
A Method for Autonomous Data Partitioning

Xiaowei Gu
1
, Plamen P. Angelov

1,2
, and José C. Príncipe

3

1
School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK;

2
Technical University, Sofia, 1000, Bulgaria (Honorary Professor);

3
Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering,

University of Florida, USA.

E-mail: x.gu3@lancaster.ac.uk, p.angelov@lancaster.ac.uk, principe@cnel.ufl.edu

Abstract- In this paper, we propose a fully autonomous, local-modes-based data partitioning

algorithm, which is able to automatically recognize local maxima of the data density from empirical

observations and use them as focal points to form shape-free data clouds, i.e. a form of Voronoi

tessellation. The method is free from user- and problem- specific parameters and prior assumptions.

The proposed algorithm has two versions: i) offline for static data and ii) evolving for streaming data.

Numerical results based on benchmark datasets prove the validity of the proposed algorithm and

demonstrate its excellent performance and high computational efficiency compared with the state-of-

art clustering algorithms.

Keywords- autonomous, data partitioning, local modes, Voronoi tessellation.

1. Introduction

Clustering aims at identifying the intrinsic data patterns. The main task of clustering methods is to

group similar data samples together and separate them from the less similar ones. As a common

unsupervised machine learning technique for statistical data analysis, clustering has long been

considered as one of the most effective tools for information extraction and summarization because it

does not require labelling [34]. Clustering is widely used in many fields of study including pattern

recognition, image analysis, biology, natural language processing, etc., and thus, is a hot topic in the

field of data analytics [34],[50]. Nonetheless, established clustering methods require proper parameter

settings that can be very different across datasets, and their performance is heavily relying on the

prior knowledge and assumptions. However, prior knowledge in real situations is usually very limited

and assumptions are seldom met.

In this paper, we propose a fully autonomous local-modes-based free-shape data partitioning

method named “autonomous data partitioning (ADP)”. Local modes are akin of the peaks of the local

data density. The proposed method is free from user- and problem-specific parameters and prior

assumptions. It also utilizes parameter-free operators to disclose the underlying data distribution and

ensemble properties of the empirically observed data using the natural distance metric. Based on

these, the local modes representing the local maxima of the data density can be automatically

determined. The proposed approach uses these local modes to partition the data space in shape-free

data clouds [3],[4] (a kind of Voronoi tessellation [41]). This objectively represents the real data

distribution unlike the desirable/expected (often subjectively) preferences represented by traditional

clusters. The comparison between the established clustering approaches and the proposed ADP

algorithm is presented in Fig. 1.

The proposed ADP algorithm has an offline version and an evolving version. Its offline version is

based on the ranks of the data samples in terms of their densities and mutual distances instead of the

commonly used means and variances. Ranks are very important but other approaches avoid them

because they are nonlinear and discrete operators. Therefore, the offline version is more stable and

effective in partitioning static datasets. The evolving version is also generic and fully data-driven. It

can continue the offline partitioning process with the newly arrived data, but can also start without

initial conditions.

mailto:x.gu3@lancaster.ac.uk
mailto:x.gu3,%20p.angelov%7d@lancaster.ac.uk
mailto:principe@cnel.ufl.edu

Numerical experiments based on benchmark datasets demonstrate that the proposed algorithm is

able to achieve excellent clustering performance very quickly without user- or problem- specific prior

knowledge. More importantly, the ADP algorithm performs much better on the larger size and high

dimensional datasets on which the current clustering algorithms struggle.

The remainder of this paper is organized as follows. The related work is reviewed in section 2.

Section 3 summarizes the theoretical basis of the proposed ADP approach. The ADP approach is

introduced in section 4. The numerical examples are presented in section 5. Section 6 provides a

detailed analysis and discussions based on section 5 and section 7 concludes the paper.

(a) Established clustering algorithms

(b) The ADP algorithm

Fig.1. Comparison between the current clustering algorithms and the proposed ADP algorithm

2. Related Work

As it was stated in the first section, the current clustering algorithms need various types of free

parameters to be predefined by users. These user inputs include the number of clusters/centroids

[10],[33],[39],[50], threshold [18],[32],[49],[53], the type and parameters of the kernel function

[17],[19],[21],[43], radius of the clusters [12],[20],[21],[35], net size [34],[42], etc. They can

significantly influence the performance and efficiency of the algorithms. Pre-setting the suitable

parameters for clustering algorithms is always a challenging task and requires a certain amount of

prior knowledge. In real situations, however, prior knowledge is very limited and not enough for

users to decide the best inputs for these algorithms in advance. Without carefully chosen parameters,

the efficiency as well as the effectiveness of the clustering algorithms is lower than reported.

One popular alternative method to overcome the problem is to pre-define parametric penalty

function and iteratively achieve the optimal clustering result by satisfying the constraints imposed by

the penalty function [25],[48],[54]. However, this kind of methods also raises the questions about the

objectiveness and effectiveness of the penalty function. In addition, the computational efficiency of

these methods deteriorates rapidly with the increase of the scale of the data.

To avoid the requirement of user inputs, a number of so-called “nonparametric” clustering

techniques were proposed within the last decade [11],[27],[36]. However, instead of being really

nonparametric, these clustering techniques, in fact, tune a number of parameters in advance and fix

them for different problems.

The other problem that these clustering approaches [11],[12],[18],[19],[21],[27],[36],[40],[53]

currently have is that they simplify the real data representation by assuming that the data follows a

specific distribution (i.e. most often a Gaussian). However, this prior assumption oversimplifies the

real problems, and often leads to unnatural clustering results. Lifting these assumptions is possible

Prior

Assumptions

Presumed Data Distribution and

Generation Model

Observed Data

Parameterised

Clusters Extracted

Posterior Parameter

Extracted

Ensemble Properties

Extracted Using Parameter-

Free Operators

Observed

Data

Data Clouds Formed

around Local Modes

with information theoretic [31] and spectral clustering [38], but at the expense of much higher

computational cost.

In comparison to the state-of-the-art approaches, the proposed ADP method has the following two

unique properties:

1) it is data-driven and free from user- and problem- specific parameters;

2) it does not impose a data generation model on the empirical observations.

3. Theoretical Basis

The proposed ADP approach is proposed within the recently introduced Empirical Data Analysis

(EDA) framework [5],[6],[8]. EDA resembles statistical learning in its nature but is free from the

range of assumptions made in traditional probability theory and statistical learning approaches

[5],[6],[8]. EDA measures play an instrumental role in the proposed ADP approach for extracting the

ensemble properties from the observed data (see Fig. 1(b)), and frees the ADP algorithm from the

requirement to make prior assumptions on the data generation model and user- and problem-specific

parameters (see Fig. 1(a)). Most importantly, they guarantee objectiveness of the partitioning results.

Firstly, we define the data set/stream in the Euclidean data space
N

R as    1 2, ,..., KK
x x x x ,

k
x

T

,1 ,2 ,
, ,...,

k k k N
x x x  

N
R , where 1,2,...,k K is an order index. We, further, consider that some

data samples within the data set/stream can have the same value, i.e. ,k j k j  x x . The set of

sorted unique data samples is denoted as    1 2, ,...,
KK

LL
u u u u ,

T

,1 ,2 ,, ,...,j j j j Nu u u   u (

1,2,..., Kj L),     ,
KL K
u x KL  K with the corresponding occurrence  

KL
f   1 2, ,...,

KLf f f ,

1

1
KL

k

k

f


 .

In this paper, we use the natural metric of the space of samples (i.e. Euclidean distance) for

clarity, however, various types of distances within the data space,
N

R can be considered as well. In

the remainder of this paper, all the derivations are conducted at the
thK time instance except when

specifically mentioned.

In this section, we will summarize the nonparametric EDA measures that we use in ADP:

i) local density, D [6],[8];

ii) global density,
GD [6],[8];

and their recursive implementations. They will be briefly reviewed next to make the paper self-

contained.

3.1 Local Density

Local density [6] is a measure within EDA framework identifying the main local mode of the data

distribution and is derived empirically from all the observed data samples in a parameter-free way.

The local density, D of the data sample ix is expressed as follows (1,2,..., ;k K 1KL ) [6],[8]:

 
 

 

2

1 1

2

1

,

2 ,

K K

j l

j l

K k K

k l

l

d

D

K d

 









x x

x

x x

 (1)

where  ,k ld x x is the distance between data samples kx and jx ; the coefficient 2 is used in the

denominator for normalization (because each distance is counted twice in the numerator).

For the case of Euclidean distance, the calculation of  
22

1 1

,
K K

k l k l

l l

d
 

  x x x x and

 2

1 1

,
K K

j l

j l

d
 

 x x
2

1 1

K K

j l

j l 

 x x can be simplified by using the mean of  
K

x , Kμ and the

average scalar product, KX as [6],[8]:

 2 2 2

1

K

k l k K K K

l

K X


     x x x μ μ (2)

 
2 22

1 1

2
K K

j l K K

j l

K X
 

   x x μ (3)

Kμ and KX can be updated recursively as [4]:

1 1 1

1 1
; ; 1,2,...,k k k

k
k K

k k



   μ μ x μ x (4)

2 2

1 1 1

1 1
; ; 1,2,...,k k k

k
X X X k K

k k



   x x (5)

The recursive calculation of Kμ and KX allows for “one pass” evaluation, thus, ensures

computation-efficiency because only the key aggregated/summarized information has to be kept in

memory.

Combining (1)-(5), we can re-formulate the local density, D in a recursive form:

  2

2

1

1

K k

k K

K K

D

X







x
x μ

μ

 (6)

From (6) we can see that when the Euclidean distance is used, the local density, D behaves as a

Cauchy function, while there is no prior assumption about the type of the distribution involved.

Note that  0 1K kD x and the closer kx is to the main local mode, the higher the value of

 K kD x is.

3.2 Global density

The global density,
GD estimated at the unique data sample ku is a weighted sum of its local

density by the corresponding occurrence, kf (1,2,..., ;Kk L 1KL ), expressed as follows [6],[8]:

    2

2
1

1

K

G i k
K k K kL

k K
j

j
K K

f f
D D

f

X

 






u u

u μ

μ

 (7)

It is clear that it behaves locally as a Cauchy function, but has multiple local modes/peaks which

depend on kf (if KL K , global density reduces to the local density but with a smaller amplitude).

The largest of the peaks is called the global peak. The global density can directly disclose the data

pattern without any further pre-processing. This property can be very useful in real cases where the

units of measurement are fixed and data samples measured at different indices are likely to share the

same values. The reason we do not stop with D
G

but move further with partitioning is that although it

is fully automatic and objective, D
G

often reveals too many local peaks.

4. The Autonomous Data Partitioning Algorithm

In this section, we will describe the proposed ADP algorithm for further refining the local modes

of the data set/stream. The local modes are defined as the local maxima of the global data density and

are constructed directly from samples. These local modes play a key role in partitioning the data space

into shape-free data clouds [3],[4] by aggregating data samples around them and forming naturally a

Voronoi tessellation [41]. We will present two independent algorithms for the two versions, i) offline

and ii) evolving.

4.1 Offline ADP Algorithm

The offline ADP algorithm works with the global density,
GD of the observed data samples. It is

based on the ranks of the data samples in terms of their global densities and mutual distributions. Its

main procedure is described as follows:

Stage 1: Rank order the samples with regards to the distance to the global mode

We start by organizing the unique data samples  
K

u into an indexing list, denoted by  *

K
u

based on their mutual distances and values of the global density,
GD .

Firstly, the global densities of the unique data samples,  G

K iD u (1,2,..., Ki L) are calculated

using (7). The unique data sample with the highest global density is then selected as the first element

of the indexing list  *

KL
u :

  *1

1,2,...,

arg max
K

G

K j
j L

D


u u (8)

We set *1
u as the first reference point: * *1r u u and remove *1

u from  
KL

u . Then, by selecting

out the unique data sample which is nearest to *r
u , the second element of  *

KL
u denoted by *2

u is

identified and it is set as the new reference point (* *2r u u) and, is also removed from  
KL

u . The

process is repeated until  
KL

u becomes empty, and the rank ordered list  *

KL
u is finally derived.

Based on this list, we can rank the global density of the unique data samples as:   *G

KD u

  *1 ,G

KD u  *2 ,G

KD u  *..., KLG

KD u .

An example using the wine dataset [1] is shown in Fig. 2. Fig. 2(a) shows the global density of the

wine dataset, Fig. 2(b) shows the ranked global density.

Stage 2: Detecting local maxima (local modes)

Based on the list  *

KL
u and the ranked global density   *G

KD u , we can identify all the data

samples with the local maxima of GD directly as follows:

             
 

* 1 * 1* *

*

sgn 1 sgn 1
j jG j G G G j

K K K K

j G

IF D D AND D D

THEN is a local maximum of D

 
    u u u u

u

 (9)

where  

1 0

sgn 0 0

1 0

x

x x

x




 
 

 is the sign function; we denote the collection of data samples with the

local maxima of GD as    **

*

** *| 1,2,...,j

K
K

L
j L u u (*

K KL L). The local maxima (peaks) identified

from the Wine dataset [1] are marked by red circles in Fig. 2(b). The locations of the local maxima in

the data space are depicted in Fig. 2(c).

 (a) The global density, D
G
 (b) The ranked D

G
 and the identified local maxima

(c) The locations of local maxima in the data space

Fig.2. Illustrative example based on the wine dataset

Stage 3: Forming data clouds

The local peaks identified from the indexing list, namely,   *

**

KL
u , are then used to attract the data

samples  
K

x that are closer to them using a min operator:

 **

*

*

1,2,...,

argmin ; 1,2,..., ; 1j

K

i K
j L

winning cloud i K L


   x u (10)

By assigning all the data samples to the nearest local maxima, a number of Voronoi tessellations

[41] are naturally formed and data clouds are built around the local maxima [3],[4]. More importantly,

the process is free from any threshold.

After the data clouds are formed, the actual centre (mean) j
μ and the standard deviation j

(*1,2,..., Kj L) per data cloud and the support, jS , namely, the number of data samples within the

data cloud can be calculated easily. Note that, all this procedure is post factum, i.e. it is determined

bottom up from the data without a prior assumption, except the selection of the metric.

Stage 4: Filtering local modes

The data clouds formed in the previous stage may contain some less representative ones;

therefore, in this stage, we filter the initial Voronoi tessellations and combine them into larger, more

meaningful data clouds.

The global densities at the data clouds centres   *
KL

μ are firstly calculated as follows

(*1,2,..., Kj L):

  2

2
1

j
G j

K
j

K

K K

S
D

X







μ
μ μ

μ

 (11)

where jS is the support of the data cloud.

In order to identify the centres with the local maxima of the global density, we introduce the

following three objectively derived quantifiers of the data pattern:

i)  
* *1

* *

1 1

2 1
K KL L

c p q

K K K

p q p

L L


  

    μ μ (12)

ii)
  * , , c

KLKc

K
M






   






x,y μ x y x y

x y

 (13)

iii)
  * , , c

KLKc

K
M






   






x, y μ x y x y

x y

 (14)

Fig.3. Plot of c

K , c

K and c

K on the wine dataset.

c

K is the average Euclidean distance between any pair of existing local modes. c

K is the average

Euclidean distance between any pair of existing local modes within a distance less than c

K , and M

in (13) is the number of such local mode pairs. c

K is the average Euclidean distance between any pair

of existing local modes within a distance less than c

K , M  in (14) is the number of such local mode

pairs.

Note that c

K , c

K and c

K are not problem- specific and are parameter-free. The relationship

between c

K , c

K and c

K is depicted in Fig. 3 using the wine dataset [1] again, where one can see that
c

K is a smaller value compared with c

K and c

K which are obtained as the average distance of two

very close data cloud centres.

The quantifier c

K can be viewed as the estimation of the distances between the strongly

connected data clouds condensing the local information from the whole dataset. Moreover, instead of

relying on a fixed threshold, which may frequently fail, c

K , c

K and c

K are derived from the dataset

objectively and conforming with the concept of a mode. Experience has shown that they provide

meaningful tessellations, regardless of the distribution of the data.

Each centre j
μ (*1,2,..., Kj L) is compared with the centres of neighbouring data clouds in terms

of the global density:

         max ,
j

G j G G j j

K K K
n

IF D D D THEN is one of the local maxima
     

  
μ μ μ μ (15)

where   
j

G

n
D μ is the collection of global densities of the neighbouring centres, which satisfy the

following condition:

 
2

c
i j i jKIF THEN is neighbouring

 
  

 
μ μ μ μ (16)

The criterion of neighbouring range is defined in this way because two centres with the distance

smaller than c

K can be considered to be potentially relevant in the sense of spatial distance; c

K is

the average distance between the centres of any two potentially relevant data clouds. Therefore, when

the condition (16) is satisfied, both i
μ and j

μ are highly influencing each other and, the data

samples within the two corresponding data clouds are strongly connected. Therefore, the two data

clouds are considered as neighbours. This criterion also guarantees that only small-size (less

important) data clouds that significantly overlap with large-size (more important) ones will be

removed during the filtering operation.

After the filtering operation (stage 4), the data cloud centres with local maximum global densities

denoted by   **

* * ** ** *| 1,2,..., ,
K

j

K K K
L

j L L L  μ μ are obtained. Then,   **

*

KL
μ are used as local

modes for forming data clouds in stage 3 and are filtered in stage 4.

Stages 3 and 4 are repeated until all the distances between the existing local modes exceed
2

c

K .

Finally, we obtain the remaining centres with the local maxima of GD , denoted by  o
μ , and use

them as the local modes to form data clouds using (10).

After the data clouds are formed, the corresponding centres, standard deviations, supports,

members and other parameters of the formed data clouds can be extracted post factum. The final

partitioning result of the wine dataset [1] is depicted in Fig. 4, where the dots in different colours

stand for data samples from different data clouds, the black asterisks stand for the centres of the data

clouds.

Fig. 4. The partitioning result of the wine dataset (“o” in different colours denote data samples of

different data clouds, “*” denote local modes).

The main procedure of the proposed ADP algorithm (offline version) is presented in the following

pseudo code.

Offline ADP Algorithm

Input: The static dataset  
K

x ;

Algorithm Begins

i. Calculate  G

K iD u (1,2,..., Ki L) using (7) for all unique data samples;

ii. Find the unique data sample *1
u with global maximum of GD using (8);

iii. Send *1
u into  *

KL
u and  *1G

KD u into   *G

KD u and delete *1
u from  

KL
u ;

iv. * *1r u u ;

v. While  
KL
u 

* Find the unique data sample which is nearest to *r
u ;

* Send the data sample and the corresponding GD to  *

KL
u and   *G

KD u , respectively;

* Delete the data sample from  
KL

u ;

* Set the data sample as the next *r
u ;

vi. End While

vii. Filter  *

KL
u and   *G

KD u using (9) and obtain   *

**

KL
u as local modes of data clouds;

viii. While   *

**

KL
u are not fixed

* Use   *

**

KL
u to form the data clouds from  

K
x using (10);

* Obtain the new centres   *
KL

μ and support   *
KL

S of the data clouds;

* Calculate  G j

KD μ (*1,2,..., Kj L) using (11);

* Find the local maxima of  G j

KD μ (*1,2,..., Kj L) using (15);

* Select   **

*

KL
μ with local maxima  G j

KD μ as the new local modes.

*   *

**

KL
u   **

*

KL
 μ ;

* * **

K KL L ;

ix. End While

x.    *

**

K

o

L
μ u ;

 xi. Build the data clouds with  o
μ using (10).

Algorithm Ends

Output: Data clouds formed around  o
μ .

4.2 Evolving ADP Algorithm

The proposed evolving ADP algorithm works with the local density, D of the streaming data.

This algorithm is able to start “from scratch”, i.e. with a single sample. In addition, a hybrid between

the evolving and the offline versions is also possible.

The main procedure of the evolving algorithm is as follows.

Stage 1: Initialization

We select the first data sample within the data stream as the first local mode. The proposed

algorithm then starts to self-evolve its structure and update the parameters based on the arriving data

samples.

Stage 2: System structure and meta-parameters update

For each newly arriving data sample at the current time instance 1k k  , denoted as kx , the

global meta-parameters kμ and kX are updated with kx firstly using (4) and (5). The local density at

kx and the centres of all the existing data clouds,  k kD x and  i

k kD μ (1,2,..., ki C) are calculated

using (6); here, we use kC as the number of existing local modes at the k
th
 time instance.

Then, the following condition [4] is checked to decide whether kx will form a new data cloud:

         

 

11
max min

k kC C
i i

k k k k k k k k
ii

k

IF D D OR D D

THEN becomes a new focal point



   
    

   
x μ x μ

x

 (17)

If the condition is met, a new data cloud is added with kx as its local mode (1k kC C  ,

kC

k kμ x and 1kC

kS ).

Otherwise, the existing local mode closest to kx is found, denoted as n

kμ . Then, the following

condition is checked before kx is assigned to the data cloud formed around n

kμ :

  
2

c
n nk

k k k kIF THEN is assigned to
 

  
 

x μ x μ (18)

However, it is not computationally efficient to calculate c

k at each time when a new data sample

arrives. Since the average distance between all the data samples d

k is approximately equal to c

k ,
c d

k k  , c

k can be replaced as:

 
2

21 1

2
2

k k

i l
c d i l
k k k kX

k
   



   
 x x

μ (19)

If the condition (18) is satisfied, then kx is associated with the nearest existing local mode n

kμ

and the meta-parameters of n

kμ are updated as follows:

1n n

k kS S  (20)

1

1 1
n

n nk
k k kn n

k k

S

S S



 μ μ x (21)

If the condition (18) is not satisfied, then kx starts a new data cloud: 1k kC C  , kC

k kμ x and

1kC

kS  .

The local modes and supports of other data clouds that do not get the new data sample stay the

same for the next processing cycle. After the update of the system structure and the meta-parameters,

the algorithm is ready for the next data sample.

Stage 3: Forming data clouds

When there are no more data samples, the identified local modes (renamed as  o
μ) are used to

build data clouds using (10). The parameters of these data clouds can be extracted post factum.

The main procedure of the proposed ADP algorithm (evolving version) is presented in the

following pseudo code.

Evolving ADP Algorithm

Input: The data stream  
K

x ;

Algorithm Begins

 A. While the new data sample kx of the data stream is available (or until interrupted)

i. If (1k ) Then

1.
2 1 1

1 1 1 1 1 1 1 1; ; 1; ; 1;X C S    μ x x μ x

ii. End If

iii. If (1k ) Then

1. 1k k  ;

2. Update kμ and kX with kx using (4) and (5);

3. If (Condition (17) is met) Then

* 1; 1; ;k kC C

k k k k kC C S   μ x

4. Else

* Find the nearest local mode n

kμ ;

* If (Condition (18) is met) Then

-
1 1

; 1; ;
n

n n n nk
k k k k k k kn n

k k

S
C C S S

S S


    μ μ x

* Else

- 1; 1; ;k kC C

k k k k kC C S   μ x

* End If

5. End If

iv. End If

 B. End While

 C. Build the data clouds with  o
μ using (10).

Algorithm Ends

Output: Data clouds formed around  o
μ .

4.3 Handling the Outliers

After the data clouds are formed by all the identified local modes, one may notice some data

clouds with support equal to 1, which means that there is no sample associated with these data clouds

except for the local modes. This kind of local modes are considered to be outliers and they are

assigned to the nearest normal data cloud using (10) and the meta-parameters of the data clouds that

receive new members are updated using (20) and (21). Nonetheless, we have to stress that these

abnormal local modes are ignored from the partitioning results; they can still be kept in memory in

case new data samples arrive.

5. Numerical Examples

In this section, we will study the performance of the proposed algorithms. All the numerical

experiments are conducted with Matlab2015a on a PC with dual core i7 processor with clock

frequency 3.4GHz each and 16GB RAM. The links to the code of the ADP algorithm and benchmark

data/image sets we use in the numerical examples of this paper are given in Appendix.

5.1 Experiments on Numerical Datasets

In this subsection, a number of benchmark datasets are used in the performance evaluation as

tabulated in Table 1. During the experiments, we assume that we do not have any prior knowledge

about the benchmark datasets. The following well-known algorithms are used for comparison:

i) MS: Mean-shift clustering algorithm [19];

ii) SUB: Subtractive clustering algorithm [18];

iii) DBS: DBScan clustering algorithm [21];

iv) SOM: Self-organizing map algorithm [34];

v) ELM: Evolving local means clustering algorithm [20];

vi) DP: Density peaks clustering algorithm [43];

vii)NMM: Nonparametric mixture model based clustering algorithm [11];

viii)NMI: Nonparametric mode identification based clustering algorithm [36];

ix) CEDS: Clustering of evolving data streams algorithm [29].

Table 1. Details of the Benchmark Datasets for Evaluation

Abbreviation Dataset NA
 b
 NS

 c
 NC

 d

PI PIMA [47] 8 768 2

BA
Banknote Authentication

[37]
4 1372 2

S1 S1 [23] 2 5000 15

S2 S2 [23] 2 5000 15

CA Cardiotocography [9] 22 2126 3

PB
Pen-Based Handwritten

Digits Recognition [2]
16 10992 10

ST Steel Plates Faults [14] 27 1941 7

MU Multiple Features [30] 649 2000 10

OD
Occupancy Detection

[16]
a 5 20560 2

MA
MAGIC Gamma

Telescope [13]
10 19020 2

LE Letter Recognition [24] 16 20000 26
a
 The time stamps in the original dataset have been removed;

 b
 Number of

attributes;
c
 Number of samples;

d
 Number of classes.

The free parameters and prior assumptions required by the algorithms are listed in Table 2. The

free parameter settings used in the experiments by the algorithms are also presented in this table. Due

to the very limited prior knowledge during the experiments, the values of these free parameters as

listed in Table 2 are determined by the recommendations and/or the experimental settings in the

published literature to maximize performance of the datasets. In contrast, our approach does not

utilize any of this knowledge, as it is self-organizing and autonomous.

In order to objectively compare the performance of different algorithms, we consider the

following measures:

i) Number of data clouds/clusters (C), which should be equal or larger than the number of classes

in the dataset;

ii) Calinski Harabasz index (CH) [15], which is used to estimate the optimal number of clusters;

the higher the Calinski Harabasz index is, the better the clustering result is;

iii) Mean Silhouette coefficient (SI) [44], which is an indication of how well each sample lies

within its cluster. The value range of this index is from -1 to 1. Mean Silhouette coefficient should

also be as high as possible.

iv) Time: The execution time (in seconds), which directly indicates the computational complexity

and should be as small as possible.

Table 2. Comparison of User Inputs and/or Prior Assumptions between Different Algorithms

Algorithm Free Parameter(s)
Prior

Assumption
Parameter Setting

ADP none none no need

MS
i) bandwidth, p

ii) kernel function type

Gaussian

distribution

i) p= 0.15 [20]

ii) Gaussian kernel

SUB initial cluster radius, r
Gaussian

distribution
r= 0.3 [18]

DBS

i) cluster radius, r

ii) minimum number of data

samples within the radius, p

Gaussian

distribution

i) the value of the knee

point of the sorted p-dist

graph

ii) p=4 [21]

SOM net size none 12 12 [42]

ELM initial cluster radius, r
Gaussian

distribution
r=0.15 [20]

DP
i) minimum distance, ρ

ii) local density value, δ

Gaussian

distribution

i) relatively high, ρ

ii) high, δ [43]

NMM
i) prior scaling parameter

ii) kappa coefficient

Gaussian

distribution
predefined [11]

 a

NMI grid size
Gaussian

distribution
predefined [36]

CEDS

i) microCluster radius, r

ii) decay factor, ω

iii) min microCluster threshold, φ

none

i) r= 0.15

ii) ω=500

iii) φ=1 [29]
 a

 The parameters are fixed in advance

The quality measures of performance of the algorithms in terms of C, CH, SI and time based on

the benchmark datasets listed in Table 1 are tabulated in Table 3, where we further bold the top three

of each performance measure in the experiments for visual clarity.

Ideally, the number of data clouds/clusters generated should be equal or close to the number of

classes (ground truth) in the dataset. However, in real situations, especially in the cases of large-scale

and/or high dimensional datasets, data samples from different classes are more often mixed with each

other, and data samples from the same class may spread into different locations far away from each

other in the data space. The best way to deal with such datasets is to partition/cluster the data samples

into smaller data clouds/clusters, and combine them later. Therefore, in this paper, we only require the

numbers of data clouds/clusters in the clustering results to be close to the ground truth but larger than

the number of classes, but not excessively large [28]. Therefore, we consider the clustering result with

C meeting the following condition as a valid one:

C SN C N a  (22)

In this paper, we consider 3a  as a generic value that is not user- or problem-dependent. The

rationale is that it indicates an extreme case when each cluster, on average, has only 3 members. In

this case, the clustering/partitioning result provides too many trivial clusters and is not understandable

for users. If CC N , it implies that the clustering algorithm fails to separate the data samples from

different classes.

Therefore, we additionally add an extra column titled “V” to Table 3 indicating the Validity of the

clustering results, where “√” denotes that the clustering result is valid, “×” denotes the invalid one.

Table 3. Numerical Experiment Results on the Numerical Datasets

 Algorithm C CH SI Time V

PI

ADP-o
a

21 601.6263 0.4673 0.16 √

ADP-e
b

22 572.2715 0.3470 0.18 √

MS 474 0.31 ×

SUB 9 256.7434 0.1002 0.52 √

DBS 4 51.9112 -0.0117 0.06 √

SOM 144 310.3476 0.3654 3.15 ×

ELM 14 31.8829 -0.3338 0.91 √

DP 3 294.9684 0.2895 1.69 √

NMM 3 243.4787 0.2416 107.04 √

NMI 7 278.691 0.5322 6.95 √

CEDS 768 0.78 ×

BA

ADP-o 28 1128.1432 0.5616 0.19 √

ADP-e 27 932.6723 0.4937 0.28 √

MS 24 488.2148 0.3650 0.09 √

SUB 14 1068.8898 0.5311 0.99 √

DBS 48 352.5907 0.2138 0.18 √

SOM 144 1125.6221 0.5828 4.31 ×

ELM 1 54.69 ×

DP 2 723.7514 0.3877 2.57 √

NMM 4 787.2835 0.3718 170.46 √

NMI 20 690.5714 0.4894 6.74 √

CEDS 120 163.6131 0.1709 5.67 ×

S1

ADP-o

15 22675.2540 0.8803 1.09 √

ADP-e 84 6178.3721 0.5949 0.99 √

MS 13 0.03 ×

SUB 10 2.62 ×

DBS 32 14877.9431 0.5851 2.24 √

SOM 144 14891.8742 0.5412 11.88 √

ELM 1 0.78 ×

DP 2 4.08 ×

NMM 6 814.18 ×

NMI 6 15.44 ×

CEDS 21 1285.7427 0.2913 11.85 ×

S2

ADP-o

18 12109.9581 0.7609 1.05 √

ADP-e

65 4813.5951 0.5554 0.97 √

MS 13 0.05 ×

SUB 10 2.39 ×

DBS 35 3406.5872 0.2992 2.22 √

SOM 144 9575.3768 0.5215 11.47 √

ELM 1 0.77 ×

DP 2 5.11 ×

NMM 9 958.76 ×

NMI 4 16.81 ×

CEDS 26 1324.1078 0.2399 12.96 √

CA

ADP-o 71 393.01630 0.3699 0.47 √

ADP-e 45 447.0620 0.3088 0.46 √

MS 3 41.7123 0.3353 0.18 √

SUB 73 235.8645 0.1459 5.77 √

DBS 11 24.3466 0.0377 0.52 √

SOM 144 330.5136 0.3361 7.12 ×

ELM 2 0.48 ×

DP 2 2.41 ×

NMM 3 445.4341 0.4161 257.86 √

NMI 175 272.1408 0.1288 40.35 ×

CEDS 77 272.1408 0.1288 6.55 √

PB

ADP-o 79 1057.9771 0.3821 6.22 √

ADP-e 92 967.5478 0.3206 2.22 √

MS 8493 156.55 ×

SUB 187 382.6055 0.0113 82.98 √

DBS 38 385.3319 -0.0780 12.95 √

SOM 144 864.3771 0.2954 48.27 √

ELM 9 16.78 ×

DP 3 12.53 ×

NMM 41 980.6707 0.3190 7883.89 √

NMI 4316 2331.22 ×

CEDS 1 2466.47 ×

ST ADP-o 13 15349.4503 0.8507 0.28 √

ADP-e 34 11745.7686 0.6613 0.35 √

MS 1 0.78 ×

SUB 1 0.85 ×

DBS 14 3910.0867 0.7920 0.34 √

SOM 144 30043.6256 0.4979 7.84 ×

ELM 1553 1.43 ×

DP 2 2.48 ×

NMM 2 77.99 ×

NMI 6 12.35 ×

CEDS 18 24574.0909 0.7859 7.06 ×

MF

ADP-o

63 618.6775 0.3474 2.96 √

ADP-e 78 414.2603 0.2513 1.19 √

MS 4 2.59 ×

SUB 1994 282.27 ×

DBS 5 1.51 ×

SOM 144 422.4845 0.2598 233.13 ×

ELM 1 0.48 ×

DP 2 4.28 ×

NMM 1 722.11 ×

NMI 1 1892.13 ×

CEDS 90 229.8913 -0.0274 47.97 √

OD

ADP-o 18 34653.4935 0.7608 18.11 √

ADP-e

131 21530.3617 0.3573 4.03 √

MS 20 4291.6125 0.5733 0.10 √

SUB 9 19878.6811 0.3408 16.35 √

DBS 208 1995.0598 -0.6614 36.73 √

SOM 144 81402.2929 0.5776 51.05 √

ELM 1 1.17 ×

DP 2 5495.9202 0.6418 48.45 √

NMM 4 8017.4665 0.5216 2617.14 √

NMI 15 10922.5114 0.7368 396.67 √

CEDS 13 1555.1093 0.0898 42.22 √

MA

ADP-o 47 1430.4657 0.4120 17.68 √

ADP-e 380 643.6832 0.2081 3.86 √

MS 1472 16.2135 -0.4401 48.58 ×

SUB 8 1730.7881 -0.1783 31.54 √

DBS 15 17.8876 -0.4656 37.15 √

SOM 144 1257.2603 0.2344 72.12 √

ELM 25 334.6816 -0.0155 28.55 √

DP 1 44.68 ×

NMM 4 2381.0536 0.5746 2486.65 √

NMI 1578 19.4133 -0.1805 6050.48 ×

CEDS 54 406.1227 -0.2991 5976.02 √

LE

ADP-o 235 433.4874 0.3045 21.99 √

ADP-e 242 414.5848 0.2793 4.28 √

MS 7620 224.92 ×

SUB 153 471.2221 0.2026 154.50 √

DBS 51 94.7283 -0.3547 42.10 √

SOM 144 622.6495 0.2897 99.38 √

ELM 9 17.55 ×

DP 2 53.55 ×

NMM 52 481.4270 0.0237 15682.64 √

NMI 14526 5768.78 ×

CEDS 43 569.9774 0.0376 13109.01 √
a
 The ADP algorithm-offline version;

b
 The ADP algorithm-evolving version.

In the experiments, for the high dimensional datasets (N>20, N=NA), we normalize the data via

the following equation, which converts the Euclidean distance between data samples into a cosine

dissimilarity [28]:

normalized x x x (23)

We apply the following feature re-scaling operation on the low dimensional datasets (N<20) for

the MS , ELM and CEDS algorithms [20],[29]:

min

max min

i i
i

normalized i i

x x
x

x x





 (24)

where i denotes the thi dimension of the data, 1,2,...,i N ;
max

ix and
min

ix are the maximum and

minimum values of the thi attribute of the data. Note that, the Calinski Harabasz indexes of the results

obtained by these two algorithms are calculated based on de-normalized results.

 (a) PI dataset- offline (b) PI dataset- evolving

 (c) BA dataset- offline (d) BA dataset- evolving

Fig. 5. The data partitioning results (“o” in different colours denote data samples of different data

clouds, “*” denote local modes)

The partitioning results (both offline and evolving) of the PI and BA datasets are presented in Fig.

5 as additional illustrations; here only the first two dimensions of the results are presented for visual

clarity.

5.2 Experiments on Image Datasets

As it was stated in section 1, clustering techniques are widely used in image analysis. In this

subsection, we also conduct several experiments on image clustering. The details of the benchmark

image sets used in this subsection are tabulated in Table 4.

Singapore image set [26] is a recently introduced benchmark dataset for remote sensing scene

classification. Caltech 101 image set [22] is widely used as a benchmark for object recognition.

MNIST image set [35] is the most widely used large scale dataset for handwritten digits recognition.

Examples of these images are given in Fig. 6.

Table 4. Details of the Benchmark Image Sets for Evaluation

Abbreviation Image Set R
 a
 NA NS NC

SIG Singapore [26] 256×256×3 4096 1086 9

CAL Caltech 101 [22]
Roughly

300×200×3
4096 9144 102

MNI MNIST [35] 28×28×1 784 70000 10
a
 Resolution.

(a) Singapore remote sensing image set

(b) Caltech 101 image set

(c) MNIST image set

Fig. 6. Illustrative examples of the images used in the experiments

Images, especially, the large-size RGB ones, are significantly unstructured by their nature

compared with numerical data. For example, pixels themselves do not have a spatial meaning. Instead

of clustering the images based on the values of the pixels directly, one commonly used approach is to

extract global features from the images and conduct image clustering based on the global features [7].

Therefore, in this paper, for the Singapore and Caltech 101 image sets, we use the 1×4096

dimensional activations of the pre-trained VGG-VD-16 convolutional neural network [46] from the

first fully connected layer [52] as the feature vectors of the images for clustering. The clustering

results of the two image sets produced by the ten clustering algorithms based on the respective feature

vectors are tabulated in Table 5. In the experiments of this subsection, equation (23) is used to

normalize the feature vectors due to the very high dimensionality of the problems.

Due to the wide variety of semantic contents and complex textural information contained in the

images, separating images of different classes is very difficult. It is of great importance for a

clustering/partitioning algorithm to be able to demonstrate strong separation ability. Therefore, for the

image clustering problems, we involve an additional clustering quality measure, Purity (PU), which is

calculated based on the result and the ground truth indicating the separation ability [20]:

1

PU
C

i

D

i

S K


 (25)

where i

DS is the number of data samples with the dominant class label in the i
th
 cluster. The higher

purity the clustering result has, the stronger separation ability the clustering algorithm exhibits.

Table 5. Image Clustering based on Feature Vectors

 Algorithm C CH SI PU Time V

SIG

ADP-o

161 15.9752 0.1698 0.9871 3.54 √

ADP-e

97 21.4609 0.1460 0.9678 18.20 √

MS 1085 19.33 ×

SUB 1086 198.26 ×

DBS 2 0.95 ×

SOM 144 17.1072 0.1529 0.9853 473.30 √

ELM 804 126.70 ×

DP 2 3.93 ×

NMM No result generated after 10 hours ×

NMI 1086 17242.22 ×

CEDS 1086 400.17 ×

CAL

ADP-o

1083 12.3015 0.0785 0.8372 289.22 √

ADP-e

441 24.6957 0.0567 0.8074 2362.12 √

MS 9094 2511.28 ×

SUB 9139 7770.47 ×

DBS 40 71.00 ×

SOM 144 64.8208 0.1435 0.7730 4630.92 √

ELM 1110 3.3999 -0.1791 0.4389 4205.27 √

DP 24 123.07 ×

NMM No result generated after 10 hours ×

NMI No result generated after 10 hours ×

CEDS No result generated after 10 hours ×

For the MNIST image set, due to the much simpler structure and semantic contents of the

handwritten digit images, we can conduct the image clustering by using the pixels directly. In the

following experiment, we convert each image from a 28×28 pixel matrix into a 1×784 pixel vector,

and use the pixel vectors as the input to the clustering algorithms. The clustering results on the

MNIST image set are tabulated in Table 6. However, as both the cardinality and dimensionality of

this image set are very high, the computation- and memory-efficiency of the offline and incremental

algorithms deteriorate dramatically due to the iterative learning process. Therefore, in this experiment,

we only involve the clustering/data partitioning algorithms, which are non-iterative and “one pass”,

namely, the evolving version of ADP, ELM and CEDS.

Table 6. Image Clustering based on Pixel Values

 Algorithm C CH SI PU Time V

MNI

ADP-e

4569 31.7081 0.0636 0.9547 9603.45 √

ELM 3 18.11 ×

CEDS No result generated after 10 hours ×

6. Analysis and Discussion

In this section, we will analyse the performance of the proposed algorithm, and compare it with 8

other well-known algorithms based on the numerical examples presented in section IV.

i) MS algorithm [19]

MS algorithm is very fast when the scale and dimensionality of the dataset is low. However, its

calculation speed decreases quickly in processing large scale and high dimensional datasets. The

quality of its clustering results varies dramatically. Without prior knowledge, it produced invalid

clustering results on many datasets. This is due to its gradient nature making it highly dependent on

initial guess and being prone to fall into local minima [19].

ii) SUB algorithm [18]

The calculation efficiency of the SUB algorithm [18] is also largely dependent on the scale and

dimensionality of the dataset. It is very inefficient with large-scale and high-dimensional datasets. The

clustering results also vary a lot. This algorithm is able to perform high quality clustering on low-

dimensional and large-scale datasets. In other cases, however, it failed to give valid and/or useful

clustering results.

iii) DBS algorithm [21]

DBS algorithm [21] is an efficient incremental online algorithm. The results it produced generally

contain smaller number of clusters. However, the quality of its clustering results is very low. One may

also notice that, DBScan algorithm is not effective in handling high-dimensional and large-scale

datasets.

iv) SOM algorithm [34]

SOM algorithm [34] requires the size of its net to be pre-fixed and, thus, always produces results

with the same number of clusters. The pre-fixed net size enabled the algorithm to perform high quality

clustering on high- dimensional and large-scale datasets. However, its calculation efficiency is much

lower and it failed to give useful clustering results on small-size datasets.

v) ELM algorithm [20]

ELM algorithm [20] was exhibiting high quality clustering performance on small-scale datasets.

However, it did not give any useful clustering results on low-dimensional and large-scale datasets. In

complex problems, the algorithm failed to separate the data samples of different classes.

vi) DP algorithm [43]

DP algorithm [43] does not require any prior knowledge in advance, however, during the

operation, users need to make choices based on a decision graph generated from the data, namely, to

choose one of the rectangles corresponding to the proper minimum distance between centres and local

density value. Different choices can lead to very different results and there could be thousands of

rectangles generated from datasets with huge size and high dimensionality, which makes it impossible

for users to select.

Moreover, using the recommended selection, the algorithm failed to separate the data samples of

different classes for high-dimensional and large-scale datasets.

vii) NMM algorithm [11]

NMM algorithm [11] is one of the so-called “nonparametric” algorithms in the comparison

despite having a number of pre-defined parameters and coefficients.

This algorithm is based on the prior assumption of data distribution being Gaussian. This

algorithm can give very good clustering results on datasets with Gaussian or similar distributions.

However, this algorithm failed to give useful clustering results on many other datasets. In addition, its

computation efficiency is low.

viii) NMI algorithm [36]

NMI algorithm [36] is also a so-called “nonparametric” approach. Similarly to the mixture model

clustering algorithm [11], it has a number of pre-defined parameters, i.e. grid size, interval between

two grids, and it assumes that the data has a Gaussian distribution. This algorithm is very accurate

when the datasets are small and the structure is simple.

However, it provided invalid results in processing large-scale and high dimensional datasets.

Moreover, its computation efficiency is also largely influenced by the size and dimensionality of the

data.

ix) CEDS algorithm [29]

CEDS [29] is a recently introduced algorithm for streaming data clustering. This algorithm can

follow the changing data pattern of the data stream and group the samples into arbitrary shaped

clusters. Nonetheless, based on the recommended experimental settings, this algorithm is only

effective on lower dimensional and/or smaller size datasets, and it frequently fails on complex

problems. Its computation efficiency is also very low on large-scale problems.

x) ADP algorithm

As a real algorithm that is free from user- and problem- specific parameters, the proposed ADP

algorithm is able to consistently provide high quality clustering results without any user inputs or

prior assumptions. Both versions (offline and evolving) are highly efficient computationally and they

are very effective in handling datasets with different scale and dimensionality. The indexes measured

from the clustering results are all highly ranked compared with the other 9 comparative algorithms

used for comparison. From the rank in Tables 3, 5 and 6 one can see that the proposed algorithm is

always ranked in the top 3. The computation time is also within the fastest. It is critically important to

notice that the proposed algorithm is autonomous, user- and problem- parameter free. In addition, it

can evolve its structure to follow the changing data pattern, while others are not. In addition, from the

numerical examples one can notice that, the proposed algorithm exhibits even higher effectiveness

and efficiency in handling large-scale and higher dimensional datasets compared with other

algorithms.

The strong performance of the proposed ADP algorithm comes from a fundamentally different

data processing approach based on rank operators. Rank operators are normally avoided in clustering

because they are non-linear operators, and so most clustering algorithms prefer the linear mean

operator. We believe that the specificity of the rank operator plays a central role in the creation of

more parsimonious partitions, specifically when augmented with local mode definitions that are

parameter free. Although computationally more demanding, on line rank updates are still practical as

we show in our work. For the offline version, the ADP algorithm identifies prototypes from the data

samples based on their ranks in terms of the data densities and mutual distances instead of the

commonly used means and variances, and use the prototypes to aggregate data samples around them

forming Voronoi tessellations [41]. For the evolving version of the ADP algorithm, it has a more

flexible evolving structure compared with other online approaches due to its prototype-based nature.

In addition, it replaces the pre-defined threshold, which is commonly used in other online approaches,

with a dynamically changing threshold derived from the data. Therefore, the ADP algorithm is able to

obtain a more stable, effective and objective partitioning compared with other approaches.

However, we have to admit that, although the data partitioning results obtained by the offline

version of the ADP algorithm are not influenced by the order of the input data because of the ranking

operations, there is no guarantee that the partitioning results can converge to a locally optimal solution

because of other greedy steps in the algorithmic procedure (multiple peaks, etc.). Alternatively, there

is no known iterative process for minimizing an objective function involved in the ADP algorithm (in

both the offline and evolving versions). Nonetheless, by involving an iterative process to minimizing

the objective function in a similar way as described in [45], the ADP algorithm can also converge to

the locally optimal partitions, but this is out of the scope of this paper.

7. Conclusion and Future Work

In this paper, a novel algorithm for data partitioning, named autonomous data partition (ADP),

was introduced. Both, the offline and evolving versions of the ADP algorithm are entirely data-driven,

autonomous and require no user- and problem- specific input. Using nonparametric operators, the

proposed algorithm is able to identify the local modes representing the local maxima of the density

based on the empirically observed data samples. It partitions the data space into the shape- and

parameter-free data clouds. Compared with the well-known algorithms, the proposed approach has the

following significant advantages:

i) It is free from prior assumptions and user- and problem- specific parameters;

ii) It is able to conduct high-quality clustering in a short time without the need of prior knowledge.

Numerical experiments conducted with the benchmark datasets demonstrate the validity of the

proposed algorithm and also show its advantages compared with the alternative well-known

algorithms. Moreover, the advantages of the ADP algorithm are even more pronounced on larger size,

higher dimensional, complex problems.

As future work, we will study the local optimality and convergence of the ADP algorithm. We will

also apply the proposed algorithm to more complex problems, i.e. remote sensing scene image

analysis, high frequency trading, etc., and study the underlying data patterns behind them.

Appendix

 Web Link

Codes

ADP Algorithm http://empiricaldataanalytics.org/downloads.html

Pre-trained VGG-VD-

16 convolutional neural

network [46]

http://www.vlfeat.org/matconvnet/pretrained/

Datasets

PIMA [47] https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes

Banknote

Authentication [37]
https://archive.ics.uci.edu/ml/datasets/banknote+authentication

S1 [23] http://cs.joensuu.fi/sipu/datasets/

S2 [23] http://cs.joensuu.fi/sipu/datasets/

Cardiotocography [9] https://archive.ics.uci.edu/ml/datasets/cardiotocography

Pen-Based Handwritten

Digits Recognition [2]

https://archive.ics.uci.edu/ml/datasets/Pen-

Based+Recognition+of+Handwritten+Digits

Steel Plates Faults [14] http://archive.ics.uci.edu/ml/datasets/steel+plates+faults

Multiple Features [30] https://archive.ics.uci.edu/ml/datasets/Multiple+Features

Occupancy Detection

[16]

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

MAGIC Gamma

Telescope [13]
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope

Letter Recognition [24] https://archive.ics.uci.edu/ml/datasets/letter+recognition

Singapore [26] http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx

Caltech 101 [22] http://www.vision.caltech.edu/Image_Datasets/Caltech101/

MNIST [35] http://yann.lecun.com/exdb/mnist/

Acknowledgment

This work was partially supported by The Royal Society grant IE141329/2014 “Novel Machine

Learning Paradigms to address Big Data Streams”.

Reference

[1] S. Aeberhard, D. Coomans, and O. de Vel, “Comparison of classifiers in high

dimensional settings,” Dept. Math. Statist., James Cook Univ., North Queensland,

Australia, Tech. Rep 92-02, 1992.

[2] F. Alimoglu and E. Alpaydin, “Methods of combining multiple classifiers based on

different representations for pen-based handwritten digit recognition,” in Proceedings of

the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium, 1996,

pp. 1–8.

[3] P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based system,” Int. J.

Gen. Syst., vol. 41, no. 2, pp. 163–185, 2011.

[4] P. Angelov, Autonomous learning systems: from data streams to knowledge in real time.

John Wiley & Sons, Ltd., 2012.

[5] P. Angelov, “Outside the box: an alternative data analytics framework,” J. Autom. Mob.

Robot. Intell. Syst., vol. 8, no. 2, pp. 53–59, 2014.

[6] P. P. Angelov, X. Gu, J. Principe, and D. Kangin, “Empirical data analysis - a new tool

for data analytics,” in Proceedings of IEEE International Conference on Systems, Man,

and Cybernetics, 2016, pp. 53–59.

[7] P. Angelov and P. Sadeghi-Tehran, “Look-a-Like: A Fast Content-Based Image Retrieval

Approach Using a Hierarchically Nested Dynamically Evolving Image Clouds and

Recursive Local Data Density,” Int. J. Intell. Syst., vol. 32, no. 1, pp. 82–103, 2016.

[8] P. Angelov, X. Gu, and D. Kangin, “Empirical data analytics,” Int. J. Intell. Syst., vol. 32,

no. 12, pp. 1261–1284, 2017.

[9] D. Ayres-de-Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa, and L. Pereira-Leite,

“SisPorto 2.0: A program for automated analysis of cardiotocograms,” J. Matern. Fetal.

Med., vol. 9, no. 5, pp. 311–318, 2000.

[10] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,”

Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984.

[11] [D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process mixtures,”

Bayesian Anal., vol. 1, no. 1 A, pp. 121–144, 2006.

[12] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering spatial-temporal data,”

Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, 2007.

[13] R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka,

E. Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek, “Methods for

multidimensional event classification: A case study using images from a Cherenkov

gamma-ray telescope,” Nucl. Instruments Methods Phys. Res. Sect. A Accel.

Spectrometers, Detect. Assoc. Equip., vol. 516, no. 2–3, pp. 511–528, 2004.

[14] M. Buscema, “Metanet*: The theory of independent judges.,” Subst. Use Misuse, vol. 33,

no. 2, pp. 439–461, 1998.

[15] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,” Commun. Stat.

Methods, vol. 3, no. 1, pp. 1–27, 1974.

[16] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room

from light, temperature, humidity and CO2 measurements using statistical learning

models,” Energy Build., vol. 112, pp. 28–39, 2016.

[17] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 17, no. 8, pp. 790–799, 1995.

[18] S. L. Chiu, “Fuzzy model identification based on cluster estimation.,” Journal of

intelligent and Fuzzy systems, vol. 2, no. 3. pp. 267–278, 1994.

[19] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.

[20] R. Dutta Baruah and P. Angelov, “Evolving local means method for clustering of

streaming data,” IEEE Int. Conf. Fuzzy Syst., pp. 10–15, 2012.

[21] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering

clusters in large spatial databases with noise,” in Proceedings of International Conference

on Knowledge Discovery and Data Mining, 1996, vol. 96, pp. 226–231.

[22] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few

training examples: an incremental Bayesian approach tested on 101 object categories,”

Comput. Vis. Image Underst., vol. 106, no. 1, pp. 59–70, 2007.

[23] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems,” Pattern

Recognit., vol. 39, no. 5, pp. 761–775, 2006.

[24] P. W. Frey and D. J. Slate, “Letter recognition using Holland-style adaptive classifiers,”

Mach. Learn., vol. 6, no. 2, pp. 161–182, 1991.

[25] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science,

vol. 315, no. 5814, pp. 972–976, 2007.

[26] J. Gan, Q. Li, Z. Zhang, and J. Wang, “Two-level feature representation for aerial scene

classification,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11, pp. 1626–1630, 2016.

[27] S. Ghosh, L. Sigal, and E. B. Sudderth, “Nonparametric Clustering with Distance

Dependent Hierarchies,” in UAI, 2014, pp. 260–269.

[28] X. Gu, P. Angelov, D. Kangin, and J. Principe, “Self-organised direction aware data

partitioning algorithm,” Inf. Sci. (Ny)., vol. 423, pp. 80–95, 2018.

[29] R. Hyde, P. Angelov, and A. R. MacKenzie, “Fully online clustering of evolving data

streams into arbitrarily shaped clusters,” Inf. Sci. (Ny)., vol. 382–383, pp. 96–114, 2017.

[30] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, 2000.

[31] R. Jenssen, D. Erdogmus, K. E. Hild, J. C. Principe, and T. Eltoft, “Information cut for

clustering using a gradient descent approach,” Pattern Recognit., vol. 40, no. 3, pp. 796–

806, 2007.

[32] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, pp. 241–

254, 1967.

[33] S. Krinidis and V. Chatzis, “A robust fuzzy local information c-means clustering

algorithm,” IEEE Trans. Image Process., vol. 19, no. 5, pp. 1328–1337, 2010.

[34] T. Kohonen, Self-organizing maps. Berlin: Springer, 1997.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[36] J. Li, S. Ray, and B. G. Lindsay, “A nonparametric statistical approach to clustering via

mode identification,” J. Mach. Learn. Res., vol. 8, no. 8, pp. 1687–1723, 2007.

[37] V. Lohweg, J. L. Hoffmann, H. Dörksen, R. Hildebrand, E. Gillich, J. Hofmann, and J.

Schaede, “Banknote authentication with mobile devices,” in Media Watermarking,

Security, and Forensics, 2013, p. 866507.

[38] U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp.

395–416, 2007.

[39] J. B. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the Fifth Berkeley Symp. Math. Stat. Probab, pp. 281–

297, 1967.

[40] C. A. McGrory and D. M. Titterington, “Variational approximations in Bayesian model

selection for finite mixture distributions,” Comput. Stat. Data Anal., vol. 51, no. 11, pp.

5352–5367, 2007.

[41] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and

applications of Voronoi diagrams, 2nd ed. Chichester, England: John Wiley & Sons.,

1999.

[42] P. Płoński and K. Zaremba, “Self-organising maps for classification with metropolis-

hastings algorithm for supervision,” in Proceedings of International Conference on

Neural Information Processing, 2012, pp. 149–156.

[43] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science,

vol. 344, no. 6191, pp. 1493–1496, 2014.

[44] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1987.

[45] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence

theorem and characterization of local optimality,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. PAMI-6, no. 1, pp. 81–87, 1984.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” in Proceedings of International Conference on Learning Representations,

2015, pp. 1–14.

[47] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, “Using

the ADAP learning algorithm to forecast the onset of diabetes mellitus,” in Proceedings

of Annual Symposium on Computer Application in Medical Care, 1988, pp. 261–265.

[48] P. Tellaroli, M. Bazzi, M. Donato, A. R. Brazzale, and S. Drăghici, “Cross-clustering: a

partial clustering algorithm with automatic estimation of the number of clusters,” PLoS

One, vol. 11, no. 3, p. e0152333, 2016.

[49] I. Timón, J. Soto, H. Pérez-Sánchez, and J. M. Cecilia, “Parallel implementation of fuzzy

minimals clustering algorithm,” Expert Syst. Appl., vol. 48, pp. 35–41, 2016.

[50] V. Vapnik and R. Izmailov, Statistical Learning and Data Sciences, vol. 9047. 2015.

[51] C. Wang, S. Member, J. Lai, and D. Huang, “SVStream : A Support Vector Based

Algorithm for Clustering Data Streams,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 1,

pp. 1410–1424, 2011.

[52] G. S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, and L. Zhang, “AID: A benchmark

dataset for performance evaluation of aerial scene classification,” IEEE Trans. Geosci.

Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017.

[53] R. R. Yager and D. P. Filev, “Approximate clustering Via the mountain method,” IEEE

Trans. Syst. Man. Cybern., vol. 24, no. 8, pp. 1279–1284, 1994.

[54] M. S. Yang and Y. Nataliani, “Robust-learning fuzzy c-means clustering algorithm with

unknown number of clusters,” Pattern Recognit., vol. 71, pp. 45–59, 2017.

