The Gridkit Resource Management Frameworks

Geoff Coulson', Wei Cai', Paul Grace', Gordon Blair', Laurent Mathy", Wai Kit Yeung®
1Computing Department, Lancaster University, UK

[geoff, w.cai, gracep, gordon, laurent, yeungwk]@comp.lancs.ac.uk

A Grid execution environment consists of a number of
interconnected computational nodes with contrasting
capabilities. These must simultaneously support
multiple distributed applications that must be mapped
onto subsets of these nodes in such a way that their
execution constraints are met. Furthermore, the
resources required by each application vary over the
applications' lifetime, as does the resource availability
on each node. It is the function of Grid resource
management middleware to appropriately map
applications to nodes according to their resource
requirements, and to dynamicaly manage the
resourcing of applications as they execute.

Although successful, existing systems (e.g. Globus)
have a number of limitations. In particular, they are
coarse-grained in the sense that resource specifications
tend to deal with whole machines (or at best processes)
rather than with fine-grained resources such as threads,
buffer pools, connections etc. In addition, they lack
support for run-time adaptation - the resources allocated
at application launch-time cannot be adjusted during
runtime. Finally, existing systems don't offer any
consistent notion of an abstract resource: they dea
exclusively with concrete entities such as CPUSs,
memory bytes etc. This makes it difficult to map from
application-centric notions of resource (e.g. “I need 3
matrix containers of type X, 1 buffer pool of type Y, a
scheduler for EDF threads, and a Java virtual machine”)
to the notion of ‘resource’ that the system understands.

Our resource management design is realised as a
(distributed) component-based resource management
framework, which forms pat of a larger Grid
middieware known as GridKit. At the most abstract
level, there are two parts to the framework: i) global
resource management (i.e. coordinating resource
management over multiple computational nodes) and ii)
local resource management (i.e. managing resource
allocation and usage in individual computational
nodes). In addition, our framework operates over two
distinct phases: i) an initial resource allocation phase,
and ii) a subsequent run-time resource management
phase that comprehends dynamic reconfiguration of
resources in response to evolving application
requirements, and in response to fluctuating resource
availability in the infrastructure.

An application description which can be submitted
to the resource management framework for execution
consists of the following: i) a set of top-level
components that comprise the application, ii) a set of
associations, or bindings, between interfaces and
receptacles of these components that capture the
abstract topology of the application, iii) a set of so-
called tasks which, among other things, express the
required QoS of different parts of the application, and
iv) amapping of tasks to components.

The set of top-level components and bindings
together comprise the compositional structure of the
application. The bindings are annotated with QoS
requirements; these annotations are used later when the
various components of the application are mapped to
physical computational nodes. The QoS ontology used
is a pluggable element of the framework. In more detail,
a QoS mapper function accepts plug-in QoS mappers
which are defined on a per-application-domain basis.
QoS mappers define a ‘QoS ontology’ that is
meaningful for their associated domain, together with
mappings from the ontology to a corresponding
‘resource ontology’. For example, a domain of media
transcoding applications might define QoS parameters
such as “throughput in frames per second”, “latency”,
and “acceptable frame degradation”, together with
mappings from these parameters to a resource ontology
that comprehends concepts such as “buffer pool size”,
“number of high-priority threads’ etc.

The ultimate goa of the framework is to
appropriately place the application’s constituent
components on some specific set of physica
computational nodes. It isthe framework’sjob i) to map
components to nodes, ii) to ensure that each
component’s tasks are adequately resourced by its
supporting nodes, and iii) to maintain the resourcing of
the application at runtime as resource needs and
resource provision fluctuate.

This architecture promotes the integration of both
fine-grained and coarse-grained resources to fully
support end-to-end QoS guarantees. In our future work,
we plan to further evaluate the functiona and
performance properties of the resource frameworks
within a number of visualisation applications,
paticularly in the areas of forest fires and
environmental informatics.



