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Abstract- In this paper, we propose a fully autonomous, local-modes-based data partitioning 

algorithm, which is able to automatically recognize local maxima of the data density from empirical 

observations and use them as focal points to form shape-free data clouds, i.e. a form of Voronoi 

tessellation. The method is free from user- and problem- specific parameters and prior assumptions. 

The proposed algorithm has two versions: i) offline for static data and ii) evolving for streaming data. 

Numerical results based on benchmark datasets prove the validity of the proposed algorithm and 

demonstrate its excellent performance and high computational efficiency compared with the state-of-

art clustering algorithms. 
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1. Introduction 

Clustering aims at identifying the intrinsic data patterns. The main task of clustering methods is to 

group similar data samples together and separate them from the less similar ones. As a common 

unsupervised machine learning technique for statistical data analysis, clustering has long been 

considered as one of the most effective tools for information extraction and summarization because it 

does not require labelling [34]. Clustering is widely used in many fields of study including pattern 

recognition, image analysis, biology, natural language processing, etc., and thus, is a hot topic in the 

field of data analytics [34],[50]. Nonetheless, established clustering methods require proper parameter 

settings that can be very different across datasets, and their performance is heavily relying on the 

prior knowledge and assumptions. However, prior knowledge in real situations is usually very limited 

and assumptions are seldom met.  

In this paper, we propose a fully autonomous local-modes-based free-shape data partitioning 

method named “autonomous data partitioning (ADP)”. Local modes are akin of the peaks of the local 

data density. The proposed method is free from user- and problem-specific parameters and prior 

assumptions. It also utilizes parameter-free operators to disclose the underlying data distribution and 

ensemble properties of the empirically observed data using the natural distance metric. Based on 

these, the local modes representing the local maxima of the data density can be automatically 

determined. The proposed approach uses these local modes to partition the data space in shape-free 

data clouds [3],[4] (a kind of Voronoi tessellation [41]). This objectively represents the real data 

distribution unlike the desirable/expected (often subjectively) preferences represented by traditional 

clusters. The comparison between the established clustering approaches and the proposed ADP 

algorithm is presented in Fig. 1. 

The proposed ADP algorithm has an offline version and an evolving version. Its offline version is 

based on the ranks of the data samples in terms of their densities and mutual distances instead of the 

commonly used means and variances. Ranks are very important but other approaches avoid them 

because they are nonlinear and discrete operators. Therefore, the offline version is more stable and 

effective in partitioning static datasets. The evolving version is also generic and fully data-driven. It 

can continue the offline partitioning process with the newly arrived data, but can also start without 

initial conditions. 
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Numerical experiments based on benchmark datasets demonstrate that the proposed algorithm is 

able to achieve excellent clustering performance very quickly without user- or problem- specific prior 

knowledge. More importantly, the ADP algorithm performs much better on the larger size and high 

dimensional datasets on which the current clustering algorithms struggle. 

The remainder of this paper is organized as follows. The related work is reviewed in section 2. 

Section 3 summarizes the theoretical basis of the proposed ADP approach. The ADP approach is 

introduced in section 4. The numerical examples are presented in section 5. Section 6 provides a 

detailed analysis and discussions based on section 5 and section 7 concludes the paper. 

 

(a) Established clustering algorithms 

 

(b) The ADP algorithm 

Fig.1. Comparison between the current clustering algorithms and the proposed ADP algorithm 

2. Related Work 

As it was stated in the first section, the current clustering algorithms need various types of free 

parameters to be predefined by users. These user inputs include the number of clusters/centroids 

[10],[33],[39],[50], threshold [18],[32],[49],[53], the type and parameters of the kernel function 

[17],[19],[21],[43], radius of the clusters [12],[20],[21],[35], net size [34],[42], etc. They can 

significantly influence the performance and efficiency of the algorithms.  Pre-setting the suitable 

parameters for clustering algorithms is always a challenging task and requires a certain amount of 

prior knowledge. In real situations, however, prior knowledge is very limited and not enough for 

users to decide the best inputs for these algorithms in advance. Without carefully chosen parameters, 

the efficiency as well as the effectiveness of the clustering algorithms is lower than reported.  

One popular alternative method to overcome the problem is to pre-define parametric penalty 

function and iteratively achieve the optimal clustering result by satisfying the constraints imposed by 

the penalty function [25],[48],[54]. However, this kind of methods also raises the questions about the 

objectiveness and effectiveness of the penalty function. In addition, the computational efficiency of 

these methods deteriorates rapidly with the increase of the scale of the data.  

To avoid the requirement of user inputs, a number of so-called “nonparametric” clustering 

techniques were proposed within the last decade [11],[27],[36]. However, instead of being really 

nonparametric, these clustering techniques, in fact, tune a number of parameters in advance and fix 

them for different problems.  

The other problem that these clustering approaches [11],[12],[18],[19],[21],[27],[36],[40],[53] 

currently have is that they simplify the real data representation by assuming that the data follows a 

specific distribution (i.e. most often a Gaussian). However, this prior assumption oversimplifies the 

real problems, and often leads to unnatural clustering results.  Lifting these assumptions is possible 
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with information theoretic [31] and spectral clustering [38], but at the expense of much higher 

computational cost.  

In comparison to the state-of-the-art approaches, the proposed ADP method has the following two 

unique properties: 

1) it is data-driven and free from user- and problem- specific parameters; 

2) it does not impose a data generation model on the empirical observations. 

3. Theoretical Basis 

The proposed ADP approach is proposed within the recently introduced Empirical Data Analysis 

(EDA) framework [5],[6],[8]. EDA resembles statistical learning in its nature but is free from the 

range of assumptions made in traditional probability theory and statistical learning approaches 

[5],[6],[8]. EDA measures play an instrumental role in the proposed ADP approach for extracting the 

ensemble properties from the observed data (see Fig. 1(b)), and frees the ADP algorithm from the 

requirement to make prior assumptions on the data generation model and user- and problem-specific 

parameters (see Fig. 1(a)). Most importantly, they guarantee objectiveness of the partitioning results. 

Firstly, we define the data set/stream in the Euclidean data space 
N

R  as    1 2, ,..., KK
x x x x , 

k
x

T
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k k k N
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LL
u u u u ,

T

,1 ,2 ,, ,...,j j j j Nu u u   u (
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KLf f f , 

1

1
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k
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f


 .  

In this paper, we use the natural metric of the space of samples (i.e. Euclidean distance) for 

clarity, however, various types of distances within the data space, 
N

R can be considered as well. In 

the remainder of this paper, all the derivations are conducted at the 
thK  time instance except when 

specifically mentioned.  

In this section, we will summarize the nonparametric EDA measures that we use in ADP: 

i) local density, D  [6],[8]; 

ii) global density, 
GD  [6],[8]; 

and their recursive implementations. They will be briefly reviewed next to make the paper self-

contained.  

3.1 Local Density 

Local density [6] is a measure within EDA framework identifying the main local mode of the data 

distribution and is derived empirically from all the observed data samples in a parameter-free way. 

The local density, D  of the data sample ix  is expressed as follows ( 1,2,..., ;k K  1KL  ) [6],[8]: 
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where  ,k ld x x is the distance between data samples kx  and jx ; the coefficient 2 is used in the 

denominator for normalization (because each distance is counted twice in the numerator). 

For the case of Euclidean distance, the calculation of  
22
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 x x  can be simplified by using the mean of  
K

x , Kμ and the 

average scalar product, KX  as [6],[8]: 
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Kμ  and KX can be updated recursively as [4]: 

1 1 1
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k
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The recursive calculation of Kμ  and KX  allows for “one pass” evaluation, thus, ensures 

computation-efficiency because only the key aggregated/summarized information has to be kept in 

memory. 

Combining (1)-(5), we can re-formulate the local density, D  in a recursive form: 
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                                                                                                             (6) 

From (6) we can see that when the Euclidean distance is used, the local density, D  behaves as a 

Cauchy function, while there is no prior assumption about the type of the distribution involved. 

Note that  0 1K kD x  and the closer kx  is to the main local mode, the higher the value of 

 K kD x  is. 

3.2 Global density 

The global density, 
GD  estimated at the unique data sample ku  is a weighted sum of its local 

density by the corresponding occurrence, kf  ( 1,2,..., ;Kk L 1KL  ), expressed as follows [6],[8]: 
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                                                                                   (7) 

It is clear that it behaves locally as a Cauchy function, but has multiple local modes/peaks which 

depend on kf  (if KL K , global density reduces to the local density but with a smaller amplitude). 

The largest of the peaks is called the global peak. The global density can directly disclose the data 

pattern without any further pre-processing. This property can be very useful in real cases where the 

units of measurement are fixed and data samples measured at different indices are likely to share the 



same values. The reason we do not stop with D
G 

but move further with partitioning is that although it 

is fully automatic and objective, D
G 

often reveals too many local peaks. 

4. The Autonomous Data Partitioning Algorithm 

In this section, we will describe the proposed ADP algorithm for further refining the local modes 

of the data set/stream. The local modes are defined as the local maxima of the global data density and 

are constructed directly from samples. These local modes play a key role in partitioning the data space 

into shape-free data clouds [3],[4] by aggregating data samples around them and forming naturally a 

Voronoi tessellation [41]. We will present two independent algorithms for the two versions, i) offline 

and ii) evolving. 

4.1 Offline ADP Algorithm 

The offline ADP algorithm works with the global density, 
GD  of the observed data samples. It is 

based on the ranks of the data samples in terms of their global densities and mutual distributions. Its 

main procedure is described as follows: 

Stage 1: Rank order the samples with regards to the distance to the global mode 

We start by organizing the unique data samples  
K

u  into an indexing list, denoted by  *

K
u

based on their mutual distances and values of the global density, 
GD . 

Firstly, the global densities of the unique data samples,  G

K iD u  ( 1,2,..., Ki L ) are calculated 

using (7). The unique data sample with the highest global density is then selected as the first element 

of the indexing list  *

KL
u : 

  *1

1,2,...,

arg max
K
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K j
j L

D


u u                                                                                                                  (8) 

We set *1
u as the first reference point: * *1r u u  and remove *1

u  from  
KL

u . Then, by selecting 

out the unique data sample which is nearest to *r
u ,  the second element of  *

KL
u  denoted by *2

u  is 

identified and it is set as the new reference point ( * *2r u u ) and, is also removed from  
KL

u . The 

process is repeated until  
KL

u  becomes empty, and the rank ordered list  *

KL
u  is finally derived. 

Based on this list, we can rank the global density of the unique data samples as:    *G

KD u

  *1 ,G

KD u  *2 ,G

KD u  *..., KLG

KD u  .   

An example using the wine dataset [1] is shown in Fig. 2. Fig. 2(a) shows the global density of the 

wine dataset, Fig. 2(b) shows the ranked global density. 

Stage 2: Detecting local maxima (local modes) 

Based on the list  *

KL
u and the ranked global density   *G

KD u , we can identify all the data 

samples with the local maxima of GD  directly as follows: 
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where  

1 0

sgn 0 0

1 0

x

x x

x



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 

 is the sign function; we denote the collection of data samples with the 

local maxima of GD as    **

*

** *| 1,2,...,j

K
K

L
j L u u  ( *

K KL L ). The local maxima (peaks) identified 

from the Wine dataset [1] are marked by red circles in Fig. 2(b). The locations of the local maxima in 

the data space are depicted in Fig. 2(c). 

 

        (a) The global density, D
G
                  (b) The ranked D

G
 and the identified local maxima 

 

(c) The locations of local maxima in the data space 

Fig.2. Illustrative example based on the wine dataset 

Stage 3: Forming data clouds 

The local peaks identified from the indexing list, namely,   *

**

KL
u , are then used to attract the data 

samples  
K

x  that are closer to them using a min operator: 

 **

*

*

1,2,...,

argmin ; 1,2,..., ; 1j

K

i K
j L

winning cloud i K L


   x u                                                          (10) 

By assigning all the data samples to the nearest local maxima, a number of Voronoi tessellations 

[41] are naturally formed and data clouds are built around the local maxima [3],[4]. More importantly, 

the process is free from any threshold.   

After the data clouds are formed, the actual centre (mean) j
μ and the standard deviation j  

( *1,2,..., Kj L ) per data cloud and the support, jS , namely, the number of data samples within the 



data cloud can be calculated easily. Note that, all this procedure is post factum, i.e. it is determined 

bottom up from the data without a prior assumption, except the selection of the metric. 

Stage 4: Filtering local modes 

The data clouds formed in the previous stage may contain some less representative ones; 

therefore, in this stage, we filter the initial Voronoi tessellations and combine them into larger, more 

meaningful data clouds. 

The global densities at the data clouds centres   *
KL

μ  are firstly calculated as follows 

( *1,2,..., Kj L ): 
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where jS  is the support of the data cloud. 

In order to identify the centres with the local maxima of the global density, we introduce the 

following three objectively derived quantifiers of the data pattern: 

i)  
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2 1
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Fig.3. Plot of c

K , c

K and c

K on the wine dataset. 

c

K  is the average Euclidean distance between any pair of existing local modes. c

K  is the average 

Euclidean distance between any pair of existing local modes within a distance less than c

K , and M  

in (13) is the number of such local mode pairs. c

K  is the average Euclidean distance between any pair 

of existing local modes within a distance less than c

K , M   in (14) is the number of such local mode 

pairs. 



Note that c

K , c

K  and c

K  are not problem- specific and are parameter-free. The relationship 

between c

K , c

K and c

K  is depicted in Fig. 3 using the wine dataset [1] again, where one can see that 
c

K  is a smaller value compared with c

K  and c

K  which are obtained as the average distance of two 

very close data cloud centres. 

The quantifier c

K  can be viewed as the estimation of the distances between the strongly 

connected data clouds condensing the local information from the whole dataset. Moreover, instead of 

relying on a fixed threshold, which may frequently fail, c

K , c

K and c

K  are derived from the dataset 

objectively and conforming with the concept of a mode. Experience has shown that they provide 

meaningful tessellations, regardless of the distribution of the data. 

Each centre j
μ  ( *1,2,..., Kj L ) is compared with the centres of neighbouring data clouds in terms 

of the global density: 

         max ,
j

G j G G j j

K K K
n

IF D D D THEN is one of the local maxima
     

  
μ μ μ μ          (15) 

where   
j

G

n
D μ  is the collection of global densities of the neighbouring centres, which satisfy the 

following condition: 

 
2

c
i j i jKIF THEN is neighbouring

 
  

 
μ μ μ μ                                                               (16) 

The criterion of neighbouring range is defined in this way because two centres with the distance 

smaller than  c

K   can be considered to be potentially relevant in the sense of spatial distance; c

K  is 

the average distance between the centres of any two potentially relevant data clouds. Therefore, when 

the condition (16) is satisfied, both i
μ  and j

μ  are highly influencing each other and, the data 

samples within the two corresponding data clouds are strongly connected. Therefore, the two data 

clouds are considered as neighbours. This criterion also guarantees that only small-size (less 

important) data clouds that significantly overlap with large-size (more important) ones will be 

removed during the filtering operation.  

After the filtering operation (stage 4), the data cloud centres with local maximum global densities 

denoted by   **

* * ** ** *| 1,2,..., ,
K

j

K K K
L

j L L L  μ μ  are obtained. Then,   **

*

KL
μ  are used as local 

modes for forming data clouds in stage 3 and are filtered in stage 4. 

Stages 3 and 4 are repeated until all the distances between the existing local modes exceed 
2

c

K . 

Finally, we obtain the remaining centres with the local maxima of GD , denoted by  o
μ , and use 

them as the local modes to form data clouds using (10).  

After the data clouds are formed, the corresponding centres, standard deviations, supports, 

members and other parameters of the formed data clouds can be extracted post factum. The final 

partitioning result of the wine dataset [1] is depicted in Fig. 4, where the dots in different colours 

stand for data samples from different data clouds, the black asterisks stand for the centres of the data 

clouds. 



 

Fig. 4. The partitioning result of the wine dataset (“o” in different colours denote data samples of 

different data clouds, “*” denote local modes). 

The main procedure of the proposed ADP algorithm (offline version) is presented in the following 

pseudo code. 

Offline ADP Algorithm 

Input: The static dataset  
K

x ; 

Algorithm Begins 

i. Calculate  G

K iD u  ( 1,2,..., Ki L  ) using (7) for all unique data samples; 

ii. Find the unique data sample *1
u  with global maximum of GD using (8); 

iii. Send *1
u  into  *

KL
u  and  *1G

KD u  into   *G

KD u  and delete *1
u  from  

KL
u ; 

iv. * *1r u u ; 

v. While  
KL
u   

* Find the unique data sample which is nearest to *r
u ; 

* Send the data sample and the corresponding GD  to  *

KL
u  and   *G

KD u , respectively; 

* Delete the data sample from  
KL

u ; 

* Set the data sample as the next *r
u ; 

vi. End While 

vii. Filter  *

KL
u  and   *G

KD u using (9) and obtain   *

**

KL
u  as local modes of data clouds; 

viii. While   *

**

KL
u  are not fixed 

* Use   *

**

KL
u  to form the data clouds from  

K
x using (10); 

* Obtain the new centres   *
KL

μ and support   *
KL

S of the data clouds; 

* Calculate  G j

KD μ ( *1,2,..., Kj L ) using (11); 



* Find the local maxima of  G j

KD μ  ( *1,2,..., Kj L ) using (15);  

* Select   **

*

KL
μ   with local maxima  G j

KD μ  as the new local modes. 

*   *

**

KL
u   **

*

KL
 μ ; 

* * **

K KL L ; 

ix. End While 

x.    *

**

K

o

L
μ u ; 

   xi. Build the data clouds with  o
μ using (10). 

Algorithm Ends 

Output: Data clouds formed around  o
μ . 

4.2 Evolving ADP Algorithm 

The proposed evolving ADP algorithm works with the local density, D  of the streaming data. 

This algorithm is able to start “from scratch”, i.e. with a single sample. In addition, a hybrid between 

the evolving and the offline versions is also possible.  

The main procedure of the evolving algorithm is as follows. 

Stage 1: Initialization 

We select the first data sample within the data stream as the first local mode. The proposed 

algorithm then starts to self-evolve its structure and update the parameters based on the arriving data 

samples.  

Stage 2: System structure and meta-parameters update 

For each newly arriving data sample at the current time instance 1k k   , denoted as kx , the 

global meta-parameters kμ  and kX  are updated with kx  firstly using (4) and (5). The local density at 

kx  and the centres of all the existing data clouds,  k kD x  and  i

k kD μ  ( 1,2,..., ki C ) are calculated 

using (6); here, we use kC  as the number of existing local modes at the k
th
 time instance.  

Then, the following condition [4] is checked to decide whether kx  will form a new data cloud: 

         

 

11
max min

k kC C
i i

k k k k k k k k
ii

k

IF D D OR D D

THEN becomes a new focal point



   
    

   
x μ x μ

x

                                                  (17) 

If the condition is met, a new data cloud is added with kx  as its local mode ( 1k kC C  ,

kC

k kμ x  and 1kC

kS  ). 

Otherwise, the existing local mode closest to kx  is found, denoted as n

kμ . Then, the following 

condition is checked before kx  is assigned to the data cloud formed around n

kμ : 

   
2

c
n nk

k k k kIF THEN is assigned to
 

  
 

x μ x μ                                                                  (18) 



However, it is not computationally efficient to calculate c

k  at each time when a new data sample 

arrives. Since the average distance between all the data samples d

k  is approximately equal to c

k , 
c d

k k  , c

k  can be replaced as: 

 
2

21 1

2
2

k k

i l
c d i l
k k k kX

k
   



   
 x x

μ                                                                            (19) 

If the condition (18) is satisfied, then kx  is associated with the nearest existing local mode n

kμ  

and the meta-parameters of n

kμ  are updated as follows: 

1n n

k kS S                                                                                                                                    (20) 

1

1 1
n

n nk
k k kn n

k k

S

S S



 μ μ x                                                                                                              (21) 

If the condition (18) is not satisfied, then kx  starts a new data cloud: 1k kC C  , kC

k kμ x  and 

1kC

kS  . 

The local modes and supports of other data clouds that do not get the new data sample stay the 

same for the next processing cycle. After the update of the system structure and the meta-parameters, 

the algorithm is ready for the next data sample. 

Stage 3: Forming data clouds 

When there are no more data samples, the identified local modes (renamed as  o
μ ) are used to 

build data clouds using (10). The parameters of these data clouds can be extracted post factum. 

The main procedure of the proposed ADP algorithm (evolving version) is presented in the 

following pseudo code. 

Evolving ADP Algorithm 

Input: The data stream  
K

x ; 

Algorithm Begins 

    A. While the new data sample kx  of the data stream is available (or until interrupted) 

i. If ( 1k  ) Then 

1. 
2 1 1

1 1 1 1 1 1 1 1; ; 1; ; 1;X C S    μ x x μ x  

ii. End If 

iii. If ( 1k  ) Then 

1. 1k k  ; 

2. Update kμ and kX  with kx  using (4) and (5); 

3. If (Condition (17) is met) Then 

* 1; 1; ;k kC C

k k k k kC C S   μ x  

4. Else  

* Find the nearest local mode n

kμ ; 

* If (Condition (18) is met) Then 



- 
1 1

; 1; ;
n

n n n nk
k k k k k k kn n

k k

S
C C S S

S S


    μ μ x  

* Else 

- 1; 1; ;k kC C

k k k k kC C S   μ x  

* End If 

5. End If 

iv. End If 

    B. End While 

    C. Build the data clouds with  o
μ using (10). 

Algorithm Ends 

Output: Data clouds formed around  o
μ . 

4.3 Handling the Outliers 

After the data clouds are formed by all the identified local modes, one may notice some data 

clouds with support equal to 1, which means that there is no sample associated with these data clouds 

except for the local modes. This kind of local modes are considered to be outliers and they are 

assigned to the nearest normal data cloud using (10) and the meta-parameters of the data clouds that 

receive new members are updated using (20) and (21). Nonetheless, we have to stress that these 

abnormal local modes are ignored from the partitioning results; they can still be kept in memory in 

case new data samples arrive.  

5. Numerical Examples 

In this section, we will study the performance of the proposed algorithms. All the numerical 

experiments are conducted with Matlab2015a on a PC with dual core i7 processor with clock 

frequency 3.4GHz each and 16GB RAM. The links to the code of the ADP algorithm and benchmark 

data/image sets we use in the numerical examples of this paper are given in Appendix. 

5.1 Experiments on Numerical Datasets 

In this subsection, a number of benchmark datasets are used in the performance evaluation as 

tabulated in Table 1. During the experiments, we assume that we do not have any prior knowledge 

about the benchmark datasets. The following well-known algorithms are used for comparison: 

i) MS: Mean-shift clustering algorithm [19]; 

ii) SUB: Subtractive clustering algorithm [18]; 

iii) DBS: DBScan clustering algorithm [21]; 

iv) SOM: Self-organizing map algorithm [34]; 

v) ELM: Evolving local means clustering algorithm [20]; 

vi) DP: Density peaks clustering algorithm [43]; 

vii)NMM: Nonparametric mixture model based clustering algorithm [11]; 

viii)NMI: Nonparametric mode identification based clustering algorithm  [36]; 

ix) CEDS: Clustering of evolving data streams algorithm [29]. 

 



Table 1. Details of the Benchmark Datasets for Evaluation 

Abbreviation Dataset NA
 b
 NS

 c
 NC

 d
 

PI PIMA [47] 8 768 2 

BA 
Banknote Authentication 

[37] 
4 1372 2 

S1 S1 [23] 2 5000 15 

S2 S2 [23] 2 5000 15 

CA Cardiotocography [9] 22 2126 3 

PB 
Pen-Based Handwritten 

Digits Recognition [2] 
16 10992 10 

ST Steel Plates Faults [14] 27 1941 7 

MU Multiple Features [30] 649 2000 10 

OD 
Occupancy Detection 

[16] 
a 5 20560 2 

MA 
MAGIC Gamma 

Telescope [13] 
10 19020 2 

LE Letter Recognition [24] 16 20000 26 
a
 The time stamps in the original dataset have been removed;

 b
 Number of 

attributes; 
c
 Number of samples; 

d
 Number of classes.  

The free parameters and prior assumptions required by the algorithms are listed in Table 2. The 

free parameter settings used in the experiments by the algorithms are also presented in this table. Due 

to the very limited prior knowledge during the experiments, the values of these free parameters as 

listed in Table 2 are determined by the recommendations and/or the experimental settings in the 

published literature to maximize performance of the datasets. In contrast, our approach does not 

utilize any of this knowledge, as it is self-organizing and autonomous. 

In order to objectively compare the performance of different algorithms, we consider the 

following measures: 

i) Number of data clouds/clusters (C), which should be equal or larger than the number of classes 

in the dataset; 

ii) Calinski Harabasz index (CH) [15], which is used to estimate the optimal number of clusters; 

the higher the Calinski Harabasz index is, the better the clustering result is; 

iii) Mean Silhouette coefficient (SI) [44], which is an indication of how well each sample lies 

within its cluster. The value range of this index is from -1 to 1. Mean Silhouette coefficient should 

also be as high as possible. 

iv) Time: The execution time (in seconds), which directly indicates the computational complexity 

and should be as small as possible.   

Table 2. Comparison of User Inputs and/or Prior Assumptions between Different Algorithms 

Algorithm Free Parameter(s) 
Prior 

Assumption 
Parameter Setting 

ADP none none no need 

MS 
i) bandwidth, p 

ii) kernel function type 

Gaussian 

distribution 

i) p= 0.15  [20] 

ii) Gaussian kernel 

SUB initial cluster radius, r 
Gaussian 

distribution 
r= 0.3 [18] 

DBS 

i) cluster radius, r 

ii) minimum number of data 

samples within the radius, p 

Gaussian 

distribution 

i) the value of the knee 

point of the sorted p-dist 

graph 

ii) p=4 [21] 

SOM net size none 12 12  [42] 



ELM initial cluster radius, r 
Gaussian 

distribution 
r=0.15 [20] 

DP 
i) minimum distance, ρ 

ii) local density value, δ 

Gaussian 

distribution 

i) relatively high, ρ 

ii) high, δ [43] 

NMM 
i) prior scaling parameter 

ii) kappa coefficient 

Gaussian 

distribution 
predefined [11]

 a
 

NMI grid size 
Gaussian 

distribution 
predefined [36] 

CEDS 

i) microCluster radius, r 

ii) decay factor, ω 

iii) min microCluster threshold, φ 

none 

i) r= 0.15 

ii) ω=500 

iii) φ=1 [29] 
                                                                                                                                                   a

 The parameters are fixed in advance 

The quality measures of performance of the algorithms in terms of C, CH, SI and time based on 

the benchmark datasets listed in Table 1 are tabulated in Table 3, where we further bold the top three 

of each performance measure in the experiments for visual clarity. 

Ideally, the number of data clouds/clusters generated should be equal or close to the number of 

classes (ground truth) in the dataset. However, in real situations, especially in the cases of large-scale 

and/or high dimensional datasets, data samples from different classes are more often mixed with each 

other, and data samples from the same class may spread into different locations far away from each 

other in the data space. The best way to deal with such datasets is to partition/cluster the data samples 

into smaller data clouds/clusters, and combine them later. Therefore, in this paper, we only require the 

numbers of data clouds/clusters in the clustering results to be close to the ground truth but larger than 

the number of classes, but not excessively large [28]. Therefore, we consider the clustering result with 

C meeting the following condition as a valid one: 

C SN C N a                                                                                                                              (22) 

In this paper, we consider 3a   as a generic value that is not user- or problem-dependent. The 

rationale is that it indicates an extreme case when each cluster, on average, has only 3  members. In 

this case, the clustering/partitioning result provides too many trivial clusters and is not understandable 

for users. If CC N , it implies that the clustering algorithm fails to separate the data samples from 

different classes.  

Therefore, we additionally add an extra column titled “V” to Table 3 indicating the Validity of the 

clustering results, where “√” denotes that the clustering result is valid, “×” denotes the invalid one. 

Table 3. Numerical Experiment Results on the Numerical Datasets 

 Algorithm C CH SI Time V 

PI 

ADP-o 
a 

21 601.6263 0.4673 0.16 √ 

ADP-e 
b 

22 572.2715 0.3470 0.18 √ 

MS 474   0.31 × 

SUB 9 256.7434 0.1002 0.52 √ 

DBS 4 51.9112 -0.0117 0.06 √ 

SOM 144 310.3476 0.3654 3.15 × 

ELM 14 31.8829 -0.3338 0.91 √ 

DP 3 294.9684 0.2895 1.69 √ 

NMM 3 243.4787 0.2416 107.04 √ 

NMI 7 278.691 0.5322 6.95 √ 

CEDS 768   0.78 × 

BA 

ADP-o 28 1128.1432 0.5616 0.19 √ 

ADP-e 27 932.6723 0.4937 0.28 √ 

MS 24 488.2148 0.3650 0.09 √ 

SUB 14 1068.8898 0.5311 0.99 √ 



DBS 48 352.5907 0.2138 0.18 √ 

SOM 144 1125.6221 0.5828 4.31 × 

ELM 1   54.69 × 

DP 2 723.7514 0.3877 2.57 √ 

NMM 4 787.2835 0.3718 170.46 √ 

NMI 20 690.5714 0.4894 6.74 √ 

CEDS 120 163.6131 0.1709 5.67 × 

S1 

ADP-o
 

15 22675.2540 0.8803 1.09 √ 

ADP-e 84 6178.3721 0.5949 0.99 √ 

MS 13   0.03 × 

SUB 10   2.62 × 

DBS 32 14877.9431 0.5851 2.24 √ 

SOM 144 14891.8742 0.5412 11.88 √ 

ELM 1   0.78 × 

DP 2   4.08 × 

NMM 6   814.18 × 

NMI 6   15.44 × 

CEDS 21 1285.7427 0.2913 11.85 × 

S2 

ADP-o
 

18 12109.9581 0.7609 1.05 √ 

ADP-e
 

65 4813.5951 0.5554 0.97 √ 

MS 13   0.05 × 

SUB 10   2.39 × 

DBS 35 3406.5872 0.2992 2.22 √ 

SOM 144 9575.3768 0.5215 11.47 √ 

ELM 1   0.77 × 

DP 2   5.11 × 

NMM 9   958.76 × 

NMI 4   16.81 × 

CEDS 26 1324.1078 0.2399 12.96 √ 

CA 

ADP-o 71 393.01630 0.3699 0.47 √ 

ADP-e 45 447.0620 0.3088 0.46 √ 

MS 3 41.7123 0.3353 0.18 √ 

SUB 73 235.8645 0.1459 5.77 √ 

DBS 11 24.3466 0.0377 0.52 √ 

SOM 144 330.5136 0.3361 7.12 × 

ELM 2   0.48 × 

DP 2   2.41 × 

NMM 3 445.4341 0.4161 257.86 √ 

NMI 175 272.1408 0.1288 40.35 × 

CEDS 77 272.1408 0.1288 6.55 √ 

PB 

ADP-o 79 1057.9771 0.3821 6.22 √ 

ADP-e 92 967.5478 0.3206 2.22 √ 

MS 8493   156.55 × 

SUB 187 382.6055 0.0113 82.98 √ 

DBS 38 385.3319 -0.0780 12.95 √ 

SOM 144 864.3771 0.2954 48.27 √ 

ELM 9   16.78 × 

DP 3   12.53 × 

NMM 41 980.6707 0.3190 7883.89 √ 

NMI 4316   2331.22 × 

CEDS 1   2466.47 × 

ST ADP-o 13 15349.4503 0.8507 0.28 √ 



ADP-e 34 11745.7686 0.6613 0.35 √ 

MS 1   0.78 × 

SUB 1   0.85 × 

DBS 14 3910.0867 0.7920 0.34 √ 

SOM 144 30043.6256 0.4979 7.84 × 

ELM 1553   1.43 × 

DP 2   2.48 × 

NMM 2   77.99 × 

NMI 6   12.35 × 

CEDS 18 24574.0909 0.7859 7.06 × 

MF 

ADP-o
 

63 618.6775 0.3474 2.96 √ 

ADP-e 78 414.2603 0.2513 1.19 √ 

MS 4   2.59 × 

SUB 1994   282.27 × 

DBS 5   1.51 × 

SOM 144 422.4845 0.2598 233.13 × 

ELM 1   0.48 × 

DP 2   4.28 × 

NMM 1   722.11 × 

NMI 1   1892.13 × 

CEDS 90 229.8913 -0.0274 47.97 √ 

OD 

ADP-o 18 34653.4935 0.7608 18.11 √ 

ADP-e
 

131 21530.3617 0.3573 4.03 √ 

MS 20 4291.6125 0.5733 0.10 √ 

SUB 9 19878.6811 0.3408 16.35 √ 

DBS 208 1995.0598 -0.6614 36.73 √ 

SOM 144 81402.2929 0.5776 51.05 √ 

ELM 1   1.17 × 

DP 2 5495.9202 0.6418 48.45 √ 

NMM 4 8017.4665 0.5216 2617.14 √ 

NMI 15 10922.5114 0.7368 396.67 √ 

CEDS 13 1555.1093 0.0898 42.22 √ 

MA 

ADP-o 47 1430.4657 0.4120 17.68 √ 

ADP-e 380 643.6832 0.2081 3.86 √ 

MS 1472 16.2135 -0.4401 48.58 × 

SUB 8 1730.7881 -0.1783 31.54 √ 

DBS 15 17.8876 -0.4656 37.15 √ 

SOM 144 1257.2603 0.2344 72.12 √ 

ELM 25 334.6816 -0.0155 28.55 √ 

DP 1   44.68 × 

NMM 4 2381.0536 0.5746 2486.65 √ 

NMI 1578 19.4133 -0.1805 6050.48 × 

CEDS 54 406.1227 -0.2991 5976.02 √ 

LE 

ADP-o 235 433.4874 0.3045 21.99 √ 

ADP-e 242 414.5848 0.2793 4.28 √ 

MS 7620   224.92 × 

SUB 153 471.2221 0.2026 154.50 √ 

DBS 51 94.7283 -0.3547 42.10 √ 

SOM 144 622.6495 0.2897 99.38 √ 

ELM 9   17.55 × 

DP 2   53.55 × 

NMM 52 481.4270 0.0237 15682.64 √ 



NMI 14526   5768.78 × 

CEDS 43 569.9774 0.0376 13109.01 √ 
a
 The ADP algorithm-offline version; 

b
 The ADP algorithm-evolving version. 

In the experiments, for the high dimensional datasets (N>20, N=NA), we normalize the data via 

the following equation, which converts the Euclidean distance between data samples into a cosine 

dissimilarity [28]: 

normalized x x x                                                                                                                           (23)  

We apply the following feature re-scaling operation on the low dimensional datasets (N<20)  for 

the MS , ELM and  CEDS algorithms [20],[29]: 

min

max min

i i
i

normalized i i

x x
x

x x





                                                                                                                   (24) 

where i  denotes the thi  dimension of the data,  1,2,...,i N ;  
max

ix  and 
min

ix  are the maximum and 

minimum values of the thi  attribute of the data. Note that, the Calinski Harabasz indexes of the results 

obtained by these two algorithms are calculated based on de-normalized results. 

 

                      (a) PI dataset- offline                                           (b) PI dataset- evolving 

 

                     (c) BA dataset- offline                                         (d) BA dataset- evolving 

Fig. 5. The data partitioning results (“o” in different colours denote data samples of different data 

clouds, “*” denote local modes) 

The partitioning results (both offline and evolving) of the PI and BA datasets are presented in Fig. 

5 as additional illustrations; here only the first two dimensions of the results are presented for visual 

clarity. 



5.2 Experiments on Image Datasets 

As it was stated in section 1, clustering techniques are widely used in image analysis. In this 

subsection, we also conduct several experiments on image clustering. The details of the benchmark 

image sets used in this subsection are tabulated in Table 4.  

Singapore image set [26] is a recently introduced benchmark dataset for remote sensing scene 

classification. Caltech 101 image set [22] is widely used as a benchmark for object recognition. 

MNIST image set [35] is the most widely used large scale dataset for handwritten digits recognition. 

Examples of these images are given in Fig. 6. 

Table 4. Details of the Benchmark Image Sets for Evaluation 

Abbreviation Image Set R
 a
 NA NS NC 

SIG Singapore [26] 256×256×3 4096 1086 9 

CAL Caltech 101 [22] 
Roughly 

300×200×3 
4096 9144 102 

MNI MNIST [35] 28×28×1 784 70000 10 
a
 Resolution. 

 

(a) Singapore remote sensing image set 

(b) Caltech 101 image set 

 

(c) MNIST image set 

Fig. 6. Illustrative examples of the images used in the experiments 

Images, especially, the large-size RGB ones, are significantly unstructured by their nature 

compared with numerical data. For example, pixels themselves do not have a spatial meaning. Instead 

of clustering the images based on the values of the pixels directly, one commonly used approach is to 

extract global features from the images and conduct image clustering based on the global features [7].  

Therefore, in this paper, for the Singapore and Caltech 101 image sets, we use the 1×4096 

dimensional activations of the pre-trained VGG-VD-16 convolutional neural network [46] from the 

first fully connected layer [52] as the feature vectors of the images for clustering.  The clustering 

results of the two image sets produced by the ten clustering algorithms based on the respective feature 

vectors are tabulated in Table 5. In the experiments of this subsection, equation (23) is used to 

normalize the feature vectors due to the very high dimensionality of the problems. 



Due to the wide variety of semantic contents and complex textural information contained in the 

images, separating images of different classes is very difficult. It is of great importance for a 

clustering/partitioning algorithm to be able to demonstrate strong separation ability. Therefore, for the 

image clustering problems, we involve an additional clustering quality measure, Purity (PU), which is 

calculated based on the result and the ground truth indicating the separation ability [20]: 

1

PU
C

i

D

i

S K


                                                                                                                             (25) 

where i

DS  is the number of data samples with the dominant class label in the i
th
 cluster. The higher 

purity the clustering result has, the stronger separation ability the clustering algorithm exhibits.  

Table 5. Image Clustering based on Feature Vectors 

 Algorithm C CH SI PU Time V 

SIG 

ADP-o
 

161 15.9752 0.1698 0.9871 3.54 √ 

ADP-e
 

97 21.4609 0.1460 0.9678 18.20 √ 

MS 1085    19.33 × 

SUB 1086    198.26 × 

DBS 2    0.95 × 

SOM 144 17.1072 0.1529 0.9853 473.30 √ 

ELM 804    126.70 × 

DP 2    3.93 × 

NMM No result generated after 10 hours × 

NMI 1086    17242.22 × 

CEDS 1086    400.17 × 

CAL 

ADP-o
 

1083 12.3015 0.0785 0.8372 289.22 √ 

ADP-e
 

441 24.6957 0.0567 0.8074 2362.12 √ 

MS 9094    2511.28 × 

SUB 9139    7770.47 × 

DBS 40    71.00 × 

SOM 144 64.8208 0.1435 0.7730 4630.92 √ 

ELM 1110 3.3999 -0.1791 0.4389 4205.27 √ 

DP 24    123.07 × 

NMM No result generated after 10 hours × 

NMI No result generated after 10 hours × 

CEDS No result generated after 10 hours × 

For the MNIST image set, due to the much simpler structure and semantic contents of the 

handwritten digit images, we can conduct the image clustering by using the pixels directly. In the 

following experiment, we convert each image from a 28×28 pixel matrix into a 1×784 pixel vector, 

and use the pixel vectors as the input to the clustering algorithms. The clustering results on the 

MNIST image set are tabulated in Table 6. However, as both the cardinality and dimensionality of 

this image set are very high, the computation- and memory-efficiency of the offline and incremental 

algorithms deteriorate dramatically due to the iterative learning process. Therefore, in this experiment, 

we only involve the clustering/data partitioning algorithms, which are non-iterative and “one pass”, 

namely, the evolving version of ADP, ELM and CEDS.  

Table 6. Image Clustering based on Pixel Values 

 Algorithm C CH SI PU Time V 

MNI 

ADP-e
 

4569 31.7081 0.0636 0.9547 9603.45 √ 

ELM 3    18.11 × 

CEDS No result generated after 10 hours × 



6. Analysis and Discussion 

In this section, we will analyse the performance of the proposed algorithm, and compare it with 8 

other well-known algorithms based on the numerical examples presented in section IV. 

i) MS algorithm [19] 

MS algorithm is very fast when the scale and dimensionality of the dataset is low. However, its 

calculation speed decreases quickly in processing large scale and high dimensional datasets.  The 

quality of its clustering results varies dramatically. Without prior knowledge, it produced invalid 

clustering results on many datasets. This is due to its gradient nature making it highly dependent on 

initial guess and being prone to fall into local minima [19].   

ii) SUB algorithm [18] 

The calculation efficiency of the SUB algorithm [18] is also largely dependent on the scale and 

dimensionality of the dataset. It is very inefficient with large-scale and high-dimensional datasets. The 

clustering results also vary a lot. This algorithm is able to perform high quality clustering on low-

dimensional and large-scale datasets. In other cases, however, it failed to give valid and/or useful 

clustering results. 

iii) DBS algorithm [21] 

DBS algorithm [21] is an efficient incremental online algorithm. The results it produced generally 

contain smaller number of clusters. However, the quality of its clustering results is very low. One may 

also notice that, DBScan algorithm is not effective in handling high-dimensional and large-scale 

datasets. 

iv) SOM algorithm [34] 

SOM algorithm [34] requires the size of its net to be pre-fixed and, thus, always produces results 

with the same number of clusters. The pre-fixed net size enabled the algorithm to perform high quality 

clustering on high- dimensional and large-scale datasets. However, its calculation efficiency is much 

lower and it failed to give useful clustering results on small-size datasets. 

v) ELM algorithm [20] 

ELM algorithm [20] was exhibiting high quality clustering performance on small-scale datasets. 

However, it did not give any useful clustering results on low-dimensional and large-scale datasets. In 

complex problems, the algorithm failed to separate the data samples of different classes.   

vi) DP algorithm [43] 

DP algorithm [43] does not require any prior knowledge in advance, however, during the 

operation, users need to make choices based on a decision graph generated from the data, namely, to 

choose one of the rectangles corresponding to the proper minimum distance between centres and local 

density value. Different choices can lead to very different results and there could be thousands of 

rectangles generated from datasets with huge size and high dimensionality, which makes it impossible 

for users to select. 

Moreover, using the recommended selection, the algorithm failed to separate the data samples of 

different classes for high-dimensional and large-scale datasets. 

vii) NMM algorithm [11] 

NMM algorithm [11] is one of the so-called “nonparametric” algorithms in the comparison 

despite having a number of pre-defined parameters and coefficients.  

This algorithm is based on the prior assumption of data distribution being Gaussian. This 

algorithm can give very good clustering results on datasets with Gaussian or similar distributions. 

However, this algorithm failed to give useful clustering results on many other datasets. In addition, its 

computation efficiency is low. 



viii) NMI algorithm [36] 

NMI algorithm [36] is also a so-called “nonparametric” approach. Similarly to the mixture model 

clustering algorithm [11], it has a number of pre-defined parameters, i.e. grid size, interval between 

two grids, and it assumes that the data has a Gaussian distribution. This algorithm is very accurate 

when the datasets are small and the structure is simple.  

However, it provided invalid results in processing large-scale and high dimensional datasets. 

Moreover, its computation efficiency is also largely influenced by the size and dimensionality of the 

data. 

ix) CEDS algorithm [29] 

CEDS [29] is a recently introduced algorithm for streaming data clustering. This algorithm can 

follow the changing data pattern of the data stream and group the samples into arbitrary shaped 

clusters. Nonetheless, based on the recommended experimental settings, this algorithm is only 

effective on lower dimensional and/or smaller size datasets, and it frequently fails on complex 

problems. Its computation efficiency is also very low on large-scale problems. 

x) ADP algorithm 

As a real algorithm that is free from user- and problem- specific parameters, the proposed ADP 

algorithm is able to consistently provide high quality clustering results without any user inputs or 

prior assumptions. Both versions (offline and evolving) are highly efficient computationally and they 

are very effective in handling datasets with different scale and dimensionality. The indexes measured 

from the clustering results are all highly ranked compared with the other 9 comparative algorithms 

used for comparison. From the rank in Tables 3, 5 and 6 one can see that the proposed algorithm is 

always ranked in the top 3. The computation time is also within the fastest. It is critically important to 

notice that the proposed algorithm is autonomous, user- and problem- parameter free. In addition, it 

can evolve its structure to follow the changing data pattern, while others are not. In addition, from the 

numerical examples one can notice that, the proposed algorithm exhibits even higher effectiveness 

and efficiency in handling large-scale and higher dimensional datasets compared with other 

algorithms. 

The strong performance of the proposed ADP algorithm comes from a fundamentally different 

data processing approach based on rank operators. Rank operators are normally avoided in clustering 

because they are non-linear operators, and so most clustering algorithms prefer the linear mean 

operator. We believe that the specificity of the rank operator plays a central role in the creation of 

more parsimonious partitions, specifically when augmented with local mode definitions that are 

parameter free.  Although computationally more demanding, on line rank updates are still practical as 

we show in our work. For the offline version, the ADP algorithm identifies prototypes from the data 

samples based on their ranks in terms of the data densities and mutual distances instead of the 

commonly used means and variances, and use the prototypes to aggregate data samples around them 

forming Voronoi tessellations [41]. For the evolving version of the ADP algorithm, it has a more 

flexible evolving structure compared with other online approaches due to its prototype-based nature. 

In addition, it replaces the pre-defined threshold, which is commonly used in other online approaches, 

with a dynamically changing threshold derived from the data. Therefore, the ADP algorithm is able to 

obtain a more stable, effective and objective partitioning compared with other approaches. 

However, we have to admit that, although the data partitioning results obtained by the offline 

version of the ADP algorithm are not influenced by the order of the input data because of the ranking 

operations, there is no guarantee that the partitioning results can converge to a locally optimal solution 

because of other greedy steps in the algorithmic procedure (multiple peaks, etc.). Alternatively, there 

is no known iterative process for minimizing an objective function involved in the ADP algorithm (in 

both the offline and evolving versions). Nonetheless, by involving an iterative process to minimizing 

the objective function in a similar way as described in [45], the ADP algorithm can also converge to 

the locally optimal partitions, but this is out of the scope of this paper. 



7. Conclusion and Future Work 

In this paper, a novel algorithm for data partitioning, named autonomous data partition (ADP), 

was introduced. Both, the offline and evolving versions of the ADP algorithm are entirely data-driven, 

autonomous and require no user- and problem- specific input. Using nonparametric operators, the 

proposed algorithm is able to identify the local modes representing the local maxima of the density 

based on the empirically observed data samples. It partitions the data space into the shape- and 

parameter-free data clouds. Compared with the well-known algorithms, the proposed approach has the 

following significant advantages: 

i) It is free from prior assumptions and user- and problem- specific parameters; 

ii) It is able to conduct high-quality clustering in a short time without the need of prior knowledge. 

Numerical experiments conducted with the benchmark datasets demonstrate the validity of the 

proposed algorithm and also show its advantages compared with the alternative well-known 

algorithms. Moreover, the advantages of the ADP algorithm are even more pronounced on larger size, 

higher dimensional, complex problems. 

As future work, we will study the local optimality and convergence of the ADP algorithm. We will 

also apply the proposed algorithm to more complex problems, i.e. remote sensing scene image 

analysis, high frequency trading, etc., and study the underlying data patterns behind them.  

Appendix 

  Web Link 

Codes 

ADP Algorithm http://empiricaldataanalytics.org/downloads.html 

Pre-trained VGG-VD-

16 convolutional neural 

network [46] 

http://www.vlfeat.org/matconvnet/pretrained/ 

Datasets 

PIMA [47] https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes 

Banknote 

Authentication [37] 
https://archive.ics.uci.edu/ml/datasets/banknote+authentication 

S1 [23] http://cs.joensuu.fi/sipu/datasets/ 

S2 [23] http://cs.joensuu.fi/sipu/datasets/ 

Cardiotocography [9] https://archive.ics.uci.edu/ml/datasets/cardiotocography 

Pen-Based Handwritten 

Digits Recognition [2] 

https://archive.ics.uci.edu/ml/datasets/Pen-

Based+Recognition+of+Handwritten+Digits 

Steel Plates Faults [14] http://archive.ics.uci.edu/ml/datasets/steel+plates+faults 

Multiple Features [30] https://archive.ics.uci.edu/ml/datasets/Multiple+Features 

Occupancy Detection 

[16]
 

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+ 

MAGIC Gamma 

Telescope [13] 
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope 

Letter Recognition [24] https://archive.ics.uci.edu/ml/datasets/letter+recognition 

Singapore [26] http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx 

Caltech 101 [22] http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 

MNIST [35] http://yann.lecun.com/exdb/mnist/ 
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