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Abstract
Large state and action spaces are very challenging
to reinforcement learning. However, in many do-
mains there is a set of algorithms available, which
estimate the best action given a state. Hence, agents
can either directly learn a performance-maximizing
mapping from states to actions, or from states to
algorithms. We investigate several aspects of this
dilemma, showing sufficient conditions for learn-
ing over algorithms to outperform over actions for
a finite number of training iterations. We present
synthetic experiments to further study such systems.
Finally, we propose a function approximation ap-
proach, demonstrating the effectiveness of learning
over algorithms in real-time strategy games.

1 Introduction
Reinforcement learning aims at developing general agents,
which learn by acting directly on the problem action space
[Sutton and Barto, 1998]. However, as the state and action
spaces grow large, learning agents struggle to attain high per-
formance. On the other hand, many domains have existing
algorithms, tailored to the specific problem, and an agent could
rely on a pool of algorithms to act on its behalf [Rice, 1976].

Given limited computational resources, however, there is
an important conflict: should we learn over actions, training
a reinforcement learning agent to discover the best actions to
take, or should we learn over algorithms, trying to discover
the best algorithm to estimate the best action in each state?

Previous work on reinforcement learning with abstract ac-
tions [Sutton et al., 1999; Dietterich, 2000] have shown that
the optimal policy may not be attainable when learning over
algorithms, although it may accelerate the reinforcement learn-
ing process. However, it is still unclear when each method
should be preferred. Additionally, having a pool of algorithms
may still not enable one to directly apply reinforcement learn-
ing techniques when the state space is also very large. In
particular, Real-Time Strategy Games are a major challenge
for Artificial Intelligence research, given their enormous action
and state spaces [Ontañón et al., 2013].
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In this work we establish the conditions where learning over
algorithms is helpful, evaluating the sufficient strength of avail-
able algorithms, the relation among algorithms and actions set
sizes, and possible underlying algorithm creation processes.
Synthetic experiments further develop our conclusions. Addi-
tionally, we introduce a function approximation approach for
Real-Time Strategy Games, demonstrating the effectiveness
of learning over algorithms in a complex domain.

2 Related Work
In algorithm selection, one finds a performance-maximizing
mapping from problem instances to algorithms [Rice, 1976].
It has been applied to a variety of problems, including SAT
[Xu et al., 2008], sorting [Lagoudakis and Littman, 2000], and
general video game playing [Bontrager et al., 2016].

Learning over algorithms is also related to action ab-
stractions in reinforcement learning (RL). In MAXQ [Diet-
terich, 2000], a MDP “calls” other sub-MDPs organized in a
graph. Options on MDPs [Sutton et al., 1999] are temporally-
extended actions. Algorithms can be seen as one-step options:
they can initiate in any state, act according to their internal
policy and terminate after one transition. While Sutton et
al. [1999] showed that the optimal policy is not attainable
when the RL agent has no access to actions, they did not
present a detailed study on the dilemma between learning over
actions or over algorithms/options. Our theory provides new
insights in terms of the required strength of algorithms, rela-
tions among algorithms and actions set sizes, and underlying
algorithm creation processes.

The use of algorithms, or scripts, is widely adopted in real-
time strategy games (RTS) research. For example, in script
selection via Monte Carlo planning [Sailer et al., 2007] or as-
signment of scripts directly to units [Churchill and Buro, 2013]
or unit types [Lelis, 2017] via hill-climbing. However, these
works are combat-oriented, and do not tackle RTS games as a
whole. Recent planning-based approaches, on the other hand,
address the full games: AHTN [Ontañón and Buro, 2015]
combines hierarchical-task network (HTN) planning, with a
minimax-like tree-search algorithm. PuppetSearch combines
scripted behavior with game-tree search, by letting the scripts
expose a restricted set of actions for the search algorithms to
investigate. Two variations exist: PuppetAB [Barriga et al.,



2015] and PuppetMCTS [Barriga et al., 2018], which uses
α-β pruning and Monte Carlo Tree Search as their search al-
gorithms, respectively. StrategyTactics [Barriga et al., 2017]
uses a convolutional neural network to predict the output of
PuppetSearch, allowing more time to be used by a tactical
search algorithm. NaiveMCTS [Ontañón, 2017] also employs
a Monte Carlo Tree Search, but uses a sampling strategy based
on combinatorial multi-armed bandits (and thus does not use
scripts). We test against all these approaches in our experi-
ments.

All foregoing approaches require a forward model of the
world to perform searches, which is not available in commer-
cial RTS games and some real-world scenarios. Tavares et
al. [2016] present a model-free approach that estimates algo-
rithms’ performance by running matches offline. However, a
fixed algorithm must be chosen to play an entire match.

Our reinforcement learning approach with function approx-
imation for algorithm selection in RTS games combines many
strengths of related work: it tackles the game as a whole (not
only combats), dynamically selects algorithms, and dismisses
forward models.

3 Learning over Algorithms
We consider reinforcement learning (RL) tasks specified via
Markov Decision Process (MDP), which are defined by a set of
states S, a set of actions A, a reward function R : S×A→ R,
and a state transition function T : S×A× S→ [0, 1]. The
aim in reinforcement learning is to discover the optimal action-
value function Q∗(s, a), which indicates the value of taking
action a in state s and following the optimal policy there-
after. Q∗ maximizes the expected sum of discounted rewards
E[
∑∞
j=0 γ

jrt+j ], where t is the current time and rt+j is the
reward received j steps in the future. The discount factor
γ ∈ [0, 1] specifies how much the agent considers future
rewards. RL agents also balance exploration and exploita-
tion. As usual, we consider that when exploring (e.g., with ε
probability) the agent chooses an action uniformly at random.
When exploiting, the agent selects the action that maximizes
Q∗(s, a), with ties broken randomly.

Learning over actions is difficult in MDPs with large action
sets, often requiring an impractical number of interactions with
the environment to learn useful action-values. Thus, an agent
may resort to existing algorithms, which could incorporate
heuristics, search-based approaches, and/or domain knowl-
edge, to act on its behalf. Formally, at each state, the agent
selects an algorithm x from a set of algorithms X, which then
selects an action a ∈ A to affect the environment. The agent
observes r and s′, and chooses a new x ∈ X to act in this
new state. Algorithms’ performance may vary across different
states, and thus it is necessary to learn which x to use at each
state. We can apply usual RL methods, but an “action” corre-
sponds to choosing an algorithm, and the algorithm outputs
an action for the current state.

As in Marcolino et al. [2013], and Marcolino et al. [2014],
we model each algorithm x ∈ X as a probability distribution
function (pdf) over A. That is, algorithms do not know in
advance the action-values, and output the action that they esti-
mate to be the best, according to their own decision procedures.

Algorithm / Action a1 a2 a3 a4
x1 0.8 0.2 0 0
x2 0.2 0 0.7 0.1

Table 1: Algorithms’ pdfs used in our simple example.

Given a state, there is a certain probability that the algorithm
outputs the true best action, and a certain probability for other
actions. Let pxa be the probability of x selecting an action a.
Although we use the pdfs in our analysis, in general they may
be unknown. Our analysis allows a deeper understanding of
the conflict between learning over algorithms or actions, but a
designer may still need to estimate the pdfs when taking a deci-
sion between both approaches. There are examples of estimat-
ing algorithms’ pdfs in the literature [Marcolino et al., 2013;
2014; Jiang et al., 2014]. Our theoretical analysis is done by
comparing the likelihood of selecting the (unknown) optimal
action a∗, which maximizes the expected sum of discounted
rewards. We consider two RL agents, P1 and P2, which reason
over actions and algorithms, respectively.

Simple Example
Consider a single state, four actions {a1, a2, a3, a4} and two
available algorithms {x1, x2}. We assume a1 is the optimal
action, but that is not known in advance, and the algorithms
select each action according to the probabilities shown in Table
1, which results from their reasoning procedures.

In the first iteration, P1 picks a1 with probability 0.25. P2

picks x1 with probability 0.5, which selects a1 with probability
0.8. Hence, P2 selects a1 indirectly with probability at least
0.5 · 0.8 = 0.4 > 0.25. Thus P2’s expected performance is
better than P1’s. In the next few iterations P2 is even more
likely to pick x1, while P1 may still need to explore further,
until finally playing enough training iterations for the action-
value of a1 to be higher than the other actions.

When the number of training iterations becomes sufficiently
large, P1 learns to always select a1, and P2 to always select
x1. However, since x1 selects a1 with probability 0.8, it turns
out that P2 selects a1 with probability 0.8 < 1, and hence is
outperformed by P1 in the long run. Therefore, until a certain
number of training iterations, a RL agent may perform better
by learning over algorithms, depending on the algorithms’
pdfs. In the long run, however, learning over actions will
always perform better. We formalize this notion below.

3.1 Theoretical Analysis
Our main result is a sufficient condition for learning over
algorithms to outperform learning over actions. That allows
a formal guarantee when learning over algorithms, besides
guiding in the number of algorithms used, as we discuss next.
P1 or P2 selects the best choice (best action a∗ or best

algorithm x∗, respectively) with a certain probability pi. Let
l be the current training iteration. As usual, we consider RL
agents where l →∞⇒ pi → 1. We model pi by a learning
curve given by the function 1− (ξi + el×βi)−1, where ξi and
βi are parameters defining the initial error and the convergence
“speed”, respectively. A training process is noisy by nature, but
these functions model the average behavior over many training
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Figure 1: Theoretical learning curves.

events. They converge to 1 in a diminishing returns fashion,
as it would be expected in a training process. We then have:

Theorem 1. Let Pil be the probability that Pi picks a∗ at
iteration l. P2

l > P1
l for a finite number of iterations, if ∃

x ∈ X, where pxa∗ >
|X|
|A| . If l→∞, however, P1

l ≥ P2
l .

Proof. If P2 selects x∗, it indirectly selects a∗ with probability
px
∗

a∗ . Hence, at iteration l it selects a∗ with probability at
least (1 − (ξ2 + el×β2)−1) × px

∗

a∗ . P1, on the other hand,
selects a∗ with probability 1 − (ξ1 + el×β1)−1. Hence, if
px
∗

a∗ >
1−(ξ1+1)−1

1−(ξ2+1)−1 , then P2 selects a∗ with higher probability
than P1 in the first iteration (l = 0). Eventually, however, P1

outperforms P2, since liml→∞ 1− (ξ1 + el×β1)−1 = 1, and
liml→∞(1− (ξ2 +el×β2)−1)×px∗a∗ = px

∗

a∗ ≤ 1. As in the first
iteration P1 selects randomly, 1−(ξ1+1)−1 = 1

|A| . Similarly,
1−(ξ2+1)−1 = 1

|X| . Therefore, ξ1 = 1
|A|−1 and ξ2 = 1

|X|−1 .

Hence, if: px
∗

a∗ >
1− 1

1
|A|−1

+1

1− 1
1

|X|−1
+1

 px
∗

a∗ >
1− |A|−1

|A|

1− |X|−1
|X|

 px
∗

a∗ >

|X|
|A| , then P2 outperforms P1 until a certain iteration τ . We

only need one x such that pxa∗ >
|X|
|A| , since px

∗

a∗ ≥ pxa∗ .

We show examples of P1 and P2’s theoretical learning
curves in Figure 1. τ is the training iteration where learn-
ing over actions starts to outperform learning over algorithms.
Note that Theorem 1 gives us sufficient, but not necessary
conditions. That is, if pxa∗ >

|X|
|A| , we have a formal guarantee

that learning over algorithms is better than over actions until
a certain training iteration τ . However, there could be cases
where pxa∗ ≤ |X||A| , ∀x, and P2 still outperforms P1.

For instance, consider 2 actions and 10 algorithms, where
pxa∗ = 0.99, ∀x. In l = 0, P1 picks a∗ with probability 0.5,
while P2 with probability 0.99, even though 0.99 < |X|

|A| = 5.
P2 outperforms P1 up to a certain training iteration τ . The

previous theorem shows that τ > 0 if ∃x, pxa∗ > |X|
|A| . We can

obtain a lower bound τ ′ for τ , by solving the following equa-
tion: 1− (ξ1 + eτ

′×β1)−1 =
(

1− (ξ2 + eτ
′×β2)−1

)
× px∗a∗ ,

since the probability of P2 selecting a∗ is at least (1− (ξ2 +

eτ
′×β2)−1)× px∗a∗ . Hence, up to training iteration τ ′, we have

a formal guarantee that P2 is better than P1, if the theorem
condition is satisfied. If x∗ is unknown, we derive a less tight
lower bound τ ′′ < τ ′ by solving: 1 − (ξ1 + eτ

′′×β1)−1 =(
1− (ξ2 + eτ

′′×β2)−1
)
× pxa∗ , where x is any algorithm.

Hence, if one is able to estimate pxa∗ (for at least one x) and
β, then one would also have a lower bound for τ , leading
to a formal guarantee for learning over algorithms up to that
training iteration (ξ can be calculated given |A| and |X|).

Additionally, note that Theorem 1 does not say that we must
have one algorithm whose probability of playing a∗ is higher
than the probability of playing any other a. The condition
pxa∗ >

|X|
|A| can be valid, even if ∃a 6= a∗ such that pxa > pxa∗ .

In fact, we can show that learning over algorithms outperforms
over actions in a very large action space, even if the probability
of an algorithm selecting the best action is very small:

Corollary 1. As |A| → ∞, P2 is better than P1 for a finite
number of iterations, if and only if ∃x, where pxa∗ > 0.

Proof. Follows from lim|A|→∞
|X|
|A| = 0, thus pxa∗ > 0 satis-

fies Theorem 1. The “only if” side is trivially true.

Hence, if the number of actions is very large, we only need
pxa∗ > 0 for at least one algorithm. This result is very relevant
even in domains where a designer cannot easily estimate pxa∗ .

Interestingly, however, Theorem 1 seems to suggest that the
higher the number of algorithms, the worse, as we have that:

Corollary 2. If |X| = 1, x only needs to play better than
uniformly random. As |X| grows, however, the sufficient con-
dition eventually is never satisfied, independent of pxa∗ .

Proof. Follows immediately from |X|
|A| → 1

|A| for |X| → 1,

hence we need pxa∗ >
1
|A| . Likewise, |X||A| > 1 for |X| > |A|,

hence we would need pxa∗ > 1, which is impossible.

In fact, if there is a fixed algorithm x, where pxa∗ ≥ px
′

a∗ ,
∀x′ 6= x in all states, then we should always pick x. Intuitively,
however, it should be beneficial to have multiple algorithms to
choose from. Informally, this may happen because different
algorithms may perform better at different states, as discussed
in Marcolino et al. [2013]. That is, in many domains we do not
have a fixed algorithm x that has a higher probability of select-
ing a∗ than the other algorithms in all states. Therefore, |X|
may implicitly also affect the probability of P2 selecting a∗,
since P2

l ≥ (1− (ξ2 + el×β2)−1)× px∗a∗ (remember that x∗ is
the algorithm x with the highest pxa∗ across all x ∈ X). Hence,
informally, as the size n of X grows, we may have a greater
chance of adding a new xn that has a higher probability of play-
ing a∗ than the other algorithms (i.e., pxn

a∗ > pxi
a∗ , ∀0 ≤ i < n).

Therefore, although adding a new algorithm may sacrifice ini-
tial performance, it may lead to a higher convergence point
(i.e., a higher value for P2

l ≥ (1− (ξ2 + el×β2)−1)× px∗a∗ as
l → ∞). A larger value for P2

l as l → ∞ also increases the
number of training iterations where the curve P2

l is above P1
l .

That is, we may have that τX′ > τX, if |X′| > |X|. Hence,
a larger |X| should increase the number of training iterations
where P2 still outperforms P1.

Formally, however, it is not true that τ increases with |X|
in general. The way P2

l changes as new algorithms are added
depends on the algorithms’ pdfs. For example, if every new
algorithm selects the worst action with probability 1, then P2

just gets worse. If, however, we assume distributions over



pxa∗ , then we can show that τ increases with |X|. Similarly as
before, this does not mean that an algorithm designer would
directly sample a number from a distribution in order to “de-
cide” pxa∗ . We are just proposing to model the phenomenon of
new algorithms being created as a distribution over pxa∗ . For
instance, given a set of algorithms X′, one can calculate the av-
erage and standard deviation over all pxa∗ , if one assumes that
pxa∗ comes from a Gaussian distribution. As |X′| grows, the
calculated average and standard deviation would approximate
those of the true distribution. Hence, in order to formally study
the effect of adding new algorithms, we evaluate different
distributions for pxa∗ . We analyze three possible cases below:
(i) when pxa∗ comes from a uniform distribution; (ii) when
pxa∗ comes from a Gaussian; (iii) when there is a fixed pool
of algorithms X̃ to choose from. Similar techniques could be
employed to analyze the most appropriate distribution for a
given domain.

The uniform distribution could model the case where there
is not yet an established framework for developing “strong”
algorithms (i.e., with a high pxa∗). Hence, the designer would
not be able to develop an algorithm x with pxa∗ greater than
some bound u; and given a certain state, the algorithm may be
strong or weak with equal likelihood.

The Gaussian, on the other hand, models a situation with
common knowledge or an established framework to develop
strong algorithms (e.g., Monte Carlo Tree Search for computer
Go). Then, we can expect that, in a set of algorithms, there
will be a mean and a variance over pxa∗ (the variance resulting
from different design decisions or parameter configurations).

Finally, we also consider the case where there is a fixed,
previously known pool of algorithms available. That is, the
designer must choose an algorithm x′ ∈ X̃ to include in X.

We start by analyzing the uniform distribution:

Proposition 1. If the underlying algorithm creation process
originates xi with pxi

a∗ ∼ U(0, u), then: (i) px
∗

a∗ grows with
|X| in expectation; (ii) ∃x where pxa∗ >

|X|
|A| in expectation, if

and only if |X| < u× |A| − 1

Proof. The expected value of the k-th order statistic of the
uniform distribution with n samples is given by: k×un+1 . Hence,
the expected maximum value for pxa∗ when |X| = n is n×u

n+1

(which grows with n). In order for n×un+1 >
|X|
|A| , we must have

that u × |A| > n + 1  n < u × |A| − 1. Conversely,
if |X| = u × |A| − 1 + z, for z ≥ 0, we would have that:
(u×|A|−1+z)×u

u×|A|+z > |X|
|A|  

(u×|A|−1+z)×u
(u×|A|−1+z) > u×|A|+z

|A|  
u× |A| > u× |A|+ z, which is not possible for z ≥ 0.

Since px
∗

a∗ grows with |X|, the proposition seems to indicate
that we should use as large X as possible up to the upper bound
u × |A| − 1. Interestingly, however, we show in synthetic
experiments (Section 3.2) that performance still improves for
|X| ≥ u× |A| − 1.

For the Gaussian, we find that:

Proposition 2. If the underlying algorithm creation process
originates algorithms xi with pxi

a∗ ∼ N(µ, σ) (truncated to
the interval [0, 1]), then: (i) px

∗

a∗ grows with |X| in expectation;

(ii) ∃x, where pxa∗ >
|X|
|A| in expectation, by following in order

of priority: (a) |X| ≥ 741, if |A| > |X|
µ+3σ ; (b) |X| ≥ 44, if

|A| > |X|
µ+2σ (c) |X| ≥ 7, if |A| > |X|

µ+σ .

Proof. From the “68–95–99.7” rule, we have: p(pxa∗ ≥ µ +
σ) ≈ 0.5 − 0.6827

2 = 0.15865; p(pxa∗ ≥ µ + 2σ) ≈ 0.5 −
0.9545

2 = 0.022275; p(pxa∗ ≥ µ + 3σ) ≈ 0.5 − 0.9973
2 =

0.00135. Hence, in order to have in expectation at least one
x such that pxa∗ ≥ µ+ σ, we need at least tσ samples, where
tσ × 0.15865 = 1  tσ ≈ 7. Likewise, for pxa∗ ≥ µ + 2σ,
we need at least t2σ ≈ 44; and for pxa∗ ≥ µ + 3σ, at least
t3σ ≈ 741. µ+3σ ≥ µ+2σ ≥ µ+σ (the equality comes from
pxa∗ > 1 being equivalent to pxa∗ = 1). Hence, px

∗

a∗ grows with
|X|, in expectation. Now consider the sufficient condition
pxa∗ > |X|

|A| . For pxa∗ ≥ µ + 3σ in expectation, we need

µ+ 3σ ≥ |X||A|  |A| >
|X|
µ+3σ . Likewise, for pxa∗ ≥ µ+ 2σ,

we need |A| > |X|
µ+2σ ; and for pxa∗ ≥ µ+ σ, |A| > |X|

µ+σ .

Hence, Proposition 2 allows a designer to estimate how
many algorithms to use, even without an estimation of pxa∗
available. However, the proposition requires an estimation of µ
and σ, which might come from previous knowledge designing
and/or analyzing algorithms for the specific domain.

Fundamentally, however, even if all distribution parameters
are unknown, Proposition 1 and Proposition 2 show that under
distribution assumptions, one can expect px

∗

a∗ to grow with |X|.
Since P2 converges to (1− (ξ2 +el×β2)−1)×px∗a∗ , then τ also
grows with |X|. We study this further in Section 3.2.

Next, we do not assume an underlying distribution. Instead,
algorithms must be chosen from an existing pool X̃ (X ⊆ X̃):

Proposition 3. Let Pxi be the probability that xi has the
highest pxa∗ (across all x ∈ X̃) in a state s. Let pe be the
expected value of pxa∗ in X̃. Then, in expectation: (i) px

∗

a∗

grows with |X|; (ii) ∃x, where pxa∗ >
|X|
|A| , if |X| < pe × |A|.

Proof. Given n algorithms, the probability that at least one
of them has the highest pxa∗ (across all x ∈ X̃) is p = 1 −∏n
i=1(1 − Pxi

). Clearly, p → 1 as n → ∞, and thus px
∗

a∗

grows with |X|. However, to satisfy the sufficient condition,
we must have pe >

|X|
|A|  |X| < pe × |A|.

Proposition 3 allows an estimation of the best |X| as bpe ×
|A|c, given pe. With a fixed X̃, in some domains one could
estimate pe by experimentation over a set of states with a
known ground truth. Fundamentally, however, it again shows
that one should expect px

∗

a∗ (and τ , consequently) to grow with
|X|. We study this further in the next section.

3.2 Synthetic Experiments
We ran several synthetic experiments, to better investigate the
dilemma between learning over actions or algorithms. Each
experiment consists of many simulations, where we randomly
generate a single state MDP. That is, we sample the mean
reward ri from N(0, 1), for each action ai. When playing ai,
the reward returned is sampled from N(ri, 0.25). For each
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simulation, we create an agent that learns over actions, and
another that learns over algorithms. For both we considered α
and ε starting as 1, and decaying at the rate 0.999. We sample
pxa∗ from different distributions, to simulate the creation of
algorithms in a given domain.

For each experiment, we run 1000 simulations of 10000
training iterations each. As an example, Figure 2 shows the
probability of playing the best action (pa∗ ) when learning over
actions or algorithms, for a Gaussian model (black lines shows
mean pa∗ , and colored areas indicate the standard deviation).
Note how the curves follow a similar shape as the ones pre-
dicted by our theory (Figure 1). In the appendix1, we show
that the reward curves also follow a similar shape.

Our theoretical analysis does not yet give the exact number
of iterations τ where learning over algorithms is better. Hence,
in Figure 3 we study how τ changes as several parameters
change (problem size |A|, algorithm set size |X|, u or µ),
under a uniform or Gaussian model. A curve beyond the y-axis
means that τ > 10000. We repeat the whole procedure 5 times,
and the error bars show the confidence interval (p = 0.01).
When changing one parameter we fix the others (100 actions,
25 algorithms, u = 0.5, µ = 0.4). We see that τ grows with
statistical significance, under all parameters considered, for
both models. When increasing u and µ we increase the overall
expected performance of the algorithms, and hence this result
is expected. It is interesting to note, however, that the curves
tend to grow in an exponential fashion.

Concerning |A|, the meeting point τ also tends to grow
exponentially. Hence, it gets more advantageous to learn over
algorithms as problems grow in complexity. This happens
since it gets harder for a RL agent to find the best action, as
it requires more exploration. On the other hand, we can still
see τ increasing with |X|. That is, even though it gets harder
to find the best algorithm, px

∗

a∗ tends to increase with |X|,
compensating for the harder exploration, as we discussed in
our analysis. Based on Theorem 1, one may expect τ to drop
when |X| > |A|. Interestingly, however, we see that τ tends
to converge as |X| grows for both models, instead of dropping
(remember that the theorem only gives sufficient conditions).

Our theory focused on pa∗ , but the actual reward obtained
may be more significant. We evaluated the reward and cumula-
tive reward, and found similar results (shown in the appendix1).
In the uniform model reward curves, however, we notice that
τ starts to drop when |X| � |A|.

1http://www.lancaster.ac.uk/staff/sorianom/ijcai18-ap.pdf
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Figure 3: τ as number of actions, algorithms, u and µ grows.

Figure 4: Screenshot of µRTS.

4 Learning over Algorithms in RTS Games
We evaluate learning over algorithms in a real-time strategy
(RTS) game, which is a very complex domain, where directly
learning over actions is impractical. The number of actions
for a given state is estimated as over 1050 [Ontañón et al.,
2013]. Hence, we would need over 1050 training iterations
just to explore a single time all the possible actions for a single
state. The objective of this section, therefore, is to demonstrate
that we can obtain a good performance when learning over
algorithms in a complex and relevant domain.

RTS games are adversarial, normally involving resource
management, construction, and combat between a large num-
ber of military units. They impose a great challenge for AI
algorithms, since they have huge action and state spaces and
require fast decisions. In this paper we use µRTS, a simplified
RTS game developed for AI research2.

A screenshot of µRTS is shown in Figure 4. In µRTS,
entities are either buildings, units or resources. Buildings are
either bases, which can produce workers or barracks, which

2https://github.com/santiontanon/microrts



produce military units. Units are either workers, which harvest
resources and have limited combat ability; or military units.
Military units are: heavy and light, which are strong but slow
or weak but fast melee units, respectively; or ranged, which
are long range attack units.

A set of four simple rush algorithms is available in µRTS: (i)
Worker: create worker units, have one of them gather resources,
and send all others to attack; (ii) Ranged: use a worker to
gather resources. With enough resources, build a barrack and
generate ranged units, sending them to attack. (iii) Heavy:
same as Ranged, but creates the heavy unit instead; (iv) Light:
same as before, but creates the light unit. In addition, we
implemented two algorithms: (v) BuildBarracks: build a new
barrack, allowing faster production of military units; and (vi)
Expand: build a new base, increasing the production of worker
units and faster gathering of multiple resources. All these
compose our set X. In order to handle the large state space,
we propose next a Function Approximation approach.

4.1 Function Approximation (FA)
In this section, we say that we are taking an “action” a ∈ A
in a state s even though we are selecting an algorithm x ∈ X.
This is to follow the traditional notation in RL literature. The
main idea of FA is to learn a functional representation of the
action-value function Q. This allows us to generalize Q for
similar state-action pairs. We use SARSA [Rummery and
Niranjan, 1994], with linear function approximation. Hence,
a state s is represented by a feature vector [k1(s), . . . , kn(s)],
andQ(s, a) is approximated by Q̃(s, a, w) =

∑n
i=1 ki(s) ·wi,

where [w1, . . . , wn]a is a weight vector for action a. The
learning problem is to find the best weights for each action.
Each time the agent takes an action a, observes the next state
s′, and chooses an action a′ in s′, we update wi with: ∆wi =
α(r + γQ̃(s′, a′, w) − Q̃(s, a, w)) × ki(s), where α is the
training step size.

The features for a given state of µRTS are obtained as
follows: we split the map into 3× 3 quadrants of equal size.
Within each quadrant, the number of units of each type owned
by each player p is a separate feature. Thus, 9 quadrants, 7 unit
types and 2 players lead to 9× 7× 2 features. Additionally,
the cumulative average health of each player’s units within
each quadrant is included, leading to 9 × 2 more features.
We also include the resources harvested by each player, the
current game time and the independent term, with value 1.
Hence, given ρp = {u11, . . . , u91, . . . , u17, . . . , u97}, where uji
is the number of units of type ui in quadrant j for player
p; and βp = {h11, . . . , h91, . . . , h17, . . . , h97}, where hji is the
cumulative average health of units of type ui in quadrant j;
the feature vector is: k = [1, ρ1, ρ2, β1, β2, ω1, ω2, t], where
ωp is the amount of resources owned by player p, and t is
the current game time. This linear combination of features is
replicated for each x ∈ X. Hence, we have |X| equations with
|k| features, leading to |X| × |k| weights to adjust. We select
an algorithm x ∈ X using exponentially decaying ε-greedy
(decayed after every training game).

4.2 Results
We evaluate the performance of learning over algorithms using
the proposed FA approach. We compare against the state of
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Figure 5: Learning over algorithms against state of the art players.

the art in µRTS: AHTN, PuppetMCTS, PuppetAB, NaiveM-
CTS and StrategyTactics. They are described in Section 2
and references therein. StrategyTactics won the 2017 µRTS
competition, and NaiveMCTS was in the top 5. We used the
map “basesWorkers24×24”, and the best parametrization we
found: α = 10−4, γ = 0.9, ε exponentially decaying from
0.2 against PuppetAB, PuppetMCTS and AHTN; and decay-
ing from 0.1 for NaiveMCTS and StrategyTactics, after every
game (decay rate ≈ 0.9984). All games have 3000 cycles at
most, declared a draw on timeout. Rewards are -1, 0 or 1 for
defeat, draw and victory, respectively.

We perform two evaluations. In the first, named Specific,
we trained FA in 500 games against PuppetAB, PuppetMCTS
and AHTN; and in 100 games against NaiveMCTS and Strat-
egyTactics. The resulting policy is tested against the same
adversary that FA was trained against. In the second, named
Nemesis, we: (i) trained FA against PuppetMCTS, fixing the
resulting policy; and (ii) trained a new instance of FA against
the resulting policy of (i), in 500 games. The single resulting
policy of (ii) is tested against all adversaries (showing robust-
ness). All tests have 100 games, with α = ε = 0. We ran
5 repetitions of all experiments, and the error bars show the
99% confidence interval. We consider statistical significance
as p ≤ 0.01. Figure 5 shows the results.

In both cases FA significantly defeats all opponents, with
win rates higher than 80%. Nemesis and Specific have similar
win rates, but Nemesis is significantly better against Strate-
gyTactics. We believe this happens because Nemesis further
elaborates on a policy that was already strong (the resulting
policy of FA trained against PuppetMCTS).

Allowing algorithm switches at any state could have a neg-
ative effect: it could happen so frequently that algorithms
would not be able to follow a course of action. Indeed, the
agent may switch “too fast” during exploration, but eventually
it learns a strong policy, and tends to pick a certain algorithm
repeatedly if this leads to higher performance. On the other
hand, the agent learns to switch to different algorithms when
that is more profitable. Figure 6 confirms both situations with
the Specific agents, by showing (a) the average number of
times an algorithm is chosen consecutively and (b) the average
percentage of selections (error bars indicate standard devia-
tion). Hence, all algorithms tend to be chosen, but at different
proportions depending on the adversary.

Finally, Figure 7 compares Nemesis and the individual al-
gorithms (x ∈ X), when playing against all opponents. We
find that our performance is either significantly better than
all individual algorithms, or not statistically different than
the best algorithm (which is still relevant, since we may not
know in advance which one to use), against each adversary. P-
values when comparing against the best algorithm x are: 0.97,
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Figure 7: Algorithms and FA Nemesis against all AI players.

0.004, 0.61, 0.04, 0.14; for AHTN, PuppetMCTS, PuppetAB,
NaiveMCTS and StrategyTactics, respectively. Additionally,
the last set of bars shows that all algorithms are individually
defeated by Nemesis.

5 Conclusion
Although action abstractions have been introduced before,
our model for learning over algorithms gives novel guide-
lines backed by a theoretical analysis. Synthetic experiments
demonstrate an increase in relative performance with action
and algorithm set sizes. We also introduce a Function Approx-
imation approach for learning over algorithms in RTS games,
significantly outperforming state-of-the-art search-based play-
ers. The source code of synthetic and µRTS experiments are
available at: https://github.com/andertavares/syntheticmdps
and https://github.com/SivaAnbalagan1/micrortsFA, respec-
tively.
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Santos, and Luiz Chaimowicz. Rock, Paper, StarCraft: Strategy
Selection in Real-Time Strategy Games. In AIIDE, 2016.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. SATzilla: portfolio-based algorithm selection for
SAT. JAIR, 32:565–606, 2008.


