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Abstract—Human action recognition is crucial to many prac-
tical applications, ranging from human-computer interaction to
video surveillance. Most approaches either recognize the human
action from a fixed view or require the knowledge of view
angle, which is usually not available in practical applications. In
this paper, we propose a novel end-to-end framework to jointly
learn a view-invariance transfer dictionary and a view-invariant
classifier. The result of the process is a dictionary that can project
real-world 2D video into a view-invariant sparse representation,
as well as a classifier to recognize actions with an arbitrary view.
The main feature of our algorithm is the use of synthetic data
to extract view-invariance between 3D and 2D videos during the
pre-training phase. This guarantees the availability of training
data, and removes the hassle of obtaining real-world videos in
specific viewing angles. Additionally, for better describing the
actions in 3D videos, we introduce a new feature set called the
3D dense trajectories to effectively encode extracted trajectory
information on 3D videos. Experimental results on the IXMAS,
N-UCLA, i3DPost and UWA3DII datasets show improvements
over existing algorithms.

Index Terms—Action Recognition, 3D Dense Trajectories,
View-invariance, Transfer dictionary learning.

I. INTRODUCTION

2D video based human action recognition has attracted a lot
of attention in security surveillance and human-computer

interaction. Various spatio-temporal appearances generated
from the movements can be considered as the feature descrip-
tors for action recognition. These include spatio-temporal pat-
tern template [1], spatio-temporal interest points [2]–[5], shape
matching [6], [7] and motion trajectories based descriptors
[8]–[11]. Among them, dense trajectories based methods have
achieved state-of-the-art results by extracting densely sampled
trajectories-aligned descriptors in the optical flow fields. Deep
learning networks have also achieved significant success in
the 2D action recognition area [12]–[15]. These methods can
automatically learn spatial-temporal feature representations
and identify different action categories. However, [12]–[15]
are only effective for single view action recognition and the
recognition performance degrades significantly when the view-
point is changed. The reason behind is that the appearances of
a particular action from different viewpoints vary dramatically,
which results in dissimilar trajectories.
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Fig. 1: Leveraging view-invariance from 3D model is a popular
idea to tackle arbitrary-view and cross-view action recognition.
(a) Existing works [16], [17] project a simplified 3D cylindri-
cal model into as many viewpoints as possible to produce 2D
training videos and extract 2D dense trajectories from these
projections. However, some human appearance information
could be lost due to the unrealistic 3D reconstruction and the
simplified cylindrical model. The discrete projection angles
also inevitably result in the loss of 3D geometric information.
(b) The proposed 3D dense trajectories are extracted direct-
ly from high-quality 3D human surface model without any
projection.

As a result, cross-view action recognition is proposed for
bridging the appearance differences between different view-
points. The main idea is to transfer the knowledge from the
source view to the target view, allowing the system to recog-
nize actions from a view that is not included in the training set.
Li et al. presented a dynamics-based feature called hankelet
that can capture the invariant property in viewpoint change
using short tracklets for cross-view recognition [1]. Wang et al.
used an AND-OR graph representation to compactly express
the appearance and motion variance during viewpoint changes
[18]. Zhang et al. constructed a continuous path between the
target view and the source view to facilitate cross-view action
recognition [6], [7]. Farhadi et al. generated the same split-
based features for correspondence video frames from both
training and testing views [19]. Such systems are computa-
tionally expensive as they not only require feature-to-feature
correspondence, but also require mapping between the split-
based and the original feature. Liu et al. used a bipartite graph



TRANSACTIONS ON IMAGE PROCESSING 2

to model the relationship between the two codebooks from
the source view and target view [20]. Wang et al. proposed
a Statistical Translation Framework (STF) to estimate the
transfer probabilities of the visual words from the source to
target views [21]. Huang et al. built a correlation subspace
to produce joint representation from different views by using
canonical correlation analysis [22]. In spite of discovering
the correspondence between codebooks from two or more
different views, the above approaches cannot guarantee that
videos captured from different views share similar features.
Also, all these methods require viewpoint information for both
source view and target view, which is usually not available in
practical applications.

As a solution, arbitrary-view action recognition is proposed,
in which viewpoint information is not required during testing
and action from unseen views can be recognized. The main
idea is to remove view-dependent information from the fea-
ture representation. Previous attempts to realize arbitrary-view
action recognition have met with varying levels of success.
Lv et al. use a graphical model to calibrate 2D key poses of
actors to represent 3D surface models for arbitrary view action
recognition. However, the motion information for recognizing
actions may not be well captured [7]. Weinland et al. propose
to recognize human actions by estimating 3D exemplars from
a single 2D view angle using the hidden Markov model [23].
However, reconstructing these 3D exemplars from a single
view is unreliable. Also, detailed action information may
be lost as only discrete samples of silhouette information
are used. Yan et al. present a 4D (i.e., 3D spatial and 1D
temporal dimensions) action feature using the time-ordered 3D
reconstruction of the actors from multi-view video data [24].
The recognition accuracy depends heavily on the performance
of the 3D reconstruction, and the framework requires training
data to be captured from carefully designed viewpoints. Gupta
et al. propose to project the 3D motion capture sequence in the
2D space and explore the best match of each training video
using non-linear circular temporary encoding [16]. However,
since discrete 2D projection, instead of full 3D information,
is used for training, the accuracy depends on the number of
projected views. Rahmani et al. propose R-NKTM to transfer
knowledge of human actions from any unknown view to a
shared high-level virtual view by finding a non-linear virtual
path that connects the views [25]. They generate the training
data by projecting the 3D exemplar to 108 virtual views. The
use of so many projected views results in enhanced system
performance, but result in a computationally expensive training
process. Ideally, we would like to have a framework that
relies on easy-to-obtain training data and performs robustly
in runtime.

Most of the existing works leverage view-invariance provid-
ed by 3D models to realize cross-view or arbitrary-view action
recognition. Traditionally, simplified cylindrical models are
used [16], [17], which does not generate realistic movement
appearance. High-quality reconstruction models are proposed
by calculating them from multi-view 2D videos [24]. In order
to increase the system robustness to viewpoint changes, train-
ing data is forced to cover as much 2D data projected along
as many viewpoints as possible. All these approaches suffer

from the following problems: (1) The recognition accuracy
is highly related to the quality of 3D models. Some human
appearance information could be lost due to the unrealistic
3D reconstruction and the simplified cylindrical model; (2)
Despite the effort to project the 3D model into as many
viewpoints as possible, these discrete projection angles will
inevitably result in the loss of 3D geometric information. A
large amount of 2D projections also requires larger system
capacity and training cost.

To solve the problems, we proposed to synthesize training
data using high-quality human models with captured 3D
motion data. We employ primary deformation [26] to drive
the movement of the models, and motion retargeting [27]
to adjust the movement based on the body sizes of the
models. We further propose a new 3D feature set called the
3D dense trajectories including 3D trajectories, 3DHOF and
3DMBH. This allows us to extract the feature directly from 3D
videos and avoid geometric information loss due to discrete
projection. Finally, we propose a new view-invariant trans-
fer dictionary learning framework, which extracts the view-
invariance between 3D and 2D video, to perform arbitrary
view action recognition. We pre-train the system with a large
number of automatically synthesized 3D and 2D videos. This
allows us to train a view-invariant action classifier using
only a small number of real-world 2D videos, in which
the view information is not annotated. Experimental results
show that our system achieves better accuracy when compared
with previous work in arbitrary-view and cross-view action
recognition.

This paper has three main contributions:

• We propose a new transfer dictionary learning framework
that utilizes synthetic 2D and 3D training videos generat-
ed from realistic human models to learn a dictionary that
can project a real world 2D video into a view-invariant
sparse representation, which allows us to train an action
classifier that works in an arbitrary view.

• We release our synthetic 2D and 3D dataset for public
usage. This is the first structured action dataset built with
realistic human models for high-quality action classifica-
tion.

• We propose a new 3D feature set called the 3D dense
trajectories consisting of 3D trajectories, 3DHOF and
3DMBH for a better description of motion in 3D. This
can be considered as a 3D counterpart of the popular 2D
feature dense trajectories [21].

This paper is based on our previous work presented in [28],
but it substantially extends the work in four aspects, which
are: (1) We replace the cylinder-based 3D model with several
more realistic 3D human models. The motion is retargeted
according to the bone dimensions [27] and skinned to the
realistic models [26]. (2) We propose the 3D dense trajectories
including 3D trajectories, 3DHOF and 3DMBH to better
describe the motion in 3D videos. (3) By jointly training
the transfer dictionary pair and the classifier, we build an
end-to-end framework with an updated objective function to
improve the efficiency and performance of the system. (4)
We perform more detailed system evaluation with two more
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datasets: i3DPost and UWA3DII.
The rest of this paper is organized as follows. In Section

II, we introduce some related applications and approaches for
the view-invariant action recognition. In Section III, we give
an overview of our view-invariant human action recognition
frame. In Section IV, we present the synthesis and feature
extraction process on our 2D and 3D video data. Section V
provides the details of our view-invariant dictionary learning
algorithm. Section VI presents the experimental results, and
Section VII concludes the paper.

II. RELATED WORK

The general process for view-invariant action recognition
can be divided into three major parts. (1) Synthesized 3D
exemplars are used for producing the 2D videos covering as
many viewpoints as possible. (2) Then, the feature extraction
methods, especially some interest points and trajectory-based
feature extraction methods, are developed for describing the
action on the 2D videos. (3) At last, transfer learning algo-
rithms are used to transfer the action information across differ-
ent views in order to realize view-invariant action recognition.
Therefore, in this part, some previous works related to these
three major processes will be introduced respectively.

A. 3D Exemplar-based Methods

One popular idea is to utilize 3D exemplars for view-
invariant feature extraction and description. Some researchers
are only using the static 3D exemplars. For example, Ankerst
et al. propose the histogram of shape [29] which is very similar
to the 3D shape context proposed by Korgen et al. [30].
Subsequently, Huang et al. combine the histogram of shape
with color information [31]. All these methods are mainly
based on static descriptors such as poses and shape while
the state-of-the-art descriptors integrate static descriptors with
motion information.

Instead of relying on the static feature only, some re-
searchers utilize the changing of static descriptors over time in
order to capture the temporal information by simply accumu-
lating static descriptors, applying sliding windows, or tracking
human pose information [23], [32]–[34]. Cohen et al. [35]
present a 3D human shape model for view-invariant human i-
dentification. Later, this 3D human shape model was developed
by Pierobon et al. [34] for human action recognition. Weinland
et al. propose the Motion History Volume (MVH) as a 3D
extension of Motion Histogram Images (MHIs) [33]. MHV
is calculated by accumulating human postures over time in
cylindrical coordinates. A different strategy is proposed by Yan
et al. [24], where they develop a 4D action feature model (4D-
AFM) for arbitrary view action recognition based on spatio-
temporal volumes (STVs). However, the performance of the
above 3D exemplars-based systems is strictly limited to the
result of 3D reconstruction. Normally, the reconstructed 3D
exemplars are not very realistic.

Some other researchers construct the 3D exemplar with
the aid of depth sensors. Zhang et al. present a low-cost
descriptor called 3D histogram of textures (3DHoTs) to ex-
tract discriminative features from a sequence of depth maps

[36]. They combine depth maps and texture description by
projecting depth frames onto three orthogonal Cartesian planes
to describe the salient information of a specific action. Liu
et al. presents a multi-scale energy-based Global Ternary
Image (GTI) representation, which efficiently encodes both the
spatial and temporal information of 3D actions [37]. Skeleton
information can be easily collected from the depth map. Liu et
al. propose a sequence-based transform method, which maps
skeleton joints into a view-invariant high dimensional space
[38]. Then, they use color images to visualize this space
and adopt CNN to extract deep features from these enhanced
color images. Wang et al. realize non-rigid reconstruction
and motion tracking without any template using a single
RGB-D camera [39]. Jia et al. present a tensor subspace,
whose dimension is learned automatically by low-rank learn-
ing for RGB-D action recognition [40]. Kong et al. propose
a discriminative relational feature learning method for fusing
heterogeneous RGB with depth modalities and classifying the
actions in RGB-D sequences [41]. Even though the depth
information has a superior descriptive ability on 3D exemplars,
most videos in the real world are captured without depth
information. Therefore, we focus on techniques for extracting
3D information from RGB only videos, which have more
prospective applied areas.

B. Interest Points and Trajectory-based Methods

To better describe the spatio-temporal interest points, Dollar
et al. build the descriptors upon brightness, optical flow and
gradient information [2]. The SIFT descriptor is extended to
the spatio-temporal interest points by Scovanner et al. [42].
Willems et al. extend the SURF descriptor to the video domain
by computing weighted sums of response of Haar wavelets
[43].

Due to the fact that spatio-temporal interest points are at
fixed location in the video, only interest points based descriptor
cannot capture motion information in the video. In contrast,
trajectory tracks the given interest point over time so that it can
capture the motion information. Messing et al. extract trajec-
tories by tracking Harris3D interest points with a KLT tracker
[44]. They use a sequence of log-polar quantized velocities to
represent trajectories. Matikainen et al. extract trajectories with
a standard KLT tracker, then they cluster these trajectories for
the action classfication [45]. Sun et al. match SIFT descriptor
between two frames to compute trajectories [46]. Later, they
combine both SIFT matching and KLT tracker to extract long-
duration trajectories [47]. Wang et al. compute trajectories
by tracking the interest points in the optical flow field, then
they compute Histogram of Gradient (HOG), Histogram of
Optical Flow (HOF) and Motion Boundary Histogram (MBH)
to model the action in the video [9]. However, the optical flow
field is just a 2D approximation of the 3D motion field and
cannot accurately describe the 3D motion information.

C. Transfer Learning and Dictionary Learning

Transfer learning has been widely used in cross-domain
action recognition problems to store knowledge learnt from
one dataset and apply it to a different but related one. Liu et
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Fig. 2: The overview of our view-invariant transfer dictionary learning system. (Left) In the pre-training phase, we learn the
dictionaries D3D, D2D and a linear classifier W simultaneously from the synthetic 3D videos and the synthetic 2D videos.
(Middle) In the training phase, we replace the synthetic 2D videos with 2D real training videos for adapting the dictionaries
D3D

′, D2D
′ and the classifier W ′. The 2D dictionary and the classifier are denormalized into D̂2D

′ and Ŵ′ respectively. (Right)
In the testing phase, given any real 2D video, we apply D̂2D

′ to encode the features into a view-invariant sparse representation
X , and use Ŵ′ for classification.

al. present a simple-to-complex action transfer learning model
(SCA-TLM) for complex human action recognition [48]. It
improves the performance of complex action recognition by
leveraging the abundant labeled simple actions. In particular, it
optimizes the weight parameters, enabling the complex actions
to be learned and to be reconstructed by simple actions. Xu
et al. propose a novel dual many-to-one encoder architecture
to extract generalized features by mapping raw features from
source and target datasets to the same feature space [49].
Rahmani et al. propose R-NKTM to transfer knowledge of
human actions from any unknown view to a shared high-level
virtual view by finding a non-linear virtual path that connects
the views [25].

Recently, dictionary learning for sparse representation has
been successfully applied in many computer vision applica-
tions, such as image de-noising [50] and face recognition
[51]. With an over-complete dictionary, input signal can be
approximately represented by a sparse linear combination of
items in the dictionary. Previously, many methods [52] have
been presented to learn such a dictionary based on different
criteria. Among them, the K-Singular Value Decomposition
(K-SVD) [53] is a typical dictionary learning method that
uses the K-means clustering algorithm for optimizing dictio-
nary items to learn an over-complete dictionary. Even though
the K-SVD method has the re-constructive ability, due to
the unsupervised learning process, the discriminative ability
has not been considered. Later, [54] proposed a dictionary
transformation method to transform the dictionary from one
domain to another. It can handle the problem that the testing
instances are different from the training instances. In addition,
they use correspondences between the source view and the
target view to construct pairwise dictionaries for the cross-
view action recognition problem. Zheng et al. represents the
videos in each view using a view-specific dictionary and the
common dictionary. More importantly, it encourages the set of
videos taken from different views of the same action to have
the similar sparse representations [55].

Unlike the above approaches, our approach simultaneously
learns pairwise dictionaries and a classifier while consider-

ing re-constructive ability, discriminative ability and domain
adaptability during the dictionary learning process. The data
in 3D source domain and 2D target domain are with com-
pletely different formats. View-invariance from 3D data can
be smoothly transferred to 2D data with jointly optimizing
the pairwise dictionaries.

III. SYSTEM OVERVIEW

As illustrated in Fig. 2 Left, in the pre-training phase, we
synthesize 3D video sequences using motion capture data. We
propose a new 3D dense trajectories feature extracted from a
source 3D synthetic video, and Y3D = [yyy333DDD

1, ...,yyy333DDD
K ] ∈ RS×K

denotes the K S-dimensional features. The synthetic 3D video
is projected into different viewpoints to create multiple syn-
thetic 2D videos. Y2D = [yyy222DDD

1, ...,yyy222DDD
K ]∈ RT×K denotes the K

T -dimensional features extracted from a target synthetic 2D
video. We build 3D videos and 2D videos pairwisely in order
to train the correspondence between them. We use K to denote
both the numbers of 2D videos and 3D videos used in the pre-
training phase.

We then train the 3D and 2D dictionaries simultaneously
from the synthetic 3D and 2D videos respectively, which
projects the respective video data into a common view-
invariant sparse feature space. They are represented as D3D =
[ddd333DDD

1, ...,ddd333DDD
N ] ∈ RS×N and D2D = [ddd222DDD

1, ...,ddd222DDD
N ] ∈ RT×N ,

where N is the dimension of the sparse feature space. Records
belonging to the same action class in both 3D and 2D data
are constrained to share the same sparse representation. We
construct the action classifier W in an end-to-end manner
for better accuracy, by jointly minimizing the classification
error rate and the dictionary quantization error. This improves
training efficiency and system accuracy.

Then, as illustrated in Fig. 2 Middle, in the training phase,
we replace the synthetic 2D videos with the 2D real training
videos and perform system fine-tuning. This allows us to adapt
the dictionaries (D3D

′, D2D
′) and the classifier (W ′) originally

trained from synthetic data into real-world data. Because of
the pre-training phase, only a small amount of real training
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Fig. 3: (a) Some example frames from the synthetic 3D
video. Using motion retargeting techniques, we can retarget
the captured motion to 3D models of different body sizes to
increase the database diversity. (b) The interest points obtained
according to the vertices of the 3D models.

videos are needed. We finally denormalize the 2D dictionary
and the classifier into D̂2D

′ and Ŵ′ respectively.
In the testing phase illustrated in Fig. 2 Right, given any

real 2D video, we apply D̂2D
′ to encode the features into a

view-invariant sparse representation X = [xxx1, ...,xxxK ] ∈ RN×K .
We then apply Ŵ′ to identify the class label of the video.
Due to the use of the view transfer dictionary, our system can
identify actions from an arbitrary 2D view.

IV. VIDEO SYNTHESIS AND FEATURE EXTRACTION

In this section, we explain how we synthesize 3D videos
and project them to generate synthetic 2D videos. We then
explain how we extract a corresponding set of 3D and 2D
features.

A. Synthesizing 3D and 2D Videos

Here, we explain the process of synthesizing 3D and 2D
video data.

To synthesize the 3D motion models, we utilize the motion
capture data from the Carnegie-Mellon Graphics Lab [56] and
the Truebones dataset [57]. The motions are represented with
3D joint angles in a skeletal body hierarchy at 25 frames per
second (FPS). Instead of using simplified cylindrical model to
represent surface information as in past research [16], [28],
we use different high-resolution 3D human models instead.
This requires a process known as primary deformation [26]
to deform the human models based on the skeletal movement
over time. The advantage of using 3D motion data is that
we can apply motion retargeting techniques to synthesize the
motion performed by human models of different body sizes,
as shown in Fig. 3a. Such an automatic process enhances the
diversity of the database by adjusting the movement according
to the bone length.

In order to produce synthetic 2D video, we project the
synthesized 3D videos uniformly in a set of pre-defined view-
points. Fig. 4 shows example frames of 2D videos projected

Fig. 4: (a) Example frames of synthetic 2D videos obtained
by projecting a 3D video into different viewpoints. (b) Virtual
cameras are placed on the hemisphere looking towards the
center of the sphere to generate different viewpoints.

Fig. 5: (a) Synthesized 2D video (b) Extracted dense tra-
jectories (red points are interest points, green curves are
trajectories)

from various viewpoints. Notice that in our system, we do
not require any information about the viewpoints to perform
classification.

B. 2D Dense Trajectories

For both 2D synthetic videos and 2D real videos, we em-
ploy dense trajectories [10], a powerful action representation,
for feature extraction. It considers both holistic and local
information of 2D motion by combining dense sampling and
trajectory tracking. Specifically, it consists of a set of low-
level descriptors, including trajectory descriptor, Histogram of
Oriented Gradients (HOG), Histogram of Optical Flow (HOF)
and Motion Boundary Histogram (MBH). Among them, HOG
can extract the static appearance of the videos while HOF and
MBH can extract the motion information. Fig. 5 shows an
example of dense trajectories extracted from a synthetic 2D
video.

C. Proposed 3D Dense Trajectories

Our transfer learning involves transferring 3D and 2D
features into a common sparse feature space, and hence it
is preferable that both of them have similar logical meanings.
Therefore, we propose a 3D version of dense trajectories that
corresponds to the 2D one. The proposed feature consists
of three components: 3D trajectories, 3DHOF and 3DMBH.
Notice that HOG is not included here, as the surface texture
of a 3D model remains unchanged over time.

An advantage of synthetic 3D videos is that both the
vertices geometry on the human model surface and the vertices
correspondence across frames are available. We first obtain a
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Fig. 6: The 14 3D velocity bins visualized with a 3D cube. 6
directions point towards the faces of the cube, and 8 directions
point towards the corners of the cube.

Fig. 7: The 3DMBH components in X, Y and Z directions
are quantized into 8 bins each. The 3DMBH is defined as the
concatenation of 3DMBHx, 3DMBHy and 3DMBHz along
each vertex trajectory.

set of interest points over time according to the surface vertices
of the 3D models, as shown in Fig. 3b. For each point, we
extract the motion trajectory across frames (Pt ,Pt+1,Pt+2, ...),
where Pt is the 3D Cartesian coordinate of the vertex at frame
t, as shown in Fig. 1b.

The 3D trajectory is defined as:

Tr
′
=

(∆Pt , ...,∆Pt+L−1)

∑
t+L−1
j=t ‖∆Pj‖

(1)

where L is a user-defined value that represents the number of
frames to be considered in a trajectory, and ∆Pt = (Pt+1−Pt)
indicates the displacement across two frames. The denomi-
nator is the total length of the trajectory, which is used for
normalization.

2D HOF is the pattern of apparent motion of objects and
surface in a visual scene caused by the relative motion between
an observer and a scene. A logically similar representation
in 3D, which we named the 3D Histogram of Optical Flow
(3DHOF), is the velocity field of the surface vertices. We first
define the velocity of a vertex as:

Vt =
∆Pt

1/FPS
(2)

where FPS is the frame rate of the 3D video, and is set to 25 in
our experiments. We then quantize the 3D velocity orientations
into 14 bins H(h1,h2, ...,h14) as shown in Fig. 6. 3DHOF is
defined as the binned histogram along each vertex trajectory:

hi =
∑t∈Ti ‖Vt‖

∑
t+L−1
j=t ‖Vt‖

(3)

where Ti is a set that contains the frame’s number in which
the velocity direction of the interest point belongs to i on a L-
frame trajectory. ‖Vt‖ is the magnitude of the velocity, which
is used for weighting.

The 2D MBH (motion boundary histogram) is the derivative
of the optical flow field computed separately for the horizontal
and vertical components to encode the relative motion between
pixels. This is to compensate the HOF descriptor, which can
only compute absolute motion information. Inspired by this,
we proposed the 3DMBH that encodes the relative motion
between neighbour interest points on our 3D model. Similar

Fig. 8: (a) The Y component of 3D velocity field for the
example frame. (b) 3DMBHy is obtained by computing the
gradient of Y component of 3D velocity field.

Fig. 9: The algorithm for transferring view-invariance from
3D video to 2D video by transfer dictionary learning.

to the 2D MBH implementation, we compute the derivatives
separately along the X, Y, Z axes in the 3D velocity field.
We quantize each 3DMBH component into 8 bins and the
3DMBH is defined as the concatenation of 3DMBHx, 3DMB-
Hy and 3DMBHz along each vertex trajectory. The process is
visualized as in Fig. 7. For example, the Y component of 3D
velocity field is shown in Fig. 8a, and we compute its gradient
to describe the relative motion between neighbouring interest
points of that frame as shown in Fig. 8b.

V. VIEW-INVARIANT ACTION CLASSIFICATION

In this section, we explain how we train the view-invariant
dictionaries and the classifier from synthetic 3D and 2D video
data using dictionary learning. The processes are summarized
as the algorithm shown in Fig. 9.
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Fig. 10: Optimizing the 3D (source) and 2D (target) dictionar-
ies to constraint that the same action in synthetic 3D and 2D
videos has the same sparse representations.

A. The Pre-training Phase

Here, we introduce the basic theory of dictionary learning
[58], and explain how we learn the view-invariant transfer
dictionary for the 3D and 2D synthetic videos.

Dictionary learning generates a sparse representation for a
high dimensional signal using linear projection with a projec-
tion dictionary. Let yyy∈RP denote a P-dimensional input signal
that can be reconstructed by the Q-dimensional projection
coefficient xxx ∈ RQ via a linear projection dictionary D =
[ddd1, ...,dddQ] ∈ RP×Q. To obtain an over-completed dictionary,
P should be much larger than Q. Assuming the reconstruction
error to be E(xxx), the projection process is formulated as:

yyy = Dxxx+E(xxx) (4)

The objective function is defined as:

argminxxx,D‖yyy−Dxxx‖2
2 s.t.‖xxx‖0 ≤M (5)

where ‖yyy−Dxxx‖2
2 denotes the reconstruction error. s.t.‖xxx‖0 ≤

M denotes the sparsity constraint. M is the L0-norm sparsity
constraint factor that limits the number of non-zero elements
in the sparse codes.

Due to the different number of trajectories across action
videos, we use a bag-of-words descriptor to ensure that the
features extracted from the action videos share the same
dimension, following [8]–[11]. Specifically, we use K-means
to cluster the trajectory-based descriptors in each action video
into a fixed number of visual words. This allows us to repre-
sent the action videos with histograms of the same dimension.

We design a transfer dictionary learning system to transfer
the view-invariance of the synthetic 3D videos to the synthetic
2D videos. We train two dictionaries simultaneously, with one
for 3D (i.e. source - D3D) and one for 2D (i.e. target - D2D).
The main idea is to optimize the dictionaries such that the
same action in both 3D and 2D videos has the same sparse
representations, as visualized in Fig. 10. Upon successful
training, D2D is able to project the feature vector of a 2D
video into a sparse representation that is similar to that of
a 3D video. In other words, such a sparse representation is
view-invariant.

We divide the dictionary into a number of disjoint subsets,
and each of these is used exclusively for one action category.
3D and 2D videos with the same action category are therefore
represented by the same subset of the dictionary. Those with
different action categories are represented with disjoint subsets
of the dictionary. This design enables the 3D and 2D videos
with the same action category to share the same sparse
representation pattern. Conversely, those with different action
categories tend to have different representations.

Specifically, the dictionary optimization function is designed
as:

argminX ,D3D,D2D,A

α‖Y3D−D3DX‖2
2 +‖Y2D−D2DX‖2

2 +β‖Q−AX‖2
2

s.t∀i,‖xxxi‖0 ≤M

(6)

where α and β are trade-off parameters, ‖Y3D−D3DX‖2
2 and

‖Y2D−D2DX‖2
2 are two terms to minimize the error of the

3D and 2D dictionaries respectively, and ‖Q−AX‖2
2 is a label

consistent regularization term to minimize the difference in
sparse representation for the same class of action as intro-
duced in [59], [60]. A is a linear transformation matrix that
maps the original sparse codes X to be consistent with the
discriminative sparse codes Q = [qqq1, ...,qqqK ] ∈ RN×K of input
signal (yyy333DDD

j,yyy222DDD
j), in which the index j indicates the index

of 2D and 3D action video pairs. Specifically, each vector
qqq jjj = [qqq jjj

1, ...,qqq jjj
N ] = [0...1,1...0]∈RN , and the non-zero occurs

at those indices where the input signal (yyy333DDD
j,yyy222DDD

j) and the
dictionary items (ddd333DDD

n,ddd222DDD
n) share the same label. In our dic-

tionary design, dictionary item ddd333DDD
n and ddd333DDD

n always have the
same label. For example, assuming the Y2D = [yyy222DDD

1, ...,yyy222DDD
6]

and D2D = [ddd222DDD
1, ...,ddd222DDD

6], where yyy222DDD
1,yyy222DDD

2 and ddd222DDD
1,ddd222DDD

2

are from class 1, yyy222DDD
3,yyy222DDD

4 and ddd222DDD
3,ddd222DDD

4 are from class 2,
yyy222DDD

5,yyy222DDD
6 and ddd222DDD

5,ddd222DDD
6 are from class 3, then Q can be

defined as:

Q =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

 (7)

Inspired by [60], we propose to include the action classi-
fication error of a linear prediction classifier into the object
function to build an end-to-end system. This enhances the
system training efficiency and results in better classification
accuracy. The new objective function is therefore updated as

argminX ,D3D,D2D,A,W

α‖Y3D−D3DX‖2
2 +‖Y2D−D2DX‖2

2 +β‖Q−AX‖2
2

+ γ‖H−WX‖2
2 s.t.∀i,‖xxxi‖0 ≤M

(8)

where ‖H−WX‖2
2 is the proposed action classification error

term, W ∈ RC×N denotes the classifier parameters and H =
[hhh1, ...,hhhK ] ∈ RC×K are the class label of input signals Y2D.
hhh j = [0...1...0]T ∈ RC is a label vector corresponding to an
input signal yyy222DDD

j, where the nonzero position indicates the
class of yyy222DDD

j.
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B. Optimization

Here, we explain how we obtain the solution for Eq. 8.
Since the three terms on the right hand side of Eq. 8 have the
same format, we first rewrite Eq. 8 as follows:

argminX ,D0‖Y0−D0X‖2
2 s.t.∀i,‖xxxi‖0 ≤M (9)

where Y0 =

( √
αY3D
Y2D√

βQ√
γH

)
, D0 =

( √
αD3D
D2D√

βA√
γW

)
.

Such an objective function shares the same form as Eq.
5, which can be optimized using the K-SVD algorithm [53].
Specifically, Eq. 9 is solved through both dictionary atom
updating and sparse representing.

For the dictionary atom updating stage, each dictionary atom
is updated sequentially to better represent both 3D videos and
2D videos. When pursing the better dictionary D0, the sparse
representation X is fixed, and each dictionary atom is updated
by tracking down a rank-one approximation to the matrix of
residuals.

Following K-SVD, the kth atom of dictionary D0 and its
corresponding coefficients are denoted as dddkkk and xxxkkk respec-
tively. Let Ek = Y0−∑ j 6=k ddd jjjxxx jjj and we further denote x̃xxkkk and
Ẽ as the result obtained when all zero entries in xxxkkk and Ek
are discarded respectively. Each dictionary atom dddkkk and its
corresponding non-zero coefficients x̃xxkkk can be computed by:

argmindddkkk,x̃xxkkk
‖Ẽk−dddkkkx̃xxkkk‖2

2 (10)

The approximation in Eq. 10 is achieved through Singular
Value Decomposition (SVD) on Ẽk:

SV D(Ẽk) =U ∑V T

dddkkk =U(:,1)

x̃xxkkk = ∑(1,1)V (1, :)

(11)

where U(:,1) indicates the first column of U while V (1, :)
indicates the first row of V .

At the sparse representation stage, we compute the best
matching projection X of the multidimensional training data
for the updated dictionary D0 using Orthogonal Matching
Pursuit (OMP) algorithm.

1) Initialization: D3D, D2D, A and W are required to be
initialized before pre-training. In our system, for D3D and D2D,
we run a few iterations of K-SVD within each action class
and initialize the label of the dictionary items based on the
corresponding action labels. To initialize A and W , we use the
multivariate ridge regression model [61] with the L2-norm:

A = argminA‖Q−AX‖2
2 +ϕ1‖A‖2

2

W = argminW‖H−WX‖2
2 +ϕ2‖W‖2

2
(12)

where ϕ1 and ϕ2 are manually defined constants and are
empirically set as 0.5 in our system. The equation yields the
following solutions:

A = (XX t +ϕ1I)−1

W = (XX t +ϕ2I)−1 (13)

where X is calculated with the initialized D3D or D2D.

2) Convergence Analysis: The convergence proof of the
proposed method is similar with the K-SVD algorithm. In
the dictionary updating stage, each atom dk and its cor-
responding coefficients x̃k minimize the objective function,
while the rest of dictionary atoms are updated iteration by
iteration. Therefore, the Mean Squared Error (MSE) of the
reconstruction error should be monotonically decreasing. At
the sparse representation stage, the MSE is also reduced due
to the computation of the best matched coefficients under
the L0-norm constraint of the OMP algorithm. In addition,
since MSE is non-negative, the optimization process should
be monotonically reducing and bounded by zero. Therefore,
the convergence of the proposed transfer dictionary learning
method is guaranteed.

C. The Training Phase

Here, we explain how to adapt the pre-trained dictionaries
and classifier into real video.

We fine-tune the dictionaries and the classifier pre-trained
by the synthetic data in order to adapt them into real-world
data. Specifically, we use D3D, D2D, A, W in the pre-training
phase to initialize the training phase. We also replace the 2D
synthetic videos with 2D real training videos. Then, we follow
the same optimization strategy in Section V-B and apply the
same number of iterations as the pre-training phase. After the
optimization, we denote the trained dictionaries and classifiers
as (D3D

′, D2D
′) and W ′ respectively.

Since D3D
′, D2D

′, W ′ are jointly L2-normalized during the
optimization process, we need a step of de-normalization
before they can be used for classification. Following [60],
the denormalized 2D dictionary D̂2D

′ and the classification
parameter Ŵ′ are calculated as:

D̂2D
′ =

(
ddd222DDD_111

′

‖ddd222DDD_111
′‖2

,
ddd222DDD_222

′

‖ddd222DDD_222
′‖2

, ...,
ddd222DDD_NNN

′

‖ddd222DDD_NNN
′‖2

)
Ŵ′ =

(
www111
′

‖www111
′‖2

,
www222
′

‖www222
′‖2

, ...,
wwwNNN
′

‖wwwNNN
′‖2

) (14)

where ddd222DDD_nnn
′ denotes the nth atom of the dictionary D2D

′, wwwNNN
′

denotes the nth atom of W ′. Notice that we do not denormalize
D3D

′ as it is no longer needed in the next phase.

D. The Testing Phase

Here, we explain how we apply our trained dictionary to
perform view-invariant action classification.

Given a real 2D video query sample yyy222DDD
′, its sparse rep-

resentation xxx′ can be computed with D̂2D
′. With the linear

classification parameter Ŵ ′, the label lll can be predicted as:

lll = Ŵ ′xxx′ (15)

The label of yyy222DDD
′ is the index corresponding to the largest

element of lll.

VI. EXPERIMENTAL RESULTS

In this section, we first provide experiment setup details.
We then evaluate the performance of our method with four
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public multi-view datasets including the IXMAS, N-UCLA,
UWA3DII and i3DPost datasets.

The synthetic 3D and 2D datasets we used for transfer
dictionary learning are open to the public. They can be found
at our project website. All experiments were performed on
a desktop computer with an Intel i7-4790k CPU, a NVIDIA
Quadro K2200 graphics card and 16GB RAM.

A. Implementation Details
We used the software package Poser 2014 to retarget

3D motion capture data files in BVH format, animate 3D
human models, and project the 3D scenes into 2D videos.
We employed 5 high-quality 3D characters to synthesize
the 3D video. For each action class, we synthesized 18 3D
videos per character with 18 randomly selected motion files
within the class. For each action class, we synthesized the
2D videos per character by projecting a randomly selected
3D video into 18 uniformly sampled viewpoints. The az-
imuthal angle of the projection was uniformly sampled as
{0◦, 60◦, 120◦, 180◦, 240◦, 300◦} and the polar angle of
the projection was sampled as {0◦, −30◦, −60◦}. This setup
allowed us to generate the same number of 3D and 2D videos
(number of characters × number of views × number of action
classes)as required by K-SVD for transfer dictionary learning.

During pre-training, for the experiments on the IXMAS
dataset (11 action classes), the N-UCLA dataset (10 action
classes), the i3DPost dataset (10 action classes) and the
UWA3DII dataset (30 action classes), we synthesized 990,
900, 900, 2700 pairwise 3D and 2D videos, respectively. From
our experience, a larger synthetic dataset resulted in better
accuracy. The size used was chosen considering the trade-off
between system accuracy and training complexity.

We extracted dense trajectories from 2D synthetic videos, as
well as 2D real videos from the IXMAS, N-UCLA, UWA3DII
and i3DPost datasets. Afterwards, we constructed a codebook
for each of the four descriptors in the dense trajectories
separately. For each 2D descriptor, we applied k-means to
cluster a subset of 100,000 dense trajectory features into 375
visual words. This resulted in a 2D feature Y2D of 1,500
dimensions. For 3D synthetic videos, similar to [23], we set
the trajectory sample step to 5 frames, and the trajectory length
to 15 frames. We constructed codebooks for 3D trajectories,
3DHOF and 3DMBH descriptors respectively. For each 3D
descriptor, we applied k-means to cluster a subset of 100,000
3D dense trajectories into 500 visual words. This resulted in
a 3D feature Y3D of 1,500 dimensions.

When training the transfer dictionaries, to initialize the
dictionary pair D3D and D2D, we employed k-means 5 times on
the features Y3D and Y2D respectively. For IXMAS, N-UCLA,
UWA3DII and i3DPost datasets, we set the dictionary sizes
N to 1180, 1150, 2500 and 1150 respectively, for both D3D
and D2D. The 3D dictionary trade-off parameter α was set
to 1.5. The label consistent trade-off parameter β was set to
be 2.0. The classification error trader-off parameter γ was set
to be 4.0. Finally, the numbers of iterations for the K-SVD
algorithm in both pre-training and training phases were set
to 60, 65, 100 and 65 for IXMAS, N-UCLA, UWA3DII and
i3DPost datasets respectively.

Fig. 11: Sampled frames from the IXMAS dataset.

Fig. 12: Cross-view recognition accuracy per action class in
IXMAS.

Fig. 13: Parameter analysis on the cross-view action recogni-
tion in IXMAS dataset. (a) The optimization process of the
objective function with 50 iterations. (b) Performance with
varying the dictionary size.

Fig. 14: Analysis on hyperparameters in Equation 7.
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Methods 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean
DVV [62] 72.4 13.3 53.0 28.8 64.9 27.9 53.6 21.8 36.4 40.6 41.8 37.3 58.2 58.5 24.2 22.4 30.6 24.9 27.9 24.6 56.4
CVP [63] 78.5 19.5 60.4 33.4 67.9 29.8 55.5 27.0 41.0 44.9 47.0 41.0 64.3 62.2 24.3 26.1 34.9 28.2 29.8 27.6 38.2
nCTE [16] 94.8 69.1 83.9 39.1 90.6 79.7 79.1 30.6 72.1 86.1 77.3 62.7 82.4 79.7 70.9 37.9 48.8 40.9 70.3 49.4 67.3

Hankelets [64] 83.7 59.2 57.4 33.6 84.3 61.6 62.8 26.9 62.5 65.2 72.0 60.1 57.1 61.5 71.0 31.2 39.6 32.8 68.1 37.4 56.4
Zhang et al. [28] 91.7 70.2 84.7 44.4 92.3 81.4 84.1 45.4 66.5 87.3 75.5 58.7 84.3 80.9 66.7 45.8 32.4 48.9 74.8 53.3 68.5

Without pre-training 86.1 68.8 74.7 34.6 81.4 74.6 78.4 37.9 68.4 78.6 73.5 58.3 76.5 72.3 64.3 48.7 31.7 37.1 67.8 41.1 62.7
Ours 96.2 71.3 85.2 41.5 90.6 80.7 89.7 47.5 74.2 85.3 82.1 60.5 85.1 84.9 73.5 57.6 41.6 52.8 71.6 50.8 71.1

TABLE I: Cross-view recognition accuracy of all possible viewpoint combinations on IXMAS database. The horizontal axis
labels are formatted as “source view|target view”.

Methods C0 C1 C2 C3 C4
DVV [62] 44.7 45.6 31.2 42.0 27.3
CVP [63] 50.0 49.3 34.7 45.9 31.0
nCTE [16] 72.6 72.7 73.5 70.1 47.5

Hankelets [64] 59.7 59.9 65.0 56.3 41.2
NKTM [17] 77.8 75.2 80.3 74.7 54.6

R-NKTM [25] 78.4 78.0 80.7 75.8 57.8
Zhang et al. [28] 70.8 76.5 72.6 71.9 50.5

Ours 73.2 78.5 74.9 76.1 52.9

TABLE II: Average accuracy on the IXMAS dataset for each
camera, e.g. C0 is the average accuracy when camera 0 is
used for training or testing. Each time, only one camera view
is used for training and testing.

B. Experiments on the IXMAS Dataset

The IXMAS dataset [33] contains 11 daily-life actions
including check watch, cross arms, scratch head, sit down, get
up, turn around, walk, wave, punch, kick, and pick up. Each
action was performed three times by 10 subjects captured from
5 different viewpoints. Fig. 11 shows some examples.

In order to compare with existing works on cross-view
action recognition that utilize view labels including DVV [62],
CVP [63], nCTE [16], Hankelets [64], and our preliminary
work [28], we conducted an experiment considering view
labels. Here, we grouped the videos in the IXMAS dataset
into different views and evaluated the accuracy of transferring
one view to another. We followed the leave-one-action-out
cross-validation strategy from [16], [64]. Table I shows that
our algorithm outperforms the state-of-the-art method nCTE
in most cross-view pairs, as well as the average system
accuracy. It also demonstrates that our proposed methodology
enhancements over [28] have resulted in superior accuracy. We
also compare with a baseline setup of our system that does
not include the pre-training phase, which demonstrates the
effectiveness of utilizing synthetic 2D and 3D videos for pre-
training. Fig. 12 shows that our algorithm outperforms nCTE
in most action classes, thereby indicating that our system can
can realize cross-view action recognition by transferring the
view-invariance from 3D models. Notice that in our default
setup, the system does not require any view information. This
experiment was designed for the sake of comparison only.

In order to analyze the effect of the hyperparameters (i.e. α ,
β and γ), we experiment with 27 different settings within the
searching range of α in [1, 2] on every 0.5 interval, β in [1,
2] on every 0.5 interval and γ in [2, 4] on every 1.0 interval.
The result is visualized in Fig. 14.

Since the orientation of the actors is arbitrary in the IX-

Fig. 15: Sampled frames from the N-UCLA dataset.

Methods {1,2}|3 {1,3}|2 {2,3}|1 Mean
DVV [62] 58.5 55.2 39.3 51.0
CVP [63] 60.6 55.8 39.5 52.0
nCTE [16] 68.6 68.3 52.1 63.0

Zhang et al. [28] 67.3 74.2 61.8 67.8
Ours 69.1 74.4 61.8 68.5

TABLE III: Accuracy on the N-UCLA dataset (two views for
training and one for testing).

MAS dataset, we compare with existing works on arbitrary
view action recognition by calculating average accuracy for
each camera. For example, C0 is the average accuracy when
camera0 is used for training or testing. Table II shows that
our algorithm outperforms most of the previous methods in
some viewpoints. It is worth mentioning that NKTM [17] and
R-NKTM [25] are deep learning based methods, at the core
of which is the use of neural networks to transfer videos from
different views to a canonical view. However, their method
requires the generation of 2D training video by projecting
the 3D exemplar to 108 virtual views, while ours only needs
18 different views. Due to the lower amount of training
data required, our method can save computation resources
especially when constructing the system.

C. Experiments on the N-UCLA Dataset

The N-UCLA dataset [21] contains 10 action classes cap-
tured from 3 different viewpoints with 10 different actors.
The action categories include pick up with one hand, pick
up with two hands, drop trash, walk around, sit down, stand
up, donning, doffing, throw, and carry. Fig. 15 shows some
sample frames from the N-UCLA dataset.

We evaluated our system accuracy in cross-view action
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Fig. 16: (a) Cross-view recognition accuracy per action class in N-UCLA. (b) The confusion matrix of N-UCLA.

Fig. 17: Sampled frames from the UWA3DII dataset.

recognition and in comparison with existing work including
DVV [62], nCTE [16], CVP [63], and our preliminary work
[28]. We followed the experimental setup in [16], [63], which
utilizes videos captured from two cameras for training and
the other one for testing. The accuracy was calculated using
leave-one-action-out cross validation. As shown in Table III,
our method outperforms existing algorithms in most of the
cross-view setups and the overall result. Fig. 16 shows that
our algorithm outperforms nCTE in most action classes. This
demonstrates that our system can realize cross-view action
recognition by transferring the view-invariance from 3D mod-
els. Notice that in our default setup, the system does not
require view information. This experiment was designed for
the sake of comparison only.

On the N-UCLA dataset, some actions are quite difficult
to differentiate, such as “Drop Trash” vs. “Throw”, “Carry”
vs. “Walk around”, as they both consist of similar body
movement.

D. Experiments on the UWA3DII Dataset

This dataset [65] consists of a variety of daily-life human ac-
tions performed by 10 subjects with different scales. It includes
30 action classes: one hand waving, one hand punching, two
hand waving, two hand punching, sitting down, standing up,
vibrating, falling down, holding chest, holding head, holding
back, walking, irregular walking, lying down, turning around,
drinking, phone answering, bending, jumping jack, running,
picking up, putting down, kicking, jumping, dancing, moping
floor, sneezing, sitting down (chair), squatting, and coughing.

Fig. 19: Sampled frames from the i3DPost dataset.

Each video is captured from one of four predefined viewpoints.
This results in variations in actions across different viewpoints
within the same action class. This dataset is challenging
because of varying actor orientations, self-occlusion and high
similarity among actions. Fig. 17 shows four sample actions
from different viewpoints.

As shown in Table IV, our method outperforms existing
algorithms in most of the cross-view setups and the overall
result. Fig. 18 shows that our algorithm outperforms our
baseline in most action classes.

E. Experiments on the i3DPost Dataset

The i3DPost dataset consists of 8 actors performing 10
different actions, where 6 are single actions: walk, run, jump,
bend, hand-wave and jump-in-place, and 4 are combined
actions: sit-stand-up, run-fall, walk-sit and run-jump-walk.
The subjects have different body sizes, clothing and are of
different sex and nationalities. The multi-view videos have
been recorded by 8 calibrated and synchronized cameras in a
high definition resolution (1920×1080), resulting in a total of
640 videos. For each video frames, an actor 3D mesh model
of high detail level (20000-40000 vertices and 40000-80000
triangles) and the associated camera calibration parameters are
available. The mesh models were reconstructed using a global
optimization method proposed by Starck and Hilton [65]. Fig.
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Methods {1,2}|3 {1,2}|4 {1,3}|2 {1,3}|4 {1,4}|2 {1,4}|3 {2,3}|1 {2,3}|4 {2,4}|1 {2,4}|3 {3,4}|1 {3,4}|2 Mean
AOG [21] 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3

Action Tube [66] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0
LRCN [67] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3

Zhang et al. [28] 50.6 56.8 48.6 43.7 53.2 59.7 66.8 48.9 56.8 50.4 68.3 51.7 54.6
Ours 59.3 57.9 50.2 48.1 59.9 63.4 65.1 67.1 68.2 55.5 73.5 53.4 60.1

TABLE IV: Accuracy on the UWA3DII dataset (two views for training and one for testing).

Fig. 18: Cross-view recognition accuracy per action class in the UWA3DII dataset.

Methods Mean
Holte et al. [68] 92.2

Iosifidis et al. [69] 90.9
Gkalelis et al. [65] 90.0
Zhang et al. [28] 93.8

Ours 94.6

TABLE V: Average accuracy for arbitrary view recognition
on the i3DPost dataset.

Features IXMAS N-UCLA UWA3DII i3DPost
3D Trajectories 58.1 57.1 48.6 90.1

3DHOF 67.8 62.4 58.4 87.5
3DMBH 66.3 56.3 53.2 81.6

All Features Combined 70.8 68.5 60.1 94.6

TABLE VI: Comparison of cross-view action recognition
results on the IXMAS, N-UCLA, UWA3DII and i3DPost
dataset by using different features.

19 shows multi-view actor/action examples from the i3DPost
dataset.

We use leave-one-actor out strategy followed by [68]. This
means that we use the 2D videos of one actor for testing, while
using the rest of the dataset for training. Table V shows that
our system achieves better result than previous methods.

F. Evaluation of our 3D Dense Trajectories

In this section, we evaluate our 3D dense trajectories by
using 3D trajectories, 3DHOF and 3DMBH independently.

Table VI shows the comparison of cross-view action
recognition results on the IXMAS, N-UCLA, UWA3DII and
i3DPost dataset by using each descriptor independently and
combining them together. Among the three descriptors, 3D-
HOF outperforms the other two in the most of dataset.
However, it is clear that the combined feature produces far
superior results that cannot be achieved by any single feature.
This shows that our proposed features are complementary to
each other.

Fig. 20 and 21 show the performance of different descriptors
according to different view transfer pairs on the IXMAS

Fig. 22: 2D HOG evaluation of the UWA3DII dataset accord-
ing to different view transfer pairs.

and UWA3DII datasets respectively. In all pairs, combining
all the descriptors achieves better result than using them
independently.

G. Evaluation of 2D Features Used in Our System

While appearance information and movement information
are both very important for describing the 2D action videos,
such appearance information is quite different for 2D action
videos captured from different points. We build a transfer
learning framework to transfer 3D and 2D features into a
common sparse feature space, and hence it is preferable that
both of them have similar logical meanings. Therefore, any
useful information on the 3D and 2D action videos such as
appearance will assist our system. The reason we do not
propose 3DHOG is that the surface texture of a 3D model
remains unchanged over time. We conduct an experiment on
the UWA3DII dataset to show the importance of appearance
feature 2D HOG.

Fig. 22 shows the performance on only, without and with
using 2D HOG respectively. Features combined with 2D
Trajectories, 2D HOF and 2D MBH perform better than
only using 2D HOG in all the view transfer pairs. Because
the movement related descriptors contain more view-invariant
information than appearance related descriptors on the 2D
action videos. Combined features also perform better than
features without using 2D HOG, which shows the assistance
of appearance information to our system.
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Fig. 20: Feature evaluation on IXMAS dataset according to different view transfer pairs.

Fig. 21: Feature evaluation on UWA3DII dataset according to different view transfer pairs.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a view-invariant human
action recognition framework. Unlike previous work, we con-
struct a synthetic 3D and 2D video database using realistic
human models, which is used to obtain the view-invariance
through transfer dictionary learning. The trained dictionary is
used to project real world 2D video into a view-invariant sparse
representation, facilitating an arbitrary view action classifier.
The use of synthetic data for initial training reduces the
need for carefully captured video with view information. The
synthetic dataset created in this project is open to the public,
it is the first structured action dataset built with realistic
human models for classification purposes. To enhance the
quality of 3D motion description, we propose a new set of
features known as the 3D dense trajectories, which consists
of 3D trajectories, 3DHOF and 3DMBH. These features are
complementary to each other and the combined feature set is
highly effective for action classification. We demonstrate su-
perior results in comparison to existing works in the IXMAS,
NUCLA, UWA3DII and i3DPOST datasets.

In our system, we project the 3D and 2D videos into
a common view-invariant sparse representation with the 3D
and 2D dictionaries respectively. Theoretically speaking, it is
possible to learn a dictionary that directly projects 2D video
into 3D space, and consider the 3D space to be view-invariant.
However, this is not practically possible. This is because 2D to
3D projection requires information that is not available in the
2D video. Even if a project matrix can be trained, the projected
results will suffer from a large reconstruction error. In this
research, we solve this problem by extracting the common
view-invariant features in the 3D and 2D videos instead.

A main advantage of our framework is that the view-
invariant transfer dictionary is pre-trained with a full synthetic
dataset and fine-tuned with a small amount of real data. It is
possible to include a large number of views in the synthetic
dataset to learn a better view-invariant representation, even if
the real data does not cover all of these views. Also, it is
possible to introduce variations within each action class using
computer graphics techniques such as motion style transfer
to improve the richness of the dataset, which can enhance the
classification accuracy. While existing work requires encoding

and pooling parts to aggregate the local features, we use bag-
of-words to effectively aggregate the local trajectories based
features, motivated by the promising results from [8]–[11].
Specifically, we train a dictionary by using K-means to cluster
the local features (e.g. HOG, HOF) into some visual words and
then encode these local features by counting the occurrence
of different visual words.

During the implementation, we found that the quality of
the synthetic video could affect the classification accuracy of
the system. This was the main motivation for us to utilize
high-quality human models instead of simplified cylinder-
based models as in previous works. In the future, we are
interested to explore if more realistic rendering (such as
photorealistic rendering with global illuminations) and more
realistic character movement (such as introducing secondary
deformation to simulate the involuntary movement of body fat
and clothings) would further improve the system performance.

In many datasets, the facing angles of the actors are not
aligned with that camera viewpoints. As a result, the same
action may appear differently for the same viewpoints de-
pendent on the faced direction. As a future direction, we are
interested in introducing the facing angle into the classification
framework, such that the system can understand how the
action may appear dependent on the orientation of the actor.
Furthermore, when creating synthetic 2D videos, our current
system samples projection viewpoints uniformly. With the
facing angle, we may explore an optimal way of projection
sampling that can optimize classification accuracy with a
minimal number of synthetic 2D views.

Dictionary learning can be considered as a linear projec-
tion algorithm and can be limited in representing the view-
invariance of 2D and 3D videos. In the future, we are interested
in applying non-linear algorithms such as Neural Networks
with synthetic training data to achieve better results. The
potential challenges in using Neural Networks to learn the
complex view-invariance is the need to tune a large number
of hyper-parameters, as well as the need to design an optimal
network architecture.

ACKNOWLEDGEMENT

This project was supported by the Engineering and Physical
Sciences Research Council (EPSRC) (Ref: EP/M002632/1)



TRANSACTIONS ON IMAGE PROCESSING 14

and the Royal Society (Ref: IE160609).

REFERENCES

[1] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions
as space-time shapes,” in Computer Vision (ICCV), 2005 IEEE Interna-
tional Conference on, vol. 2. IEEE, 2005, pp. 1395–1402.

[2] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-
nition via sparse spatio-temporal features,” in Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, 2005. 2nd Joint
IEEE International Workshop on. IEEE, 2005, pp. 65–72.

[3] I. Laptev, “On space-time interest points,” International journal of
computer vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[4] J. Liu and M. Shah, “Learning human actions via information maxi-
mization,” in Computer Vision and Pattern Recognition (CVPR), 2008
IEEE Conference on. IEEE, 2008, pp. 1–8.

[5] J. Liu, Y. Yang, and M. Shah, “Learning semantic visual vocabularies
using diffusion distance,” in Computer Vision and Pattern Recognition
(CVPR), 2009 IEEE Conference on. IEEE, 2009, pp. 461–468.

[6] Z. Lin, Z. Jiang, and L. S. Davis, “Recognizing actions by shape-motion
prototype trees,” in Computer Vision (ICCV), 2009 IEEE International
Conference on. IEEE, 2009, pp. 444–451.

[7] F. Lv and R. Nevatia, “Single view human action recognition using
key pose matching and viterbi path searching,” in Computer Vision and
Pattern Recognition (CVPR), 2007 IEEE Conference on. IEEE, 2007,
pp. 1–8.

[8] S. Wu, O. Oreifej, and M. Shah, “Action recognition in videos acquired
by a moving camera using motion decomposition of lagrangian particle
trajectories,” in Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011, pp. 1419–1426.

[9] H. Wang, A. Kläser, C. Schmid, and C. L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” International
journal of computer vision, vol. 103, no. 1, pp. 60–79, 2013.

[10] H. Wang, A. Klaser, C. Schmid, and C. L. Liu, “Action recognition by
dense trajectories,” in Computer Vision (CVPR), 2011 IEEE Internation-
al Conference on. IEEE, 2011, pp. 3169–3176.

[11] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Computer Vision (ICCV), 2013 IEEE International Conference
on, 2013, pp. 3551–3558.

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Computer Vision (CVPR), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 1725–1732.

[13] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[14] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 4489–4497.

[15] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European Conference on Computer Vision. Springer,
2016, pp. 20–36.

[16] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham, “3d pose from
motion for cross-view action recognition via non-linear circulant tem-
poral encoding,” in Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, 2014, pp. 2601–2608.

[17] H. Rahmani and A. Mian, “Learning a non-linear knowledge transfer
model for cross-view action recognition,” in Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, 2015, pp.
2458–2466.

[18] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative
space-time neighborhood features for human action recognition,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on. IEEE, 2010, pp. 2046–2053.

[19] A. Farhadi and M. K. Tabrizi, “Learning to recognize activities from
the wrong view point,” in European conference on computer vision.
Springer, 2008, pp. 154–166.

[20] J. Liu, M. Shah, B. Kuipers, and S. Savarese, “Cross-view action
recognition via view knowledge transfer,” in Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011,
pp. 3209–3216.

[21] J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu, “Cross-view action
modeling, learning and recognition,” in Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, 2014, pp. 2649–2656.

[22] C.-H. Huang, Y.-R. Yeh, and Y.-C. F. Wang, “Recognizing actions across
cameras by exploring the correlated subspace,” in European Conference
on Computer Vision. Springer, 2012, pp. 342–351.

[23] D. Weinland, E. Boyer, and R. Ronfard, “Action recognition from
arbitrary views using 3d exemplars,” in Computer Vision (ICCV), 2007
IEEE International Conference on. IEEE, 2007, pp. 1–7.

[24] P. Yan, S. M. Khan, and M. Shah, “Learning 4d action feature models
for arbitrary view action recognition,” in Computer Vision and Pattern
Recognition (CVPR), 2008 IEEE Conference on. IEEE, 2008, pp. 1–7.

[25] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human
action recognition from novel viewpoints,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[26] N. Iwamoto, H. P. H. Shum, L. Yang, and S. Morishima, “Multi-
layer lattice model for real-time dynamic character deformation,” Comp.
Graph. Forum, vol. 34, no. 7, pp. 99–109, Oct 2015.

[27] C. Hecker, B. Raabe, R. W. Enslow, J. DeWeese, J. Maynard, and K. van
Prooijen, “Real-time motion retargeting to highly varied user-created
morphologies,” ACM Transactions on Graphics (TOG), vol. 27, no. 3,
p. 27, 2008.

[28] J. Zhang, L. Zhang, H. P. Shum, and L. Shao, “Arbitrary view action
recognition via transfer dictionary learning on synthetic training data,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016, pp. 1678–1684.

[29] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl, “3d shape
histograms for similarity search and classification in spatial databases,”
in International Symposium on Spatial Databases. Springer, 1999, pp.
207–226.

[30] M. Körtgen, G.-J. Park, M. Novotni, and R. Klein, “3d shape matching
with 3d shape contexts,” in The 7th central European seminar on
computer graphics, vol. 3. Budmerice, 2003, pp. 5–17.

[31] P. Huang and A. Hilton, “Shape-colour histograms for matching 3d video
sequences,” in Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on. IEEE, 2009, pp. 1510–1517.

[32] S. Pehlivan and P. Duygulu, “A new pose-based representation for
recognizing actions from multiple cameras,” Computer Vision and Image
Understanding, vol. 115, no. 2, pp. 140–151, 2011.

[33] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recog-
nition using motion history volumes,” Computer Vision and Image
Understanding, vol. 104, no. 2, pp. 249–257, 2006.

[34] M. Pierobon, M. Marcon, A. Sarti, and S. Tubaro, “3-d body posture
tracking for human action template matching,” in Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, vol. 2. IEEE, 2006, pp. II–II.

[35] I. Cohen and H. Li, “Inference of human postures by classification of 3d
human body shape,” in Analysis and Modeling of Faces and Gestures,
2003. AMFG 2003. IEEE International Workshop on. IEEE, 2003, pp.
74–81.

[36] B. Zhang, Y. Yang, C. Chen, L. Yang, J. Han, and L. Shao, “Action
recognition using 3d histograms of texture and a multi-class boosting
classifier,” IEEE Transactions on Image Processing, vol. 26, no. 10, pp.
4648–4660, 2017.

[37] M. Liu, H. Liu, C. Chen, and M. Najafian, “Energy-based global ternary
image for action recognition using sole depth sequences,” in 3D Vision
(3DV), 2016 Fourth International Conference on. IEEE, 2016, pp.
47–55.

[38] M. Liu, H. Liu, and C. Chen, “Enhanced skeleton visualization for view
invariant human action recognition,” Pattern Recognition, vol. 68, pp.
346–362, 2017.

[39] K. Wang, G. Zhang, and S. Xia, “Templateless non-rigid reconstruction
and motion tracking with a single rgb-d camera,” IEEE Transactions on
Image Processing, vol. 26, no. 12, pp. 5966–5979, 2017.

[40] C. Jia and Y. Fu, “Low-rank tensor subspace learning for rgb-d action
recognition,” IEEE Transactions on Image Processing, vol. 25, no. 10,
pp. 4641–4652, 2016.

[41] Y. Kong and Y. Fu, “Discriminative relational representation learning
for rgb-d action recognition,” IEEE Transactions on Image Processing,
vol. 25, no. 6, pp. 2856–2865, 2016.

[42] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and
its application to action recognition,” in Proceedings of the 15th ACM
international conference on Multimedia. ACM, 2007, pp. 357–360.

[43] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and
scale-invariant spatio-temporal interest point detector,” in European
conference on computer vision. Springer, 2008, pp. 650–663.

[44] R. Messing, C. Pal, and H. Kautz, “Activity recognition using the
velocity histories of tracked keypoints,” in Computer Vision (ICCV),
2009 IEEE International Conference on. IEEE, 2009, pp. 104–111.



TRANSACTIONS ON IMAGE PROCESSING 15

[45] P. Matikainen, M. Hebert, and R. Sukthankar, “Trajectons: Action recog-
nition through the motion analysis of tracked features,” in Computer
Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 514–521.

[46] J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li, “Hierarchical
spatio-temporal context modeling for action recognition,” in Computer
Vision and Pattern Recognition (CVPR), 2009 IEEE Conference on.
IEEE, 2009, pp. 2004–2011.

[47] J. Sun, Y. Mu, S. Yan, and L.-F. Cheong, “Activity recognition using
dense long-duration trajectories,” in Multimedia and Expo (ICME), 2010
IEEE International Conference on. IEEE, 2010, pp. 322–327.

[48] F. Liu, X. Xu, S. Qiu, C. Qing, and D. Tao, “Simple to complex
transfer learning for action recognition,” IEEE Transactions on Image
Processing, vol. 25, no. 2, pp. 949–960, 2016.

[49] T. Xu, F. Zhu, E. K. Wong, and Y. Fang, “Dual many-to-one-encoder-
based transfer learning for cross-dataset human action recognition,”
Image and Vision Computing, vol. 55, pp. 127–137, 2016.

[50] M. Zhou, H. Chen, L. Ren, G. Sapiro, L. Carin, and J. W. Paisley,
“Non-parametric bayesian dictionary learning for sparse image represen-
tations,” in Advances in neural information processing systems, 2009,
pp. 2295–2303.

[51] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[52] Y. Wang and G. Mori, “Hidden part models for human action recogni-
tion: Probabilistic versus max margin,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 7, pp. 1310–1323, 2011.

[53] M. Aharon, M. Elad, and A. Bruckstein, “rmk-svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on signal processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[54] Q. Qiu, V. M. Patel, P. Turaga, and R. Chellappa, “Domain adaptive
dictionary learning,” in European Conference on Computer Vision.
Springer, 2012, pp. 631–645.

[55] J. Zheng, Z. Jiang, and R. Chellappa, “Cross-view action recognition
via transferable dictionary learning,” IEEE Transactions on Image Pro-
cessing, vol. 25, no. 6, pp. 2542–2556, 2016.

[56] R. Gross and J. Shi, “The cmu motion of body (mobo) database,”
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-01-18, June 2001.

[57] J. Tilmanne, R. Sebbe, and T. Dutoit, “A database for stylistic human
gait modeling and synthesis,” in Proceedings of the eNTERFACE 2008
Workshop on Multimodal Interfaces, Paris, France. Citeseer, 2008, pp.
91–94.

[58] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 689–696.

[59] F. Zhu and L. Shao, “Weakly-supervised cross-domain dictionary learn-
ing for visual recognition,” International Journal of Computer Vision,
vol. 109, no. 1-2, pp. 42–59, 2014.

[60] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary
for sparse coding via label consistent k-svd,” in Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011,
pp. 1697–1704.

[61] G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization
and total least squares,” SIAM Journal on Matrix Analysis and Applica-
tions, vol. 21, no. 1, pp. 185–194, 1999.

[62] R. Li and T. Zickler, “Discriminative virtual views for cross-view action
recognition,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2012, pp. 2855–2862.

[63] Z. Zhang, C. Wang, B. Xiao, W. Zhou, S. Liu, and C. Shi, “Cross-view
action recognition via a continuous virtual path,” in Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on, 2013, pp.
2690–2697.

[64] B. Li, O. I. Camps, and M. Sznaier, “Cross-view activity recognition
using hankelets,” in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012, pp. 1362–1369.

[65] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, and I. Pitas, “The i3dpost
multi-view and 3d human action/interaction database,” in Visual Media
Production, 2009. CVMP’09. Conference for. IEEE, 2009, pp. 159–
168.

[66] G. Gkioxari and J. Malik, “Finding action tubes,” in Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on, 2015, pp.
759–768.

[67] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on, 2015, pp.
2625–2634.

[68] M. B. Holte, T. B. Moeslund, N. Nikolaidis, and I. Pitas, “3d human
action recognition for multi-view camera systems,” in 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011
International Conference on. IEEE, 2011, pp. 342–349.

[69] A. Iosifidis, N. Nikolaidis, and I. Pitas, “Movement recognition exploit-
ing multi-view information,” in Multimedia Signal Processing (MMSP),
2010 IEEE International Workshop on. IEEE, 2010, pp. 427–431.

Jingtian Zhang is currently a Ph.D. student with
the Department of Computer and Information Sci-
ences at Northumbria University, U.K. He received
his B.Eng. degree in Information Engineering from
Nanjing University of Aeronautics and Astronautics,
China, and M.Sc. degree in Electrical and Elec-
tronic Engineering from the University of Sheffield,
U.K. His research interests include computer vision,
computer graphics, motion analysis and machine
learning.

Hubert P. H. Shum is an Associate Professor
(Reader) in Computer Science at Northumbria Uni-
versity, U.K., as well as the Director of Research
and Innovation of the Computer and Information
Sciences Department. Before this, he worked as a
Senior Lecturer at Northumbria University, U.K., a
Lecturer in the University of Worcester, U.K., a post-
doctoral researcher in RIKEN, Japan, as well as a
research assistant in the City University of Hong
Kong. He received his Ph.D. degree from the School
of Informatics in the University of Edinburgh, U.K.,

as well as his M.Sc. and B.Eng. degrees from the City University of Hong
Kong. His research interests include computer graphics, computer vision,
motion analysis and machine learning.

Jungong Han is a tenured Senior Lecturer (Asso-
ciate Professor) of Data Science Institute at Lancast-
er University. Previously, he was a faculty member
with the Department of Computer and Information
Sciences at Northumbria University, U.K. His re-
search interests include computer vision, image pro-
cessing, machine learning, and artificial intelligence.

Ling Shao is the CEO and Chief Scientist of the
Inception Institute of Artificial Intelligence (IIAI),
Abu Dhabi, United Arab Emirates. He is also a
professor with the School of Computing Sciences,
University of East Anglia, Norwich, U.K. He is
an associate editor of IEEE Transactions on Image
Processing, IEEE Transactions on Neural Networks
and Learning Systems, and several other journals.


