 stocks, over
a period of about 15 years, which corresponds to a sample size of T ' 4000 days.

As a first step of our methodology, we consider a general dynamic factor model for the
panel of stock returns, for which four common shocks are identified. Estimation of the model
for returns provides also the estimated innovations of the common and idiosyncratic returns,
from which we construct a panel of volatility proxies. In the second step of our methodology a
general dynamic factor model is then estimated for those volatility proxies, and two common
shocks are found. Once those common sources of variation are estimated we carry out four
empirical exercises:

(i) a classification of the common shocks of returns and volatilities into “global” and “local”
shocks;

(ii) the assessment of interdependencies and contagion in returns and volatilities panels
during the turmoil period (2007-2012) of the past decade, characterized by the Great
Financial Crisis and the European Sovereign Debt Crisis;

loading matrices, whereas in our dynamic approach we consider more general loadings given by matrix poly-
nomials in the lag operator, i.e. filters.

3See for example: Connor and Korajczyk (1986, 1988), Diebold and Nerlove (1989), Ng et al. (1992), Harvey
et al. (1992), Jones (2001), Sentana and Fiorentini (2001), Van der Weide (2002), Fiorentini et al. (2004),
Connor et al. (2006), Sentana et al. (2008), and Aramonte et al. (2013), for conditionally heteroskedastic
factor structures in returns, and Engle and Marcucci (2006), Rangel and Engle (2012), Ghysels (2014), Pakel
et al. (2014), Barigozzi et al. (2014), Fan et al. (2015), and Luciani and Veredas (2015), for factor structures
in volatilities.
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(iii) the identification of the volatility shocks and their impulse response functions by observ-
ing that US-European shocks cannot affect contemporaneously the Japanese market;

(iv) the evaluation of the explanatory power of the identified volatility shocks when predict-
ing aggregate realized variances.

The following is a summary of our main findings.

(i.a) The market for returns has no global shock, and the contribution of foreign shocks,
in general, is relatively modest. These findings are consistent with the idea that the
domestic assets are largely overweighted in portfolios; in other words, we find evidence of
the so-called home bias phenomenon, as previously pointed out, for example, by French
and Poterba, 1991, Tesar and Werner, 1994, Coeurdacier and Rey, 2013, or Petzev et al.,
2016.

(i.b) In contrast with this, the panel of volatilities is clearly driven by a global shock explain-
ing about 17%, 16%, and 13% of the total variance of volatilities in the US, Europe,
and Japan, respectively. As a consequence, volatilities are strongly interconnected, thus
confirming the view that risk premia have an international flavor (see e.g. Karolyi and
Stulz, 2003, and references therein).

(ii) By investigating how explained variances in each subspace change during turbulent
times, we confirm the widespread belief that co-movements are largely increased dur-
ing crises but we do not observe amplified effects of foreign shocks on a given market.
Therefore, our results provide some support for the hypothesis of increased interdepen-
dencies as opposed to very limited evidence in favor of financial contagion (see Forbes
and Rigobon, 2002; Karolyi, 2003, for similar results).

(iii) Analysis of impulse responses to the global volatility shocks reveals within-market ho-
mogeneity but between-markets heterogeneity.

(iv) Although the estimated volatility shocks are extracted from a panel of closing prices
that does not incorporate information on intraday volatility, we find that they explain
about 30% of the aggregated realized variances of the markets under study and in one-
step-ahead predictive regressions. Encompassing regressions in the tradition of Mincer
and Zarnowitz (1969) allow us to infer that in most markets and samples considered our
shocks add useful information to predictions based on the heterogenous autoregressive
(HAR) models proposed by Corsi (2009).

The outline of the paper is as follows. In Section 2 the dynamic factor model for returns and
volatilities is presented. Section 3 deals with the estimation of the model, and the separation
between global and local shocks. In Sections 4 and 5 we apply our model to the analysis of
a large panel of stocks in the US, Japanese and European stock markets, with focus on the
aspects of interdependence, contagion and spillovers (Section 4), and on dynamic effects and
volatility prediction (Section 5). Section 6 concludes.

2 General dynamic factor models of returns and volatilities

We describe in detail our two-stage model for returns and volatilities when considering all
three markets jointly, while in the next section we show how we can exploit the block structure
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of the data in order to gain more insight into the origin of the dynamic sources of variation.
The dataset we consider consists in an N ×T panel Y := {Yit; i = 1, . . . , N ; t = 1, . . . , T} of
stock returns. A generic element of Y is denoted as Yi := {Yit; t = 1, . . . , T}. Throughout,
we assume each Yi to be zero-mean strongly stationary and we also require some very general
regularity assumptions ensuring the existence of the (multivariate) spectrum of Y (see Forni
et al., 2015 for a more formal description and details).

2.1 Stage 1: A dynamic factor model for returns

The most general factor model representation of Y, known as the general (or generalized)
dynamic factor model (GDFM), is

Yit = Xit + Zit =
Q∑
k=1

bik (L)ukt + Zit, i = 1, . . . , N, (1)

where the following conditions hold

(C1) the process u = (u1, · · · , uQ)′ is orthonormal white noise (typically, Q� N);

(C2) the polynomials bik (L) are one-sided and have square-summable coefficients for any
i = 1, . . . , N and any k = 1, . . . , Q;

(C3) the common component X := {Xit; i = 1, · · · , N ; t = 1, · · · , T} is driven by pervasive
factors, that is, the Qth eigenvalue of its spectral density matrix diverges as N → ∞
for almost all4 frequencies in the range [−π, π];

(C4) the idiosyncratic component Z := {Zit; i = 1, · · · , N ; t = 1, · · · , T} is stationary and
possibly autocorrelated, but only mildly cross-correlated, that is, the eigenvalues of its
spectral density matrix are uniformly bounded as N →∞;

(C5) the common component and the idiosyncratic component are mutually orthogonal, that
is, uncorrelated, at all leads and lags;

(C6) Q is the smallest integer for which (C1)-(C5) hold.

Hereafter, we call X the level-common component and Z the level-idiosyncratic component to
emphasize the fact they are the common and idiosyncratic components of the panel of returns.
Moreover, since the components of u are white noises driving the level-common component
they are called the level-common shocks.

The number Q of level-common shocks is identified as the number of eigenvalues of the
spectral density matrix of Y that are diverging, as N → ∞, almost everywhere in the fre-
quency range [−π, π].5 The method proposed by Hallin and Lǐska (2007), which is based on
this asymptotic behavior of eigenvalues, is used to determine Q.

As it stands, the GDFM in (1) arises as a representation result that essentially does not
place any restriction, besides stationarity and the existence of a spectrum, on the dynamics

4Spectral densities are only defined up to a set of frequency values contained in a Borel set with Lebesgue
measure zero, and this “almost all” or “almost everywhere” restriction should be part of most statements
involving spectral densities; it has no practical implications, though, and, for the sake of simplicity, we often
omit it.

5This is a simple consequence of Weyl’s inequality, see also Proposition 1 in Forni et al. (2000).
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of the panel; this is why it is referred to as “general” (see the discussion in Hallin and
Lippi, 2013). On the other hand, in the more popular static approach to factor models (see
Stock and Watson, 2002; Bai and Ng, 2002, among others), dynamics are inferred from Y’s
contemporaneous covariances only rather than from its full second order structure, which, if
consistency is to be achieved, imposes stronger restrictions on the data-generating process.

Recent results by Anderson and Deistler (2011) on vector autoregressions with singu-
lar spectra have been exploited by Forni et al. (2015) to derive, under the mild additional
assumption of a rational spectrum, a block-diagonal autoregressive representation for the
GDFM equivalent to (1). Specifically, using obvious notation Yt = (Y1t, · · · , YNt)′, Zt =
(Z1t, · · · , ZNt)′ and ut = (u1t, · · · , uQt)′, and assuming, without loss of generality, that N
factorizes into N = K(Q+ 1) for some K ∈ N, they show that we always can write

(I−A (L)) Yt = Hut + (I−A (L)) Zt, (2)

where (a) H is an N × Q matrix of loadings, (b) Z̃t := (I −A(L))Zt is idiosyncratic, thus
satisfying condition C4 above, and (c)

A (L) =


A(1) (L) 0 · · · 0

0 A(2) (L) · · · 0
...

... . . . ...
0 0 · · · A(K) (L)

 ,

with (Q+ 1) × (Q+ 1)-dimensional diagonal blocks A(1) (L) , · · · ,A(K) (L). Moreover, for
any i = 1, . . . ,K, det A(i)(z) 6= 0 for z ∈ C such that |z| ≤ 1, the filters are one-sided, and
each polynomial A(i) has finite degree. Existence of such filters is due to the fact that, under
model (1), the moving average representation of any (Q+ 1)-dimensional subset of common
components (X(i−1)(Q+1)+1, · · · , Xi(Q+1))′, for i = 1, . . . ,K, is tall and generically zeroless in
the sense of Anderson and Deistler (2011). That is, apart from a measure-zero subset in the
parameter space, the K autoregressive operators A(i) (L) all invert into fundamental moving
average filters which are unique for (X(i−1)(Q+1)+1, · · · , Xi(Q+1))′, i.e. have no roots inside the
complex unit disk (the zeroless property).6

Then, the level-common component Xt admits the singular moving average representation

Xt = (I−A (L))−1 Hut, (3)

and the common shocks ukt in (2) and (3) are the same as in (1).
The main advantage of representation (2) over (1) is that, with K simple (Q + 1)-

dimensional autoregressions, it allows us to estimate the GDFM using one-sided filters only.
Furthermore, estimation based on (2) is found to perform better than earlier approaches based
on (dynamic) principal components (see for example the empirical results in Forni et al., 2016,
for macroeconomic data, and in Barigozzi and Hallin, 2017, for financial data).

Estimation of (2) is studied in detail by Forni et al. (2017) under the additional assump-
tions that all Yi’s have finite fourth moments and geometrically declining physical dependence
in the sense of Wu (2005), a condition which controls the amount of serial dependence. Such
condition on serial dependence is automatically satisfied by all Xi’s, because of (C1)-(C2), and

6On the other hand, non-zeroless moving average representations are non-unique in the sense that they
allow for multiple non-fundamental representations and invert into non-causal – i.e. two-sided – autoregressive
representations (see e.g. Soccorsi, 2016).
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it can be shown to be fulfilled by any idiosyncratic component, i.e. satisfying (C4), admitting
a Wold representation. The following is a summary of the key estimation steps:

1. Filtering. A non-parametric estimate of the spectral density of Y is decomposed via
dynamic principal components analysis into the sum of a common and an idiosyncratic
spectrum (Forni et al., 2000). All autocovariance matrices of the common component X
are then obtained as inverse Fourier transforms of the common spectrum and used
to estimate the autoregressive filter A (L) by means of (low-dimensional) Yule-Walker
equations.7

2. Principal components. Letting Ỹt := (I − A (L))Yt, (2) yields a static factor model
for Ỹ, with Q common factors u loaded only contemporaneously by means of the load-
ings H. Therefore, linear invertible transformations of u and H are estimated by means
of principal component analysis on Ỹ (Bai and Ng, 2002; Stock and Watson, 2002).
The filtered idiosyncratic component is obtained from Z̃t = Ỹt −Hut.

We conclude the analysis of returns with three final comments on this procedure. First, in
order to prevent the estimation results in step 1 to depend on the (arbitrary) ordering of the
cross-sectional items, we estimate the model for 100 random permutations of the cross-section
and compute averages. In this respect, it has to be noticed that stabilization of the results
takes place very quickly and in particular the larger the panel sizes, the smaller the number
of permutations required for stabilization (see also the numerical results in Forni et al., 2016
and empirics in Forni et al., 2017, for similar evidence). Second, although the loadings H
and shocks u are in general not identified. Full identification of u is beyond the scope of
this paper and hereafter we identify them as the Q largest standardized principal components
Ỹ, which are orthonormal by construction. Moreover, this indeterminacy does not affect
the next stage of the model, where only the well-identified product Hu is needed. Last,
note that, under assumptions (C1)-(C6), model (2) also could be estimated by means of a
purely spectral approach (see Forni et al. (2000)). The latter, however, relies on the empirical
dynamic principal components of X, yielding two-sided filters and estimates of the common
component as a weighted averages of present, past, but also future values of the data. That
two-sidedness issue was addressed in Forni et al. (2015, 2017): see the next section.

2.2 Stage 2: A dynamic factor model for volatilities

In order to proceed with the analysis of volatilities, we need appropriate residuals from the
model of returns from which we can build volatility proxies. In particular, our modelling
approach for the analysis of volatilities follows closely Barigozzi and Hallin (2015) and is
based on the following two key ingredients.

1. Returns residuals. Consider the GDFM decomposition (2) of the panel of returns Y
and its estimation as described above. First, let et := Hut: the et’s then are the
N -dimensional white noise level-common residuals. Second, note that the filtered pro-
cess Z̃ = (Z̃1 . . . Z̃N )′ still is idiosyncratic, hence mildly cross-correlated; therefore, it
can be modelled, without much loss of information, as an N -tuple of univariate au-
toregressions. Denote by vit := (1− ci (L)) Z̃it the innovation resulting from fitting an

7The orders of the K autoregressive models A(k) (L) are determined by means of standard (low-dimensional)
identification methods such as, for example, AIC or BIC.
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autoregressive model to Z̃i. The N -tuple of level-idiosyncratic residuals v = (v1 . . . vN )′
then is an N -dimensional white noise process of “componentwise innovations” for Z̃i.
The same v also is the white noise residual resulting from fitting to Z a VAR of the
form  1− c1(L) . . . 0

... . . . ...
0 . . . 1− cN (L)

(I−A(L)
)
Zt = vt.

Therefore, because the two processes X and Z are mutually orthogonal at all leads and
lags, eit + vit by construction is the (white noise) residual obtained by projecting Yit
onto the Hilbert space spanned up to time (t − 1) by X and Zi. Thus, because Zi is
idiosyncratic, and neglecting idiosyncratic mild cross-correlations (see (C4)), et + vt is
the white noise residual obtained by projecting Yt onto its past.

2. Volatility proxies. For each stock, we define (see Engle and Marcucci, 2006) the centered
volatility proxies

sit :=
{

log
[
(eit + vit)2

]
− E

[
log

(
(eit + vit)2

)]}
i = 1, . . . , N : (4)

si := {sit; t = 1, . . . , T}, i = 1, . . . , N then is an N×T -dimensional panel s = (s1 . . . sN )′
of centered volatility proxies.8

Considering a GDFM decomposition (for which conditions (C1)-(C6) hold)

sit = χit + ξit =
Qs∑
j=1

dij (L) εjt + ξit, i = 1, . . . , N, (5)

of the volatilities s seems quite natural. The number Qs can be determined by means of
the Hallin and Lǐska (2007) criterion and, proceeding as in (2), we can recover the common
volatility shocks ε = (ε1 . . . εQs)′, along with the related impulse response functions dij(L).
As for the case of returns, we require the volatility proxies si’s to have finite fourth-order mo-
ments and geometrically declining physical dependence (Wu, 2005). Moreover, note that, as
explained above, ei and vi are the white noise residual obtained from two mutually orthogonal
components, then by construction they are uncorrelated, therefore justifying our definition
of si.

Finally, we show in this paper that standard identification approaches can then be em-
ployed to characterize the shocks ε. Consider the vector notation

st = D (L) εt + ξt
for the GDFM decomposition (5) of the volatility panel. Then, we have a class of equivalent
moving average representations for the common components, of the form

χt = D (L) R−1R εt, (6)

where the Qs ×Qs matrix R can be determined by imposing appropriate exogenous restric-
tions. Among all possible choices we restrict our search to orthogonal transformations as is
customary in structural VAR models and we refer to the empirical analysis in Section 5 for the
choice of R. At this point, however, the block structure of the panel (that is, the geographical
origin of each observation), which so far has not been exploited, is to play a major role, as
explained in the next section.

8In practice, expectations in (4) are replaced with arithmetic means.
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3 Disentangling global and local shocks

The panel Y, in our dataset, is the union of three subpanels or blocks corresponding to
returns of companies from the US, European, or Japanese markets. That block structure, of
course, is essential if intermarket dependencies are to be studied. Using obvious notation, we
denote those subpanels as YUS, YEU, YJP, with observations Y US

it , Y EU
it , and Y JP

it . Likewise,
the volatility panel built from returns splits into three subpanels, sUS, sEU and sJP, with
elements sUS

it , sEU
it , and sJP

it , respectively. Let NUS, NEU, and N JP stand for the cross-sectional
sizes of the blocks, with NUS+NEU+N JP = N .

The methodology described so far is focusing on the analysis of one single panel; it allows us
to recover level- and volatility-common shocks, but does not take into account any information
about the block structure of the observations. As a consequence, it cannot provide any insight
into the sources of these shocks. Taking into account the block structure of a large panel is
precisely the aim of the method proposed by Hallin and Lǐska (2011).

In particular, let us use the expression “space of a (sub)panel” for the Hilbert space of all
quadratic mean-convergent linear combinations of the elements of the (sub)panel, and the lim-
its of quadratic mean-convergent sequences thereof.9 Likewise, the “common (idiosyncratic)
space” of a (sub)panel is the Hilbert space spanned by common (idiosyncratic) components
of that (sub)panel. The methodology we employ relies on the natural decomposition of the
spaces of Y or s into subspaces that are common or idiosyncratic to each block, along with
their intersections. Such decompositions lead to a refinement, based on the block structure,
of the GDFM decompositions in (1) and (5).

The intuition is that some common shocks might be block-specific. For example, a shock
that is common in the Japanese subpanel, but does not belong to the US or European common
spaces can be considered as a Japanese “local” shock: pervasive (in the sense of (C3)) in the
Japanese markets but idiosyncratic in the US and European ones. Some other shocks, quite
on the contrary, are pervasive in all subpanels, and can be considered as worldwide or “global”
shocks. By construction those shocks belong to the intersection of the common spaces of all
three blocks. Moreover, the decomposition we consider allows also for shocks which might be
pervasive in some panels only, e.g. local shocks belonging to the intersection of the US and
European common spaces but not to the common space of Japan. A full characterization of
the subspaces in which such block-structured common space decomposes, leads us to account
for (23 − 1) = 7 non-overlapping, i.e. mutually orthogonal, parts. Thus the space of Y or s
decomposes into seven orthogonal common subspaces plus one strongly idiosyncratic space
as their orthogonal complement. The main advantage of such decompositions is that they
are unique, since the projections of the variables in the joint panels Y or s onto orthogonal
subspaces themselves are mutually orthogonal. On the contrary, uniqueness is lost when
considering a decomposition involving the three common spaces (defined by US, Europe, and
Japan) only, without taking into account their possible intersections.

Let us first give a more precise account of the Hallin and Lǐska (2011) approach while at
the end of the section we compare this approach with other existing factor models with block
structure. Since the dynamic analysis of volatility shocks is the main objectives of this study,
we start by giving details for the block-wise factor analysis of the volatility panel s. Similar
decompositions also hold, with obvious changes, for the panel of returns Y.

9For example, the “space of s” is the space containing all convergent (in quadratic mean) linear combinations
of the form ηt =

∑N

i=1

∑∞
k=0 aiksit−k, along with the limits of mean-square converging sequences of such linear

combinations.
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A GDFM representation (5) holds for the joint panel of volatilities s, but also for the
three subpanels sUS, sJP, and sEU separately. Considering, for example, an element sUS

i of the
US subpanel, its GDFM decomposition in the joint panel s reads

sUS
it = χUS;it + ξUS;it =

Qs∑
j=1

dij(L)εjt + ξUS;it, i = 1, . . . , NUS, (7)

the common component of which is driven by the same Qs shocks as in (5). Hence, for the
units belonging to the US subpanel, χUS;it ≡ χit: call it the jointly common component.
This decomposition therefore satisfies the GDFM conditions (C1)-(C6). The same sUS

i , when
considered in the US subpanel sUS only, admits another GDFM decomposition, with, say, qsUS

common shocks, of the form

sUS
it = χUS

US;it + ξUS
US;it =

qsUS∑
j=1

dUS
ij (L)εUS

jt + ξUS
US;it, i = 1, . . . , NUS. (8)

The common components χUS;it and χUS
US;it can be identified by analyzing either the joint panel

or the US subpanel alone, respectively. Note however that the vectors ε = (ε1 . . . εQs)′ in (7)
and εUS = (εUS

1 . . . εUS
qsUS

)′ in (8), need not be mutually orthogonal. Therefore, nothing can be
said about the global or local nature of the shocks driving the common components in (7)
and in (8) unless a finer decomposition is considered.

Since, in the presence of three blocks, the common space of s is made up of seven mutually
orthogonal common subspaces, the jointly common component in (7) decomposes into the sum
of seven orthogonal components:

χUS;it = ϕUS;it + ψUS/EU,JP;it + ψUS,EU/JP;it + ψJP,US/EU;it (9)
+ ζUS/EU,JP;it + ζUS,EU/JP;it + ζJP,US/EU;it,

where10

(i) ϕUS;i belongs to the intersection of the three subpanel common spaces; call it sUS
i ’s

strongly common component, in the sense that its dynamics is driven by shocks which
are pervasive in all three blocks, that is by global shocks;

(ii) ψUS/EU,JP;i belongs to the common space of sUS but to the idiosyncratic spaces of sJP

and sEU, ψUS,EU/JP;it to the common spaces of sUS and sEU, but to the idiosyncratic space
of sJP, etc.; those ψ’s are called weakly common components, since their dynamics is
driven by shocks which are pervasive only in US (ψUS/EU,JP;i) or pervasive for both US
and Europe but not for Japan or for both US and Japan but not for Europe (ψUS,EU/JP;i
or ψJP,US/EU;i, respectively);

(iii) ζUS/EU,JP;it belongs to the idiosyncratic space of sUS, but to the common spaces of sJP

and sEU, ζUS,EU/JP;i to the idiosyncratic spaces of sUS and sEU, but to the common space
of sJP, etc.; those ζ’s are called weakly idiosyncratic components, since their dynamics
is driven by shocks which are not pervasive for US but are pervasive for Europe and/or
Japan;

10The strong/weak terminology used here is completely unrelated to, and should not be confused with, the
concepts of “strong” and “weak” factors developed elsewhere in the literature.
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(iv) ξUS;i belongs to the intersection of the three subpanel idiosyncratic spaces and is called
strongly idiosyncratic, since no pervasive shock drives its dynamics.

The common shocks driving the strongly common, weakly common, and weakly idiosyncratic
components are then mutually orthogonal by construction.

Using the same notation as in (9), we can also consider the decompositions of the common
and idiosyncratic components in (8) which are given by

χUS
US;it = ϕUS;it + ψUS/EU,JP;it + ψUS,EU/JP;it + ψJP,US/EU;it and (10)
ξUS

US;it = ζUS/EU,JP;it + ζUS,EU/JP;it + ζJP,US/EU;it + ξUS;it,

respectively. The relation between decompositions (7), (8), (9), and (10), appears more clearly
by writing

χUS;it︷ ︸︸ ︷
sUS
it =ϕUS;it + ψJP,US/EU;it + ψUS,EU/JP;it + ψUS/EU,JP;it︸ ︷︷ ︸

χUS
US;it

+ ζJP,US/EU;it + ζUS,EU/JP;it + ζUS/EU,JP;it + ξUS;it︸ ︷︷ ︸
ξUS

US;it

.

Similar decompositions hold, of course, with obvious modifications in the notation, for sJP
i

and sEU
i .

To conclude, notice that the numbers qsUS, qsEU qsJP satisfy the natural constraint

max (qsUS, q
s
JP, q

s
EU) ≤ Qs ≤ qsUS + qsJP + qsEU, (11)

where the lower bound is attained when one of the subpanel common spaces contains the
other two, while the upper bound is attained when the three common spaces do not pairwise
intersect. Repeated application of the Hallin and Lǐska (2007) criterion on the appropriate
subpanels allows us to identify the numbers of shocks qsUS, q

s
EU, q

s
JP, and Qs as NUS, NEU

and N JP, and therefore also N , all tend to infinity. By knowing the number of common
shocks in each subpanel and in the joint panel, we can infer directly the numbers of common
shocks in the intersections of the subpanel common spaces. In this way, we identify the
numbers of global and local shocks in returns and volatilities such that (11) is satisfied.

By disentangling local and global components, we can study the amount of total variance
of returns or volatilities accounted for by each of these components. Explained variances
of the strongly and weakly common components over different periods provide information
about (i) possible international financial contagion signalled by changes in the explained vari-
ance of the weakly idiosyncratic components and (ii) the role of interdependencies determined
by strongly and weakly common components. Specifically, the explained variances are ob-
tained by considering the eigenvalues of their spectral densities. So, for example, the variance
explained by the strongly common component of US volatilities is given by

EVϕUS =
∑qϕ

j=1
∫ π
−π λj;ϕUS(θ)dθ∑NUS

j=1
∫ π
−π λj;ϕUS(θ)dθ

,

where qϕ is the number of global shocks and λj;ϕUS(θ) is the jth largest eigenvalue of the
spectral density of ϕUS;it at frequency θ.

Note that by looking at decompositions (7), (8), (9), and (10), we immediately see that
strongly idiosyncratic terms are readily available from the estimation of the GDFM for the
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joint panel (see (5)) and weakly idiosyncratic terms are obtained by subtracting subpanel
common components χUS

US;it from joint panel common components χUS;it. Finally, by projecting
χUS

US;it on the intersection of the three subpanel common spaces, we obtain the strongly common
terms, while weakly common terms are the residuals of such projections. We refer to Hallin
and Lǐska (2011) for details.

An analogous decomposition holds for the panels and subpanels of returns Y US
i , Y JP

i ,
and Y EU

i , with block-specific numbers of shocks qUS, qJP, and qEU satisfying

max (qUS, qJP, qEU) ≤ Q ≤ qUS + qJP + qEU, (12)

where Q is the number of common shocks in (1). With obvious notation, we have the decom-
position

XUS;it︷ ︸︸ ︷
Y US
it =ϕYUS;it + ψYJP,US/EU;it + ψYUS,EU/JP;it + ψYUS/EU,JP;it︸ ︷︷ ︸

XUS
US;it

+ ζYJP,US/EU;it + ζYUS,EU/JP;it + ζYUS/EU,JP;it + ZUS;it︸ ︷︷ ︸
ZUS

US;it

.

Notice, however, that the block structure of returns, although of independent interest, is not
needed for building and analyzing the volatility panel (Stage 2 of previous section).

An alternative factor-based approach exploiting the block-structure of the data is the
hierarchical factor model considered in Kose et al. (2003), Moench and Ng (2011), and Moench
et al. (2013). However, those authors propose a decomposition which is substantially different
from the one illustrated in this section. First and foremost, local shocks, in their hierarchical
approach, only can be specific to one given block: using our terminology, the intersections
between the common spaces of two subpanels are assumed to be empty. This is in contrast
both with the spirit of our structural analysis, in which we have no prior knowledge on where
common shocks belong to, and with the empirical findings in next section, where both for
returns and volatilities we find non-empty intersections of the US and European common
subspaces and no global shocks in returns.11

Second, there is no method available for identifying the numbers of global and local shocks,
and typically one global and one local factor for each block are assumed (see e.g. Moench
et al., 2013), which is quite restrictive. As explained above, our approach instead relies on a
data-driven identification of those numbers. Third, hierarchical models are formulated in a
state space form, hence common shocks drive some latent factors, which in turn are loaded
by the observable variables.12 Therefore, as pointed out by Moench and Ng (2011), the
responses of variables to shocks to local factors in a given block can differ only to the extent
that their exposure to the block-level factors differs. On the contrary, in our analysis the
impulse response functions are unconstrained, thus allowing for more heterogeneity in the
dynamics induced by the common shocks.

Summing up, by imposing more assumptions, hierarchical factor models are nested into
our more general and fully dynamic approach. On the other hand, all decompositions consid-
ered in this paper constitute representation results, not assumptions—meaning that, in sharp

11Trivially, in the absence of a global shock, the hierarchical factor approach reduces to the factor analysis
of unrelated, i.e. disjoint, blocks.

12Note also that in principle their model is formulated with dynamic loadings, while their applications, due
to identification issues, only consider static loadings—i.e. their factors are loaded contemporaneously by the
observable variables.
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contrast with the hierarchical approach, their existence and uniqueness holds without any
additional restrictions (besides the existence of a spectrum) on the data-generating process.

Clearly, allowing for such a general approach also has a price: the complexity of the decom-
position increases with the number of blocks, since G blocks yield (2G−1) common subspaces
and, of course, one strongly idiosyncratic space as their orthogonal complement. Therefore,
dealing with more than the three blocks considered in this paper might be computationally
(but not theoretically) hard and is left for further research.

4 Common shocks in US, Europe, and Japan

In this section, we apply the methodology outlined in Sections 2 and 3 to analyze a three-block
panel of stocks belonging to the US, European, and Japanese financial markets. Returns are
computed from the daily closing prices of the constituents of three of the most popular stock
market indices: Standard & Poor’s 500, Standard & Poor’s Europe 350, and Nikkei 225.
The data is collected from December 31, 1999 to August 31, 2015, which corresponds to a
sample size of T = 4086 trading days. In order to work with a balanced panel, only the
constituents priced over the full sample are retained. We are then left with N = 830 stocks:
NUS = 336 stocks in the US market (henceforth SP500), NEU = 293 stocks in the European
market (henceforth SPEU350), and N JP = 201 stocks in the Japanese market (henceforth
NKK225).13

In Sections 4.1 and 4.2, we present the block decomposition of the returns and volatility
panels, respectively. In Section 4.3 we describe the dynamics of the estimated shocks with
respect to the dynamic of the financial markets. Finally, in Section 4.4 we apply the block
decomposition to the assessment of interdependencies and financial contagion.

4.1 Common shocks in returns

It is well known that stock returns are strongly cross-correlated, and this finding justifies a
factor approach (see e.g. the empirical studies in Connor et al., 2006 and Sentana et al.,
2008). In addition, there is also recent empirical evidence of little but nevertheless significant
predictability in returns due to their (cross-)autocorrelations (see e.g. Rapach and Zhou,
2013, for a review of stock return predictability, Giovannelli et al., 2017 for an application of
the GDFM to the forecasting of returns, and Wongswan, 2006, for a study based on high-
frequency data).

These findings are confirmed when looking at the cross-correlations in our dataset, as
shown in Figure 1, where we also highlight those correlations which are 5% significant ac-
cording to confidence intervals; the latter are computed through wild-bootstrap, in order
to account for conditional heteroskedasticity (Mammen, 1993, Gonçalves and Kilian, 2004).
Most contemporaneous correlations are significant, but several of them stay significant even
at lags 1 and 2. Strongly significant correlations are found between NKK225 stocks and
lagged values of the others, reflecting the effect of time zone in Japan - i.e., the fact that
events in US and European markets occur while the Tokyo Stock Exchange is closed, so that
no Japanese reaction can take place until the next business day. The same can be said about
the correlations between SPEU350 and lagged SP500.

13The complete list of the stocks is available in a complementary Appendix to this paper.
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Figure 1: Cross-correlations of returns
lag 0 lag 1 lag 2

Each matrix is made of N ×N cells, indexed by couples of stock; the ordering of the stocks is US (1-336), EU (337-629),
JP (630-830). In the top panels we report correlations ρk between returns at lags k = 0, 1 and 2, using the following
color code: white for ρk < 0; light-grey for 0 ≤ ρk < 0.1; dark-grey for 0.1 ≤ ρk < 0.3; black for 0.3 ≤ ρk ≤ 1. In the
bottom panels, still for lags k = 0, 1 and 2, the 5%-significant values according to wild-bootstrap based critical values
are show in black.

Before estimating the GDFM for the returns we employ the test proposed by Trapani
(2016) for the null hypothesis E[Y 4

it ] = ∞ against the alternative of finite fourth moments.
When applied to our panel of returns, this test rejects the null hypothesis at 1% significance
level for all N returns considered.

The Hallin and Lǐska (2007) criterion indicates Q = 4 common shocks driving the dynam-
ics of the joint panel of returns. In the top left panel of Table 1 we show the number of shocks
(still obtained via the Hallin and Lǐska (2007) criterion) in each subpanel and in all pairwise
unions. From these results we obtain the graphic in the bottom left panel, which shows the
origin of the four common shocks. In the figure, empty common subspaces are white while
the shaded ones are those in which some common shocks are present (their number is given in
the square box). In particular, we find (note the absence of strongly common, global, shocks)

(i) one shock, common in the US and Europe but idiosyncratic in Japan, driving the
weakly common components of US and European returns and the weakly idiosyncratic
components of Japanese returns;

(ii) two local shocks, common only in the US, which are driving the weakly common compo-
nents of US returns and the weakly idiosyncratic components of European and Japanese
returns;

(iii) one local shock, common only in Japan, driving the weakly common components of
Japanese returns and the weakly idiosyncratic components of US and European returns.

Therefore, using the notation of Section 3, the decomposition of returns, together with the
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Table 1: Number of common shocks

(sub)panels Returns Volatilities

SP500 3 2
NKK225 1 1
SPEU350 1 2
SP500 ∪ SPEU350 3 2
SP500 ∪ NKK225 4 2
SPEU350 ∪ NKK225 2 2
SP500 ∪ SPEU350 ∪ NKK225 4 2

SP500

NKK225 SPEU350

1

2

1

SP500

NKK225 SPEU350

1

1

percentages of variance explained by each component, reduces to

YUS = ψYUS/EU,JP
23.70%

+ ψYUS,EU/JP
14.04%

+ ζYUS,EU/JP
0.13%

+ ZUS
62.13%

,

YEU = ψYUS,EU/JP
32.80%

+ ζYUS,EU/JP
0.20%

+ ζYEU,JP/US
1.68%

+ ZEU
65.32%

,

YJP = ψYJP/US,EU
39.27%

+ ζYJP/US,EU
0.27%

+ ζYEU,JP/US
1.12%

+ ZJP
59.34%

.

The various components, constituting the common component of the joint panel, account for
(sum of the first three terms on the right hand side) about 35%-40% of the total variance
within each market (strongly idiosyncratic terms in the three subpanels therefore explain
between about 60%-65%). In Europe the US-European shock is, by far, the main term in the
joint common component. Similarly, the local shock in Japan explains almost all the common
variance. A more balanced situation is found in the US between the variance explained by
the two local shocks and the variance explained by the US-European shock.

Finally, the absence of a global return shock, together with the very small role played
by weakly idiosyncratic components, is consistent with the idea that the markets are not
perfectly integrated, and are influenced by the so-called home bias, implying that domestic
assets are largely overweighted in portfolios (see French and Poterba, 1991 and Tesar and
Werner, 1994, for early references, and Coeurdacier and Rey, 2013 and Petzev et al., 2016, for
more recent evidence). Note that, as pointed out in Section 3, ours are unique decompositions
into orthogonal components which are related to the origins of the dynamic forces driving
comovements; therefore, all international correlations due to pervasive shocks in the panel of
returns are accounted for.
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Figure 2: Cross-correlations of volatilities
lag 0 lag 1 lag 5

Each matrix is made of N ×N cells, indexed by couples of stock; the ordering of the stocks is US (1-336), EU (337-629),
JP (630-830). In the top panels we report correlations ρk between volatilities at lags k = 0, 1 and 5, using the following
color code: white for ρk < 0; light-grey for 0 ≤ ρk < 0.1; dark-grey for 0.1 ≤ ρk < 0.2; black for 0.2 ≤ ρk ≤ 1. In the
bottom panels, still for lags k = 0, 1 and 5, the 5%-significant values according to wild-bootstrap based critical values
are shown in black.

4.2 Common shocks in volatilities

From the estimation of the GDFM of returns in Stage 1 of our methodology (Section 2.1),
we obtain the residuals needed for building the panel of volatility proxies (4) as described
in Stage 2 (Section 2.2). As a preliminary analysis, we look at the N distributions of the
processes ei + vi to check that effectively they do not have too much mass around zero.
Following again the methodology by Trapani (2016), the null hypothesis E[s4

it] =∞ is always
rejected at 1% significance level in favour of the alternative of finite fourth moments. This
shows that in our data large deviations in the left tail of the distribution of si, corresponding
to cases in which eit + vit ' 0, are not an issue.14 In view of these findings our volatility
proxies are indeed well defined also empirically and can be used for the subsequent analysis.

Consistently with the fact that volatilities are know to display strong persistency (see
e.g. Andersen et al., 2003), the cross-correlations of the estimated volatility panel stay sig-
nificant for many lags, as shown in Figure 2 where again confidence bounds are computed
via wild-boostrap to account for possible conditional heteroskedasticity in volatilities (see
e.g. Corsi et al., 2008).15

The Hallin and Lǐska (2007) criterion indicates Qs = 2 common shocks driving the dy-
namics of the joint panel of volatilities. In the top right panel of Table 1 we show the numbers
of common shocks in each subpanel and their pairwise unions.16 From these results we obtain

14The distribution of si, not shown, is highly concentrated around zero for all i = 1, . . . , N .
15Results are unaffected, though, if we use the classical confidence bands ±1.96

√
T−1.

16In our application of the Hallin and Lǐska (2007) criterion we consider only the frequency band
[
π

252 ,
2π
3

]
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the graph in the bottom right panel, which shows the origin of the two common shocks. In
this figure, empty subspaces are white while the shaded ones are those in which some common
shocks are present (their number is given in the square box). In particular, we find

(i) one global shock, common to the volatilities of all three stock markets, driving the
volatility strongly common components of all stocks in the dataset;

(ii) one shock, common in US and Europe but idiosyncratic in Japan, which drives the
weakly common components of US and European volatilities and the weakly idiosyn-
cratic components of Japanese volatilities.

The corresponding decomposition of volatilities, along with the percentages of variance ex-
plained by each term, are

sUS = ϕUS
17.21%

+ ψUS,EU/JP
7.31%

+ ξUS
75.48%

,

sEU = ϕEU
15.95%

+ ψUS,EU/JP
6.42%

+ ξEU
77.63%

,

sJP = ϕJP
12.97%

+ ζJP/US,EU
0.57%

+ ξJP
86.46%

.

Although the joint common components of volatilities (the sum of the first two terms on the
right-hand side) explain less variance than in the panel of returns, the presence of a global
volatility shock is a sign of higher interconnectedness. That strongly common shock explains
about 17%, 16%, and 13% of US, European, and Japanese volatilities, respectively. The
US-Europe shock explains 7% and 6% percent of volatilities in US and Europe, respectively,
while it has very little impact in Japan. Summing up, these results show that (a) volatilities
are strongly interconnected, thus confirming the view that risk premia have an international
flavor (see e.g. Karolyi and Stulz, 2003, and references therein), and that (b) the common
shocks driving volatilities are in general not of the same nature and origin as those driving
returns (see also the results in Barigozzi and Hallin, 2015 for the Standard &Poor 100 stocks).

4.3 Common shocks dynamics

We now turn to a comparative study of the dynamics of the return and volatility common
shocks in “stable” and “turmoil” periods. In what follows, we define the “turmoil” sample as
the subsample corresponding to the period starting on August 9, 2007, when a press release
by BNP Paribas mentioned a ‘complete evaporation of liquidity in certain market segments of
the US securitisation market’, and terminating on July 26, 2012, when ECB president Mario
Draghi voiced his defense for the Euro ‘whatever it takes’. This period is characterized by the
so-called Credit Crunch and it comprises the two major financial crises of the recent years:
the Great Financial Crisis (2007-2009), originating in the US, and the European Sovereign
Debt Crisis (2011-2012).17

corresponding to oscillations with periods comprised between two years and three days, so that the spectral
densities are not affected by proxies’ noise and long memory in volatilities. We also checked that all volatilities
can be considered stationary as their fractional integration coefficients are below 0.5.

17Although there is no clear consensus about the choice of the starting and ending days of that
period, practitioners typically view them in mid 2007 and mid 2012, as we do: see, for example,
www.theguardian.com/business/2012/aug/07/credit-crunch-boom-bust-timeline. Our results are robust
with respects to alternative and similar choices of this sub-sample.
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Figure 3: Return common shocks (u1t, . . . , u4t)
u1t u2t

u3t u4t

Shocks are standardized to have zero mean and unit variance. Shaded areas denote the turmoil subsample: August, 9
2007- July, 26 2012.

First, we analyze the common shocks. Those shocks are in general estimated up to an
invertible linear transformation, as discussed in Sections 2.1 and 2.2, respectively. Inspection
of the estimated common shocks of returns (u1t, . . . , u4t) in Figure 3 reveals an exceptional and
prolonged commonality due to many large common shocks during turmoil period. Although
those shocks are orthornormal by construction they are not fully identified so we refrain
to attach them any economic meaning but we limit ourselves to noticing that some of the
main events influencing the markets under study are reflected in their respective dynamics.
The first shock u1t seems to capture some features of the Japanese economy, displaying a
huge lonely spike on March 11, 2011, day of the Tohoku earthquake and tsunami (which
witnessed the third steepest percentage fall in Nikkei’s history), and the effects of fiscal
stimulus, monetary easing, and structural reforms, consequences of Shinzō Abe’s policies (the
so-called ‘Abenomics”) are visible throughout 2013. The second and third shocks u2t and u3t
both are capturing the high volatility of the 2011-2012 period associated to the European
Sovereign Debt Crisis, but also the turbulence due the Great Financial Crisis. The fourth
shock u4t is characterized instead by a higher volatility in the the market downturn period
between 2000 and 2003 which was related to the dot-com bubble burst, the 9/11 attacks, and
the second Iraq war (a so-called “bear” market period).

In Figure 4 we similarly report (left-hand panels) the two log-volatility common shocks,
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the strongly common or “global one” ε∗global
t and the US-EU common one ε∗US-EU

t , identified in
accordance with the restrictions described in the next section, along with (right-hand panels)
their exponentials exp(ε∗global

t ) and exp(ε∗US-EU
t ), which are more readable (for simplicity, we

also call them volatility shocks). Similarly to the return shocks in Figure 3, we find that
the turmoil period witnesses some important extreme events. In particular, for the global
shock ε∗global

t , we find four large spikes on

(i) January 4, 2008, a stock market fall following the release of the two-years highest figures
in US unemployment rates;

(ii) March 23, 2009, a positive shock after US Treasury announced a bailout plan consisting
in a 1 trillion USD purchase of toxic bank assets;

(iii) August 18, 2011, a stock market fall with an increase in the VIX index of 35% due to
fears related to the European Sovereign Debt Crisis;

(iv) January 5, 2015, a stock market fall depicted by media as a global shock due to falling
oil prices.

Minor spikes are observed also in the “bear” market period of 2000-2003. The US-Europe
shock ε∗US-EU

t displays the same volatility clusters during the Global Financial Crisis, the
European Sovereign Debt Crisis, and “bear” market period, but are of low magnitude when
compared with the global shocks. These facts are in line with previous findings in the litera-
ture about increasing volatility spillovers across markets during economic downturns (see e.g.
Diebold and Yılmaz, 2009, 2012).

In order to compare the dynamics of these shocks with the observed market behavior, we
also report in Figure 5 the daily returns and annualised realized volatilities of the aggregate
market indexes (details about the realized volatility measures used are in Section 5.2).

4.4 Co-movements, contagion, and volatility spillovers

The results described in the previous sections indicate that the turmoil period has witnessed
an unusual number of large shocks, both in returns and volatilities. While increased co-
movements are likely to reflect the fact that financial agents in all markets react in a similar
way when increased risk is perceived, the economics underlying such dynamics is still unclear.
Two alternative theories are possible: interdependence and contagion.

Albeit various definitions can be found in the international finance literature, financial
contagion is usually depicted as the spread of exceptionally adverse shocks originating abroad
and transmitted into local financial markets in a way which has little to do with the in-
ternational shock transmission observed in stable periods (see the surveys of Karolyi and
Stulz, 2003; Karolyi, 2003, and references therein). That is, contagion does not necessarily
take place if larger shocks are observed to hit markets around the globe but some sort of
change must be observed in the transmission mechanism such that the usual international
interdependence of stock markets cannot explain increased co-movements.

Much of the empirical evidence intended to distinguish contagion from interdependence,
and volatility spillovers from efficient spread of information is based on the analysis of pair-
wise cross-correlation coefficients among market indices and their variations across time (see
e.g. Calvo and Reinhart, 1996; Boyer et al., 1997; Forbes and Rigobon, 2002, the survey of
Claessens et al. 2001 and references therein). However, Pesaran and Pick (2007) and Corsetti
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Figure 4: Identified volatility shocks ε∗global
t and ε∗US-EU

t

ε∗,globalt exp(ε∗,globalt )

ε∗,US−EU
t exp(ε∗,US−EU

t )

Shocks in the left panel are standardized to have zero mean and unit variance. Shaded areas correspond to the turmoil
period August, 9 2007- July, 26 2012.

et al. (2005) raised some concerns about this approach because common and market specific
components should be accounted for if unbiased estimates are to be constructed. Our analysis
provides an ideal tool for addressing such issues, since it allows us to compare the behaviors
of global and local volatility and return shocks during turmoils, and how they contribute to
the increase in co-movements.

In order to shed light on whether financial contagion or just interdependence is to blame
for increased co-movements in returns and volatilities, we report, in Table 2, results for
three sub-samples in which the variance decompositions are performed in the stable period
ending on August 8, 2007, the turmoil period, and the subsequent stable period starting
on July 27, 2012. In Table 3, we also show the changes, from one period to the next, in
the proportion of common variance explained by the strongly common shocks. For example,
we compute the ratio of the variance of the strongly common component ϕUS to that of
χUS = ϕUS +ψUS,EU/JP in stable and turmoil periods, respectively.

Results are obtained without re-computing the numbers of common shocks in each sub-
sample. Indeed, if structural breaks are present, then, at worst, those numbers could be
overestimated.18 However, the cross-sectionally averaged overestimation error is known to

18This result is well known in the static factor model case. If there are q factors and there is one change in
the loadings, then, when determining the number of factors using the whole sample, we would find 2q factors
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Figure 5: Returns and realized volatilities of aggregate market indexes
SP500 SP500 volatility

SPEU350 SPEU350 volatility

NKK225 NKK225 volatility

Left panels: daily percentage returns. Right panels: annualised realized variances. Data for the SPEU350 market come
from the EUROSTOXX50 index. Shaded areas denote the turmoil subsample: August, 9 2007- July, 26 2012.

be asymptotically negligible as the cross-sectional dimension increases (see Corollary 2 in
Forni et al., 2000 and also Proposition 1 in Onatski, 2015 for an analogous result in the
static factor model case). Hence, our measures of explained variances, which are obtained via
cross-sectional averaging, are likely to be unaffected by possible mis-specifications. This is
confirmed by the results in a complementary Appendix to this paper, computed for different
numbers of shocks.

As already mentioned, the presence of a global volatility shock implies pervasive volatility
interdependence. In particular, for all subpanels the increase in commonality (namely, the
variances of the common components χUS

US;it, χEU
EU;it and χJP

JP;it; see (10)) observed during the
turmoil period is almost entirely due to the strongly common components ϕUS, ϕEU and ϕJP,
which are driven by the global (strongly common) shock ε∗global

t .
If the global shock were the unique cause of international volatility co-movements, there

would be no room for contagion. However, the US-European shock ε∗US-EU
t could be a source

of contagion for the Japanese market. This is only partly true, as indicated by the constant,

at most, and at least q of them. Similarly, if after a break a factor appears or disappears, we recover the
maximum number of factors (q+1 or q respectively) when considering the whole sample for estimation of their
number (see e.g. Corradi and Swanson, 2014). The same reasoning carries through to the present dynamic
factor model case.
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but small, increase in the variance explained by the weakly idiosyncratic Japanese compo-
nent ζJP/US,EU. In general, the US-European shock explains a smaller amount of variance than
the global one and its contribution in the second stable period is actually found to increase,
rather than decrease, probably reflecting the fact that although the aftermath of the Euro-
pean Sovereign Debt Crisis has relieved fears, concerns nevertheless remain about the still
shaky banking system in some of the Eurozone countries.

In the panel of returns, the only possible interdependence is between the US and European
markets, induced by the weakly common component ψYUS,EU/JP. The variance explained by
this component in both markets increases considerably during the turmoil period, especially
in Europe. On the other hand, this shock has almost no impact on the Japanese market. We
also notice increased interdependence within the US and Japanese markets, as shown by the
increase in commonality due to the local weakly common components ψYUS/EU,JP and ψYJP/US,EU,
respectively. Finally, the US shock seems to have a small effect on the Japanese market during
the turmoil period, as shown by the increased variance of ζYJP,EU/US. Finally, the fact that
Europe apparently becomes more interconnected to the US market after 2007 can be seen as
a sign of the spread of the Great Financial Crisis from US to Europe; given the nature of the
common shock that generates this co-movement, however, we cannot speak of contagion.

5 The dynamic effects of volatility shocks

We now focus, in Section 5.1, on the identification of volatility shocks and their dynamic effects
while, in Section 5.2, we investigate the predictive power of these shocks in the analysis of
realized measures of variances.

5.1 Impulse response functions

While the results in Section 4.4 are invariant within the class of moving average representations
(6), an identification step is required for the analysis of impulse response functions to the two
volatility shocks ε∗global

t and ε∗US-EU
t . The moving average representations (6) of the common

components χt have the form
χt = D (L) ε̄t

where D (L) = D (L) R−1, ε̄t = Rεt for an arbitrary invertible linear transformation R.
As customary in the literature, we restrict our choice to orthogonal transformations, there-

fore in the present setting R ≡ R(ω) is a Qs = 2-dimensional orthogonal matrix, which
depends on a single angle ω ∈ [0, 2π]. Identification of impulse responses requires to find
a value for ω such that a given set of constraints is satisfied by D (L) R′(ω). To achieve
just-identification we then need to impose only one restriction.

The time zones of the markets considered imply that when the US and European markets
open the Japanese market is already closed. Therefore, no stock in the NKK225 subpanel
should have a contemporaneous reaction to the US-Europe volatility shock. Thus, there
exists in principle many possible equivalent restrictions—one for each NKK225 stock; in other
words, we are in presence of (N JP−1) over-identifying restrictions. Rather than imposing one
restriction on one single and arbitrarily chosen Japanese stock, leaving the remaining ones
unrestricted, we take the rotation that is closest (in the mean square sense) to fulfilling all
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Figure 6: Impulse response functions to the volatility shocks
response to ε∗,US−EU

t response to ε∗,globalt

lags
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25th and 75th percentiles of impulse response functions to the identified volatility shocks in the three markets considered.
Solid line: Japan; dashed line: US; dashed-dotted line: Europe.

those over-identification restrictions. That is, we look for the angle ω∗ such that

ω∗ = arg min
ω∈[0,2π]

∑
i∈NKK225

[
D (0) R′(ω)

]2
i,1 .

The identified impulse responses are then given by D∗(L) = D(L)R′(ω∗) and the identified
shocks, reported in Figure 4, are computed as

ε∗t =
(
ε∗,US−EU
t

ε∗,global
t

)
= R(ω∗)εt. (13)

In Figure 6, for each market we show the 25-th and 75-th percentiles of the distribution
across stocks of impulse response functions to the identified shocks - i.e. of the distribution
of [D∗ (L)]i,· for i ∈ NKK225, SP500, SPEU350. All responses display strong within-market
homogeneity: SP500 and SPEU350 volatilities have very similar responses to the global shock
which, however, has a stronger impact on the NKK225 panel. On the contrary, the impact of
the US-Europe shock is larger in the SPEU350 panel than in the SP500 one. Most impulse
responses are positive and show a good amount of persistence, consistently with the idea that
the dynamics of volatilities is characterized by long memory. Finally, the impusle responses
of Japanese stocks to the US-European shock are almost null at impact, in agreement with
the restriction imposed in our identification scheme.

5.2 The predictive power of volatility shocks

To conclude, we investigate, in this section, the explanatory power of the volatility shocks in
predicting aggregated (market) realized variances. The aggregated realized variances RV US

t

and RV JP
t of the SP500 and the NKK225 are readily available on line. The same information is

not provided for the SPEU350, but it is available for the most popular indices for the European
market, the EUROSTOXX50, the FTSE100 for the London Stock Exchange, and the DAX
for the Frankfurt Stock Exchange (notation: RV EU1

t , RV EU2
t and RV EU3

t , respectively).19

Below, we consider predicting RV EU1
t , RV EU2

t and RV EU3
t as a substitute for predicting the

19As in Shephard and Sheppard (2010) the realized variances considered here are sums of squared 5-minute
returns, that is

RV
...

t =
∑

0≤tj−1,t<tj,t<1

ret2
j,t, retj,t := Pt+tj,t − Pt+tj−1,t ,
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unavailable RV EU
t . The generic notation RV

...

t is used in place of RV US
t , RV EU1

t , RV EU2
t ,

RV EU3
t , or RV JP

t .
In Table 4, we report adjusted R2 coefficients associated with various linear regressions of

the realized variances RV ...

t with respect to present and lagged values of the common shocks εεε∗
obtained in (13). More precisely, the first row of Table 4 is about the projections

R̂V
...

t (GDFM) := Proj
(
RV

...

t

∣∣εεε∗t , . . . , εεε∗t−21
)

(14)

(which include the contemporaneous shock εεε∗t—optimal fits or “nowcasts”, thus, rather than
genuine predictions or forecasts), the second row is about

R̂V
...

t (GDFM) := Proj
(
RV

...

t

∣∣εεε∗t−1, . . . , εεε
∗
t−22

)
(15)

(which do not include the contemporaneous shock εεε∗t , hence have the nature of one-step
ahead in-sample predictions), both considered as predictors of RV ...

t . The maximum lag
(k=22) has been chosen, for the sake of comparison, to be the same as in the HAR predictor
described below. Results show that approximately 26%-34% of the total variation of the
realized measures is explained by the volatility shocks in (14), a percentage that reduces
to 25%-31% in (15) where the contemporaneous shock is not included.

For the sake of comparison, in the third row of Table 4, we show the adjusted R2 values
obtained from the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009),
where the predictors take the form

R̂V
...

t (HAR) := Proj
(
RV

...

t

∣∣RV ...

t−1, RV
...

t−5, . . . , RV
...

t−22
)
. (16)

This model provides adjusted R2 coefficients of approximately 37%-51%, thus comparable to
those of R̂V ...

t (GDFM) in (15).
It is then natural to ask wether augmenting the HAR models with our estimated common

shocks adds significant extra information improving on the prediction of realized variances.
We thus performed the factor-augmented HAR (FHAR) regressions

R̂V
...

t (FHAR) := Proj
(
RV

...

t

∣∣RV ...

t−1, RV
...

t−5, . . . , RV
...

t−22, εεε
∗
t−1, . . . , εεε

∗
t−22

)
, (17)

which considers both common volatility shocks, and the global factor-augmented HAR (GFHAR)
regressions

R̂V
...

t (GFHAR) = Proj(RV ...

t

∣∣RV ...

t , RV
...

t−5, . . . , RV
...

t−22, ε
∗,global
t−1 , . . . , ε∗,global

t−22 ), (18)

which augments HAR by the global (strongly common) volatility shock only. The adjusted
R2 coefficients for these augmented models are shown in the fourth, fifth rows of Table 4,
respectively.

Last, we also consider the Bayesian global factor-augmented HAR (BGFHAR) regressions,
in which we estimate the global volatility shock according to the hierarchical factor model
by Moench et al. (2013). In so doing, it should be remarked that such Bayesian method
cannot be considered as a fully fledged alternative to our approach, since volatility proxies

where Pt+tj,t are stock price indexes at times tj,t of day t, where tj,t are times of trades such that subsequent
prices are taken at 5-minute intervals. All realized variances used in this paper are available at http://
realized.oxford-man.ox.ac.uk/data. Data mnemonics are SPX2.rv, N2252.rv, FTSE2.rv, STOXX50E.rv,
GDAXI2.rv, respectively (Heber et al., 2009).
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are still required from our first step estimation, but it provides just as an alternative method
to estimate the global shock once a panel of volatility proxies is given. Indeed, in our exercise
we estimate a hierarchical factor model on s — the panel of proxies (4) obtained as defined in
Section 2. The adjusted R2 coefficients for these last augmented model are shown in the sixth
row of Table 4. Note also that, as explained in Section 3, by construction the hierarchical
factor model cannot identify the US-Europe volatility shock and so no comparison in that
respect is possible.

Finally, a numerical assessment of relative predictive accuracies can be obtained by means
of MSE ratios such as

Rel-MSE...

FHAR/HAR :=
T∑
t=1

(
R̂V

...

t (FHAR)−RV ...

t

)2
/
T∑
t=1

(
R̂V

...

t (HAR)−RV ...

t

)2
, (19)

Rel-MSE...

GFHAR/HAR, and Rel-MSE...

BGFHAR/HAR, similarly defined. We also report p-values for
the test of equal predictive ability by Giacomini and White (2006). Results are in the mid
and bottom panels of Table 4.

Overall, we find that the volatility shocks do add predictive power to that of the plain
HAR models for all aggregate realized variance measures considered, and that both common
shocks do help.20 In particular, while the GFHAR is relatively more accurate than the HAR
by approximately 2%, the FHAR improves over the HAR by 4%-6-%. Note also that the
BGFHAR is as accurate as our GFHAR. Let us stress again that the hierarchical approach
cannot retrieve local shocks comparable to ours, hence no analogous of FHAR can be defined
with the hierarchical approach.

Finally, if we turn to a recursive out-of-sample forecasting exercise, the predictive power
of our estimated shocks is partly reduced. Still, when predicting the turmoil sub-sample
(top panel of Figure 5), we get significant results for the FTSE100 realized variance with
the FHAR, GFHAR, and BGFHAR, and for the DAX realized variance with the GFHAR.
When predicting the most recent stable sub-sample (bottom panel of Figure 5) the FHAR
helps in predicting both the EUROSTOXX and DAX realized variances, while the GFHAR
helps in predicting the DAX realized variance. In this case the global shock retrieved with
the BGFHAR is never significant.

6 Conclusions

We propose a novel approach for the analysis of interactions between international stock
markets based on the nonparametric estimation of a two-step general dynamic factor model
for a large panel of returns and volatilities. Our analysis is conducted on a large panel of stock
returns composed by the constituents of three of the major indices for the US, European and
Japanese stock markets.

To the best of our knowledge, this is the first paper able to shed light on many impor-
tant aspects of financial markets dynamics at the same time, such as the nature and origin
of volatility shocks, interdependence, contagion, and the prediction of aggregated realized
volatilities.

20The contributions of the volatility shocks are jointly 5%-significant in all regressions. The results are quite
insensitive to variations in the maximal lag, provided that it is large enough. Further results are available
upon request.
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Table 4: Results for in-sample prediction of realized variances

SP500 EUROSTOXX50 FTSE100 DAX NKK225

In-sample fit:
adj-R2 (GDFM) (14) 0.328 0.284 0.285 0.337 0.262

In-sample predictive regressions:
adj-R2 (GDFM) (15) 0.277 0.255 0.263 0.309 0.248
adj-R2 (HAR) (16) 0.476 0.376 0.375 0.513 0.515
adj-R2 (FHAR) (17) 0.493 0.406 0.405 0.529 0.539
adj-R2 (GFHAR) (18) 0.487 0.389 0.389 0.520 0.533
adj-R2 (BGFHAR) 0.486 0.390 0.389 0.521 0.521

Relative MSEs:
Rel-MSE

...

FHAR/HAR 0.957 0.941 0.941 0.954 0.939
Rel-MSE

...

GFHAR/HAR 0.975 0.975 0.973 0.980 0.957
Rel-MSE

...

BGFHAR/HAR 0.975 0.972 0.973 0.978 0.981

Giacomini-White p-values:
FHAR/HAR 0.03 0.02 0.00 0.00 0.00
GFHAR/HAR 0.05 0.08 0.02 0.02 0.00
BGFHAR/HAR 0.05 0.10 0.01 0.01 0.01
FHAR/GFHAR 0.03 0.02 0.01 0.00 0.00
FHAR/BGFHAR 0.08 0.01 0.01 0.00 0.00
GFHAR/BGFHAR 0.92 0.75 0.94 0.71 0.02

In particular, we find no evidence of global shocks in returns, thus reflecting the well
known home bias phenomenon in equity markets, while the volatility panel shows a greater
level of interconnectedness across markets. When focussing on the financial turmoils of the
past decade (from 2007 to 2012) we also observe a large increase in return and volatility
commonalities but no evidence in favour of financial contagion. In this sense, the turmoil
period we analyzed has witnessed an efficient spread of information through the stock markets
rather than irrational fears.

Moreover, we find that the impulse response functions of volatilities to the shocks, iden-
tified via natural timing restrictions, are highly homogeneous within each market but show
significant differences across markets, thus showing different levels of interconnectedness. Fi-
nally, albeit our volatility shocks are estimated from a panel of daily closing prices, so ignoring
any information regarding intra-day volatility, we find that these shocks add useful informa-
tion to heterogeneous autoregressive (HAR) forecasts of the realized variances in most of the
markets and samples considered.
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