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Abstract: The robotic platform in this study has dual, seven-function, hydraulically actuated
manipulators, which are being used for research into assisted tele-operation for common nuclear
decommissioning tasks, such as pipe cutting. The article concerns the identification of state-
dependent parameter (SDP) models for joint angle control. Compared to earlier SDP analysis
of the same device, the present work proposes a new way of representing the state-dependent
gain and parametrises this using novel regret-regression methods. A mechanistic interpretation
of this model yields dead-zone and angular velocity saturation coefficients, and facilitates SDP-
based control with an inverse dead-zone. This approach integrates the input signal calibration,
system identification and nonlinear control system design steps, using a relatively small data-
set, allowing for straightforward recalibration when the dynamic characteristics have changed
due to age and use, or after the installation of replacement parts.
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1. INTRODUCTION

The research behind this article concerns the development
of autonomous and assisted tele-operated robotic systems
for the nuclear industry. The mobile platform used for
the experimental work has dual, seven-function, hydrauli-
cally actuated manipulators (Taylor and Robertson, 2013;
Montazeri et al., 2017), for which the authors are inves-
tigating use of vision-based interfaces for common nu-
clear decommissioning tasks, such as pipe cutting. Marturi
et al. (2016), for example, discuss some of the challenges
involved and the results of a related pilot study. It is
clear that, to improve safety, task execution speed and
operator training-time for certain tasks, high performance
control of the nonlinear manipulator dynamics is required,
necessitating the identification of suitable models.

Conventional identification methods for robotic systems
include maximum likelihood (Olsen et al., 2001), the ex-
tended Kalman filter (Gautier and Poignet, 2001), in-
verse dynamic identification model with least squares
(IDIM-LS; Gautier et al. 2013) and frequency domain
methods (Wernholt and Gunnarsson, 2008), among oth-
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ers. Instrumental variable and Refined Instrumental Vari-
able (RIV) algorithms have also been used for modelling
robotic systems, sometimes in combination with State-
Dependent Parameter (SDP; Taylor and Robertson 2013)
and inverse dynamic models (Janot et al., 2014).

SDP models are estimated from data within a stochas-
tic state-space framework (Young, 2011) and take a
similar structural form to linear parameter-varying sys-
tems (Hashemi et al., 2012), with both based on the defini-
tion of quasi-linear forms. The parameters of SDP models
are functionally dependent on measured variables, such as
joint angles and velocities in the case of manipulators. Such
models have been identified and successfully used for SDP
control of a KOMATSU hydraulic excavator (Taylor et al.,
2007b) and a BROKK-HYDROLEK device (Taylor and
Robertson, 2013). The recent article by Janot et al. (2017)
further demonstrates the advantages of the SDP approach,
in comparison to IDIM-LS methods, when applied to an
electro-mechanical positioning system and a TX40 robot.

In comparison to a typical machine driven by electric
motors, hydraulic actuators generally have higher loop
gains, wider bandwidths and lightly-damped, nonlinear
dynamics (e.g. Sirouspour and Salcudean, 2001). For the
BROKK-based nuclear decommissioning platform alluded
to above, these dynamics have been represented using
physically-based (mechanistic) equations (e.g. Montazeri
et al., 2017). However, the present article instead focuses



on the identification from data of a relatively straightfor-
ward SDP model form, which is directly used for nonlin-
ear control design. In contrast to earlier SDP modelling
results for the same device (Robertson et al., 2012; Taylor
and Robertson, 2013), the present work investigates the
angular velocity of each joint. This yields a new SDP
model structure that better highlights the asymmetric
actuation, and provides implicit estimates of the dead-zone
and angular velocity saturation, in a similar manner to the
friction analysis of Janot et al. (2017).

Uniquely, recent results linking regret-regression statistical
estimation (Henderson et al., 2010) with state-space mod-
els (Clairon et al., 2017), are investigated for the final,
parametric stage of the SDP analysis. Finally, the SDP
models obtained in this manner facilitate use of a straight-
forward, Inverse Dead-Zone (IDZ; e.g. Fortgang et al.
2002) method for control system design, combined with
either conventional PI or Proportional-Integral-Plus (PIP)
methods (Taylor et al., 2013). Whilst system identifica-
tion is the main focus of this article, closed-loop control
performance is briefly investigated, using both the identi-
fied SDP model and laboratory experiments. Section 2 of
the article briefly introduces the robotic platform, while
section 3 describes the system identification methodology.
This is followed by the modelling and control results in
sections 4 through to 6, and the conclusions in section 7.

2. ROBOTIC PLATFORM

Two hydraulically actuated HYDROLEK-7W manipula-
tors, each with seven degrees of freedom have been at-
tached to a BROKK-40 mobile platform, and developed
at Lancaster University for research into the decommis-
sioning, repairs and maintenance of nuclear power plants
(see images here: https://tinyurl.com/yd3bvslo). The move-
ments of the manipulator joints are controlled using Na-
tional Instrument (NI) tools. Hence, in the following, the
controlled output yk is a calibrated potentiometer signal
representing a specified joint angle, in degrees, while the
input vk lies in the range ±10V, where the sign indicates
the required direction of movement. In practical terms,
a different valve is used for increasing or decreasing the
angle of each joint, hence a voltage in the range 0 to 10 is
applied to the appropriate valve via the NI Compact Field
Point (NI-CFP) computer.

The present authors are researching the use of assisted
tele-operation to reduce cognitive workload. This is briefly
described by West et al. (2017), with more detailed articles
in preparation. Preliminary work has focused on pipe
cutting as an illustration of the generic approach, since this
is a common repetitive task in nuclear decommissioning.
The user selects the object to be cut from an on-screen
image, whilst the computer control system determines the
required position and orientation of the manipulators in
3D space, and calculates the necessary joint angles for
the manipulator to grasp and cut. This approach has
similarities to recent work by Marturi et al. (2016) and
Kent et al. (2017). However, testing for realistic tasks,
even in a laboratory environment, has identified the need
for improved hydraulic control systems to provide more
accurate movement of the manipulators, motivating the
research discussed below.

3. METHODOLOGY

Consider the deterministic form of the SDP model:

yk = wT
k pk (1)

where wT
k is a vector of lagged input and output variables

and pk is a vector of SDP parameters, defined as follows,

wT
k = [−yk−1 −yk−2 · · · −yk−n vk−1 · · · vk−m ]

pk = [ a1 {χk} · · · an {χk} b1 {χk} · · · bm {χk} ]T

Here vk and yk are the input and output signals respec-
tively, while ai {χk} and bj {χk} are n and m state depen-
dent parameters. The latter are assumed to be functions
of a non-minimal state vector χk, the elements of which
are measured variables. In the simplest case, χk = wk.
Time-delays τ ≥ 1 are represented by setting b1 {χk} =
. . . = bτ−1 {χk} = 0. Following e.g. Young (2011), the
SDP model is usually identified in three stages, as follows.

Step 1. The underlying model structure and potential
state variables are first identified by RIV estimation of
discrete-time linear transfer function models (Taylor and
Robertson, 2013). In this regard, open-loop step exper-
iments using the manipulator suggest that a first order
linear difference equation, i.e.,

yk = −a1yk−1 + bτvk−τ (2)

provides an approximate representation of individual
joints, with time-invariant parameters {a1, bτ} and the
time delay τ depending on the sampling interval ∆t.

Step 2. It is readily apparent that the values of {a1, bτ}
are not repeatable for experiments with step inputs of
different magnitudes. Furthermore, the model performs
poorly for experiments based on inputs with time-varying
magnitudes (see later Table 2 and Fig. 4). Hence, to
determine the state-dependent form of these parameters,
the second stage of SDP analysis usually involves the
estimation of a related time-varying parameter model,
embedded within a data reordering and back-fitting algo-
rithm (Taylor et al., 2007a). In this regard, SDP analysis of
experimental data suggests that a1 = −1 is time invariant
(a similar result is obtained by Janot et al. 2017), whilst
the SDP bτ {χk} = bτ {vk−τ} is a static nonlinear function
of the delayed input signal. In other words, the model is
an integrator with nonlinear gain and time-delays.

However, prior articles concerning these manipulators (e.g.
Robertson et al., 2012; Taylor and Robertson, 2013) have
all utilised a scaled input signal designed to eliminate
dead-zone nonlinearities in an ad hoc manner (since this
is the approach taken for the original industry control
system). This rather time-consuming calibration needs
repeating from time to time as the hardware is serviced
and maintained. By contrast, the present article develops
a more systematic approach, in which the dead-zone esti-
mation is encompassed within the SDP model, while steps
1 and 2 are blended into a single identification stage, all
based on RIV estimation of the linear model (2) without
back-fitting, as discussed in the following section 4.

Step 3. In the final, optimization stage, bτ {vk−τ} is
parameterized in some manner i.e. expressed as a function
of the dependent variable vk. The coefficients of this model
are estimated directly from data (vk, yk) using some form
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Fig. 1. Joint angle yk (upper subplot) and differenced angle
yk − yk−1 (lower), plotted against sample k for 40
experiments, each based on a step input at k = 0 of
varying magnitudes, with ∆t = 0.01s. The estimated
time-delay τ = 15 samples is also shown (dashed).

of nonlinear optimisation. The present article considers
novel regret-regression methods (Henderson et al., 2010)
for this purpose. Developed for applications in medical
statistics, regret-regression has particular value when the
signals are highly noisy and the data set consists of nu-
merous, relatively short experiments. This appears apt in
the case of angular velocities derived (without smoothing)
from the open-loop experiments shown in Fig. 1. Recent
research links regret-regression methods with state-space
modelling (Clairon et al., 2017), hence the method can be
utilised in the present context for system identification.

4. SYSTEM IDENTIFICATION

The upper subplot of Fig. 1 illustrates typical open-loop
step response data for one of the manipulator joints,
namely the right hand side shoulder joint, denoted J2
below, normalised for initial conditions of zero. Using the
raw data sampling rate ∆t = 0.01s, with a1 = −1 and
τ = 15 determined a priori as discussed above, RIV
estimates bτ for each experiment are shown in Fig. 2,
demonstrating the clear state-dependency on the input.

The mechanistic interpretation of this emergent state-
dependency is straightforward: using equation (2) with
a1 = −1 yields bτvk−τ = yk − yk−1 i.e. bτvk−τ represents
a smoothed estimate of the differenced sampled output
signal and bτvk−τ/∆t, as plotted in Fig. 3, provides an
estimate of the angular velocity in degrees/s. This interpre-
tation of the model highlights the dead-zone and velocity
saturation limits i.e. any inputs to the NI-CFP computer
in the range −1.33 < vk < 1.31 (for this particular joint)
are insufficient to overcome the hydraulic system design
and friction effects, while the angular velocity saturates
for |vk| greater than ≈ 5V.

Since this hydraulic system has just one, physically mean-
ingful, state-dependent parameter, the back-fitting algo-
rithm alluded to above, in Step 2, is not required. Expo-
nential functions could be directly fitted to the RIV esti-
mates in Fig. 3. Two functions are required for each joint
because there is asymmetrical actuation e.g. the saturation

velocities for J2 are −29.5 and 38.9 degrees/s. However,
since this approach yields promising results (details are
omitted for brevity), it makes sense to move immediately
to optimisation of the identified SDP model structure in
affine form (Step 3). Here, denoting q {vk} = bτ {vk}× vk,
the model is conveniently expressed as follows,

yk = yk−1 + q {vk−τ} (3)

with,

yk = ymin for yk < ymin ; yk = ymax for yk > ymax (4)

where ymin and ymax are the hardware limits and,

q {vk}= (1− α1) e
α2(α3−vk) for vk < α3

q {vk}= 0 for α3 ≤ vk ≤ α6 (5)

q {vk}= (1− α4) e
α5(vk−α6) for vk > α6

For J2, ymin = −13.8◦ and ymax = 63.6◦, while the coef-
ficients for the static nonlinearity in Fig. 3 are estimated
directly from the step response data (y(k), v(k)) in Fig. 1
as follows: α̂1 = −0.2951, α̂2 = 1.3560, α̂3 = −1.3298,
α̂4 = 0.3887, α̂5 = 1.7710 and α̂6 = 1.3124. Here, for each
input sequence, the data illustrated in the upper subplot
of Fig. 1 are compared with the model response obtained
using equations (3) to (5), the sum of the least squares
output (simulation) errors are determined, and the mean
of these errors over the entire data set is used as the ob-
jective function for fminsearch in MATLAB. Where the
local minimum was unchanging, regardless of the initial
conditions, we used this as the minimum. Although this
does not guarantee a global minimum, the method yields
good results for the particular examples considered below.

Note (α2, α5) are curve coefficients; α1/∆t = −29.5◦/s
and α4/∆t = 38.9◦/s provide estimates of the minimum
and maximum angular velocity saturation limits; and α3 =
−1.33V and α6 = 1.31V represent the values of vk between
which the manipulator does not move i.e. the dead-zone.
These objective estimates compare closely with equivalent
values obtained from extensive ad hoc experimental work.
In this regard, although Fig. 3 shows the estimated angular
velocity, it should it stressed that the model coefficients
are based on fminsearch estimation of the SDP model
using the raw data (vk, yk) i.e. the joint angles from the
upper subplot of Fig. 1. The SDP model can also be
optimised directly using a smaller number of experiments
based on a random sequence of input magnitudes, similar
to Fig. 4 discussed below, and this yields similar results.
The relative merits of this novel approach to estimating
the velocity are being investigated by the authors.

Although the coefficients αi in (5) can be satisfactorily
estimated using standard MATLAB tools, the present
authors are also investigating the use of regret-regression
methods (Henderson et al., 2010). In this regard, Table 1
utilises the above SDP model as a simulation tool, in
which the length of the simulated time series and the
level of noise can be adjusted, in order to investigate the
relative performance of different optimisation algorithms.
In the particular case shown, based on 100 experiments
of 10 samples each, and with the state and noise variance
both σ2 = 0.001, the fminsearch and regret estimates of
the static nonlinearity are very similar. However, further
research is required for different input and noise scenarios.
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Fig. 2. State-dependent parameter plotted against input
magnitude (i.e. steady state voltage to NI-CFP, v∞),
showing RIV estimates bτ for individual step experi-
ments (circles) and optimised SDP bτ {χk} (solid).
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Fig. 3. Angular velocity θ̇ (degrees/s) plotted against input
magnitude (i.e. steady state voltage to NI-CFP, v∞),
showing RIV estimates bτ×v∞/∆t for individual step
experiments (circles) and SDP bτ {χk}×v∞/∆t (solid
trace). The estimated dead-zone and angular velocity
saturations are also shown (dashed).

5. MODEL EVALUATION

Fig. 4 shows an illustrative model evaluation experi-
ment, based on the regret-regression estimates of the SDP
model (3) to (5), while Table 2 shows the mean absolute
error (MAE) of the model for this (first row) and eight
additional experiments. Here, each experiment takes a
similar form to Fig. 4 but with randomly generated input
sequences. The experimental data in Fig. 4 and Table 2
are for the BROKK manipulator in the laboratory. The
SDP model adequately represents the joint angle system
dynamics for basic simulation purposes and, as discussed
later, control system design. In fact, Table 2 compares
the SDP model with two benchmark models and yields
considerably improved performance in both cases. The
other models include a simplified dead-zone model based

Table 1. Optimised coefficients αi (i = 1 . . . 6)
for simulated data. SDP refers to the coeffi-
cients used in the simulation (the ‘true’ val-
ues), RR are the regret-regression estimates

and FM are the fminsearch estimates.

α1 α2 α3 α4 α5 α6

SDP �2.2161 1.3570 -1.3266 2.9315 1.7865 1.3149
RR �2.2163 1.3562 -1.3265 2.9315 1.7873 1.3151
FM �2.2126 1.3694 -1.3277 2.9308 1.7873 1.3139

Table 2. Evaluation experiments, showing the
mean absolute error between the output re-
sponse of the model and measured data from
the BROKK for: the SDP model based on
equations (3)-(5); a simplified SDP dead-
zone (DZ) model based on equations (3), (4)

and (6); and the linear model (2).

Experiment SDP SDP-DZ Linear

1 4.71 7.52 16.26
2 6.14 9.51 22.43
3 3.02 6.26 44.78
4 2.75 6.77 38.48
5 2.25 6.52 40.32
6 2.76 6.21 42.65
7 4.38 18.26 15.56
8 10.37 16.91 35.20
9 5.00 9.94 44.25

on equations (3), (4) and (6); and the linear model (2).
The linear model is individually optimised for each data
set (otherwise the results are even poorer than indicated in
Table 2), whilst both SDP models are estimated a priori
as discussed above. Finally, similar SDP model forms are
identified for the other joints of both manipulators. In the
case of Joints 1–3 (azimuth yaw, shoulder pitch and elbow
pitch), these yield satisfactory model evaluation results,
including for open-loop experiments involving simultane-
ous movement of several joints and for resolved motion.
However, the two joints closest to the end-effector (Joints
4–5: the forearm roll and wrist pitch), yield inconsistencies
in the system time-delay and poorer results, and this is the
subject of on-going research by the authors.

6. CONTROL DESIGN

Fig. 5 shows a schematic representation of the proposed
control system. In the discrete-time case, dk is the desired
joint angle, uk is the PI or PIP control input variable, vk is
the voltage to the NI-CPF computer in the range ±10V, qk
is the angular velocity and yk is the joint angle. The SDP
model identified above, i.e. equations (3) to (5), describes
the relationship between vk and yk. In order to investigate
closed-loop robustness, the coefficients α̂i (i = 1 . . . 6) used
for control design may take different values to those of the
SDP simulation model developed above.

Whilst previous research into nonlinear control of this
device has directly utilised the SDP model in a special
form of pole assignment (Taylor et al., 2011; Taylor and
Robertson, 2013), the present article investigates a rather
simpler IDZ approach. This is based on an approximation
of Fig. 3 close to the dead-zone limits, as illustrated
by Fig. 6. A control sampling rate of ∆t = 0.05s is chosen



0 50 100 150 200 250 300
-20

0
20
40
60

y

data
SDP

0 50 100 150 200 250 300
time (s)

-2

0

2

v

Fig. 4. SDP model evaluation, showing the joint angle yk
(upper subplot) and input vk (lower) plotted against
time (s). The upper subplot compares the model
response (thin trace) with experimental data (thick).

as a compromise between satisfactory reaction times and
a relatively low order PIP control system. In this case,
Fig. 6 shows the linearised relationships for vk and qk in
the range (i) vmin to α̂3 and (ii) α̂6 to vmax in the negative
and positive directions of movement, respectively. For J2,
vmin = −2.2 and vmax = 1.75 are chosen by trial and error
to obtain a satisfactory closed-loop response in simulation;
these input values are equivalent to an angular velocity
≈ 20◦/s in either direction, and it seems unlikely that any
faster movement would be desirable in practice.

This approximation of the SNL element of Fig. 5 is defined
as follows (cf. equations (5)):

q {vk}= sn (vk − α̂3) for vk < α̂3

q {vk}= 0 for α̂3 ≤ uk ≤ α̂6 (6)

q {vk}= sp (vk − α̂6) for vk > α̂6

where the ‘slope’ coefficients associated with negative and
positive inputs are sn = q {vmin} /(vmin − α̂3) and sp =
q {vmax} /(vmax−α̂6), respectively. Adapting e.g. Fortgang
et al. (2002), the IDZ control element is,

vk = uk/sn + α̂3 for uk < −β

vk = 0 for − β ≤ uk ≤ β (7)

vk = uk/sp + α̂6 for uk > β

where β = 0.05 (for the laboratory experiments below)
is a ‘chatter’ coefficient, introduced to avoid unnecessary
switching of the input between α̂3 and α̂6. Here, equa-
tions (7) aim to cancel the system dead-zone and allow use
of conventional linear control design methods to address
any remaining dynamics and time-delays. For J2, τ = 3
and hence, using standard methods (Taylor et al., 2013),
based on the linear model (2) with b3 = −a1 = 1, the PIP
control algorithm takes the following incremental form,

uk = uk−1 − g1(uk−1 − uk−2)− g2(uk−2 − uk−3)

− f0(yk − yk−1) + kI(dk − yk) (8)

where uk = umin for uk < umin, uk = umax for uk >max,
in which umin = −2.5 and umax = 2.5 are introduced
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Fig. 5. Schematic diagram of the control system, in which
C, IDZ, SNL and LD represent the (linear) Controller,
Inverse Dead-Zone control element, Static NonLinear-
ity and Linear Dynamics, respectively.

to avoid potential integral-wind up problems. There are
several options for selecting these control input limits. The
signals to the NI-CFP computer are limited to ±10V but
Fig. 3 shows that, in practical terms, the angular velocity
already saturates for input signals greater than ≈ ±4V,
whilst Fig. 6 shows that the IDZ approximation is most
accurate for inputs in the range vmin to vmax selected
above. In fact, the closed-loop response is not particularly
sensitive to these values since the design poles are selected
to avoid hitting the constraints anyway (see below).

A simulation study into the effectiveness of different con-
trol approaches, including e.g. PI, PIP, SDP and fuzzy
logic algorithms, all with and without the IDZ control
element, is beyond the scope of this article and will be
reported in future work. However, with a focus on illus-
trating the veracity of the novel SDP model identifica-
tion process proposed above, Fig. 7 compares the closed-
loop simulation response with experimental data from the
BROKK system, for PIP-IDZ control of J2.

The controller is based on closed-loop poles on the com-
plex z-plane of (0.9 + 0.05i, 0.9− 0.05i, 0, 0), initially ob-
tained using linear quadratic design methods, which yields
f0 = 0.1261, g1 = 0.12, g2 = 0.1261 and kI = 0.0061.
Fig. 7 shows that the PIP-IDZ algorithm yields a smooth,
relatively fast closed-loop response, comparable to earlier
research using the more complex nonlinear pole assign-
ment approach (Taylor and Robertson, 2013). Similar re-
sults have been obtained for other joints and for resolved
motion. Of particular significance to the present article,
however, Fig. 7 also shows that the identified SDP model
adequately represents the experimental data.

7. CONCLUSIONS

The article has identified SDP models for the manipulator
joints of a BROKK-based nuclear decommissioning robot.
Recent results linking regret-regression and state-space
modelling have been exploited for the parametric stage of
this analysis. Such methods have potential value for short
experiments with noisy (angular velocity) data. In contrast
to earlier research, the SDP model structure is obtained
directly from a mechanistic interpretation of the prelim-
inary RIV estimation results. The SDP models obtained
in this manner facilitate use of an IDZ method for control
system design. This is rather simpler to implement than
an earlier SDP approach and has the advantage of com-
bining the input signal calibration, system identification
and control system design steps, all based on a relatively
small data-set. This allows for rapid application to each
joint and straightforward recalibration when the dynamic
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characteristics have changed due to age and use, or after
the installation of replacement parts.
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