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Abstract

The theory of 2-convex norms is applied to Banach space valued random vectors. Use
is made of a norm on random vectors, introduced by Pisier, equal to the 2-absolutely
summing norm on an associated space of operators.

For @ the variance of some centred Gaussian random vector in a separable Banach
space it is shown that, necessarily, Q factors through /? as a product of 2-summing
operators. This factorisation condition is sufficient when the Banach space is of Gaussian
type 2. The stochastic integral of a family of operators with respect to a cylindrical
Q-Wiener process is shown to exist under a Holder continuity condition involving the
2-summing norm.

A Langevin equation
dZ; + ANZ,dt = dB,

with values in a separable Banach space is studied. The operator A is closed and densely
defined. A weak solution (Z;, B;), where Z; is centred, Gaussian and stationary while B,
is a Q-Wiener process, is given when ¢A and 1A* generate Cj groups and the resolvent of
A is uniformly bounded on the imaginary axis. Both Z; and B; are stochastic integrals
with respect to a spectral (J-Wiener process.

The convolution of two arcsine probability densities is shown to be an elliptic integral.
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ABSTRACT iii

Ensembles (X,),>1 of random Hermitian matrices are considered. Each X, is n
by n with distribution invariant under unitary conjugation and induced by a positive
weight function on R. New proofs are given of results, due to Boutet de Monvel, Pastur,
Shcherbina and Sodin, on the behaviour of the empirical distribution of the eigenvalues
of X,, as n tends to infinity.

Results in analytic function theory are proved. An H interpolating sequence in the
disc D whose Horowitz product does not lie in the Bergman space L2 (D) is exhibited. A

condition satisfied by Banach spaces of non-trivial analytic Lusin cotype is obtained.
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Chapter 1

Introduction

This thesis considers various aspects of the theory of Banach space valued random vectors
and stochastic processes. This topic has been extensively studied in recent years; of

notable interest are the books [8] and [34].

1.1 Ornstein-Uhlenbeck processes

The thesis will study a Langevin equation for stochastic processes with values in a
separable complex Banach space E. The one-dimensional Langevin equation is the Ito

differential equation
dZt + ptht = dbt (11)

for t € R, where the constant p > 0 describes a frictional resistance. We seek a pair of
processes (b, Z;), defined on a probability space (92, F,P), which solve equation (1.1);
the process (b;)icr is required to be a complex Brownian motion on the line with by = 0
and the process (Z;)cr is required to be a complex valued centred Gaussian stationary
stochastic process which is adapted to the filtration induced by b; and has almost surely
Holder continuous sample paths. The concept of a stationary stochastic process was
introduced by Khinchin in [28].

It is well known, following Uhlenbeck and Ornstein’s paper [49], that solutions (b;, Z;)

of equation (1.1) exist. The stationary process Z; is unique in distribution and called the

1



CHAPTER 1. INTRODUCTION 2

Ornstein-Uhlenbeck process with parameter p. We may write Z; as a stochastic spectral

integral

1 00 iwt -
- = [ s,
V2T ) o Pt W

where (b, )wer is a given complex Brownian motion on the line defined on (€2, 7, P) with

7 (1.2)

130 = 0. The process b; is given in terms of l;w by the condition by = 0 and the stochastic
spectral integral, for s < ¢,

1 00 piwt _ giws
by — bs = db,,. 1.3
t S \/ﬂ /_oo Z(,(J w ( )

The formulae (1.2) and (1.3) were originally derived by mathematicians developing the

theory of linear filters on stationary stochastic processes. Of note are Blanc-Lapierre and
Fortet’s paper [3], which discusses the basic properties of filters, and Kolmogorov’s paper
[29], which discusses spectral representations of solutions to linear constant coefficient
stochastic differential equations — formula (24) of Kolmogorov’s paper is a generalised
form of (1.2). See chapter XI of [13] for a detailed description of the spectral theory of
scalar valued stationary stochastic processes.
Adaptedness of the process Z; to the filtration induced by b; follows from the existence
of a time domain integral
t
Zy = / e "= dgp,,. (1.4)
—0
which expresses Z; as a stochastic integral with respect to b;. All stochastic integrals

are interpreted in the It6 sense. The autocovariance of the process Z; is

e_p‘s_ﬂ

(1.5)

The Ornstein-Uhlenbeck process is Gaussian, strongly Markovian and stationary with
almost surely Holder continuous sample paths.

For more information, particularly on the physical motivation for studying these
processes, we refer the reader to [19] or [44].

In chapter 4 of this thesis we consider a generalisation of the Langevin equation to

the Banach space valued case. We let E be a separable complex Banach space and
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consider the stochastic differential equation
dZ; + AZ,dt = dB; (1.6)

for t € R, where A is a closed operator from a norm dense domain D(A) C E to E.

We seek a pair of processes (B¢, Z;), defined on a probability space (2, F,P), which
are a weak solution to equation (1.6); the concept of a weak solution follows that of
Da Prato and Zabczyk, for which see [8], and is defined formally in chapter 4. The
approach we adopt of seeking a pair of processes, neither of which is given in advance, is
used by Oksendal in [40]. The process (B;);cr is required to be an E valued cylindrical
(QQ-Wiener process; our terminology for Wiener processes follows that used in [8]. The
process (Z;)icr is required to be an F valued, centred Gaussian, stationary stochastic
process with almost surely Holder continuous sample paths.

When generalising results on scalar valued random variables and stochastic processes
to the Banach space valued case, several problems arise concerning how to describe
concepts such as expectation, L? boundedness, covariance and stationarity in a wider
setting. Chapter 2 of this thesis uses ideas developed by G. Pisier in the paper [43]
to develop the theory of spaces of Banach space valued random vectors with bounded
variance. Various weak forms of the L? norm are considered; these are contrasted with
the more usual Bochner L? norm.

Particular use is made of a norm on spaces of random vectors, introduced by Pisier,
which is equal to the 2-absolutely summing norm on an associated space of linear op-
erators; this norm is denoted by ms. Chapter 3 characterises Gaussian random vectors
and cylindrical Q-Wiener processes in a separable Banach space E using this norm; it is
shown that, necessarily, @ factors through I? as AA*, where A is an operator from [? to
E with 2-summing adjoint. This factorisation condition is shown to be sufficient when
E is of Gaussian type 2.

Chapter 3 also considers the theory of stochastic integration in a separable Banach
space for deterministic integrands with respect to a cylindrical )-Wiener process. The

following theorem is proved.
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Theorem 1.1.1 For E a separable Banach space, let B, be an E valued cylindrical AA*-
Wiener process defined on a probability space (Q, F,P). Then for s < t, if (Ty)s<u<t s
a non-random family of bounded linear operators on E such that (A*T)s<u<t is Holder

continuous in the mo norm, the stochastic integral

t
/ Ty, dBy (1.7)

exists in the It sense, as the L? limit of appropriate Riemann sums under refinement

of partitions. Furthermore

t 2 t
- (/ TudBu> g/ 7o (A" T2 du. (1.8)

Having formalised the framework under which Banach space valued stochastic pro-
cesses will be discussed we prove the existence in chapter 4, under certain boundedness
conditions on A, of pairs of processes (By,Z;) which solve the Banach space valued

Langevin equation in the weak sense.

Theorem 1.1.2 Assume iA and iA* generate Cy groups of operators on E and the
resolvent of A is uniformly bounded on the imaginary azis. Consider the stochastic

spectral integral

1 [~ . .
Z, = —— e“H(A +iwl)~  dB,, 1.9
v= = [ (19)

where By, is a given E valued cylindrical Q- Wiener process defined on (Q,F,P). Define

B; subject to Bg = 0 and the stochastic spectral integral, for s <1,

iws

1 00 eiwt — ¢t
B, —-B; = dB,,. 1.10
t S \/ﬂ /_OO Z(,(J w ( )

The processes Z; and By converge in L? as Ité stochastic integrals and the pair (By, Zy)

is a weak solution of equation (1.6).

The process Z; is a generalisation to the F valued case of the classical Ornstein-
Uhlenbeck process. Such a generalisation has been done previously, notably by It6 in his
paper [26]; the difference in our case is that our solution Z; is represented as a stochastic

spectral integral, rather than an integral in the time domain.
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Note we do not require that Z; be adapted to the filtration induced by B;. We obtain
adaptedness in the important case where (—A) generates a Cy semigroup (e*At)tzg of
exponential norm decay, however, by demonstrating the existence of a time domain
integral

¢
7 = / e~AM-v) gB,, (1.11)
—o0
which expresses Z; as a stochastic integral with respect to B;.
Chapter 4 also considers some specific examples of E valued Langevin equations and

their weak solutions. Each example corresponds to an operator A for which neither A

nor (—A) generate Cy semigroups of exponential norm decay.

1.2 Random matrices

The thesis also concerns itself with the theory of random matrices. These arise in
numerous areas of statistical and quantum physics; the book [39] provides an introduction
to the subject.

Chapter 6 considers ensembles (X,),>1 of random Hermitian matrices. Each X, is
n by n and defined on a probability space (Q, F,P). The distribution of X,, is invariant
under conjugation by unitary maps and induced, via functional calculus, by a positive
weight function on R. Such matrices were studied, for example, in the papers [6] and
[41].

We study a fundamental sequence of random measures associated to (X,)p>1. For
each X,, define the n-tuple (A1 (X,),..., A, (Xy)) to be the eigenvalues of X,, arranged

in decreasing order. Define, for w € Q and each n,
1 n
vn(w) =~ D 00 (X)) (1.12)
j=1

The random probability measure v, is referred to as the empirical distribution of the
eigenvalues of X,,. It is also known as the spectral multiplicity measure.
The framework developed in chapter 2 for studying classes of random vectors is

applied to these random measures; this enables us to define the expectation Ev,, for each
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n. The concept of L? norm convergence for such sequences is studied in this setting.
Chapter 6 will prove some results on the limiting behaviour of v, as n tends to

infinity. We prove the following.

Theorem 1.2.1 The sequence (v, — Evy)n>1 tends to zero in L? norm as n tends to
infinity. Furthermore if the weight function generating (Xp)n>1 is supported on [—1,1]
and twice differentiable on (—1,1) with only finitely many zeros, all of finite order, then

vy, tends to the standard arcsine distribution in norm as n tends to infinity.

These results are known — the first sentence above is due to Boutet de Monvel, Pastur
and Shcherbina and stated, with proof, in their paper [6] while the second sentence is
stated by Pastur in his paper [41] and attributed to Sodin. The proofs we give are
new, however. Furthermore by stating and proving these results using the framework
developed in chapter 2, we manage to simplify notation and avoid use of the Stieltjes
transform.

The arcsine probability distribution appears prominently in the results of chapter
6. In chapter 5 we give background information on this distribution and show that the
convolution of two standard arcsine probability densities may be expressed as a complete

elliptic integral of the first kind.

1.3 Analytic function theory

The final part of the thesis obtains some results in analytic function theory.

Chapter 7 considers Bergman spaces and Horowitz products on the disc ). Horowitz
products were introduced in [25] and play a réle in Bergman space theory analogous
to the role played by Blaschke products in Hardy space theory. The Horowitz product
of a Bergman space zero sequence (a;) converges locally uniformly on D) to an analytic
function with zeros (a;).

We exhibit a sequence (a;) in D which is H* interpolating, in Carleson’s sense, yet

the Horowitz product associated to (a;) does not lie in the Bergman space L2(D).
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Chapter 7 also considers the concept of analytic Lusin cotype for Banach spaces. It is
shown that, if F is a Banach space of analytic Lusin cotype ¢, the Hardy space H?(DD; E)
satisfies a so-called geometric radial lower g-estimate.

This part of the thesis is essentially separate from the parts preceding it. Analytic
function theory is connected to the theory of stochastic processes, however, via the theory
of spectral representations of stationary stochastic processes; the Ornstein-Uhlenbeck
processes of chapter 4 are examples of such representations.

Masani and Wiener, in their papers [37] and [38], famously used analytic function
theory to study spectral representations of stochastic processes in C" and develop a
prediction theory for such processes. It seems likely that, as such results are extended
to the Banach space valued case, analytic function theory will continue play a crucial

role; this was conjectured by Pisier at the end of his paper [43].



Chapter 2

Banach space valued

random vectors

In this chapter we develop the formalism we need to adequately deal with the theory
of Banach space valued random vectors and their covariances. The ideas largely derive
from Pisier’s paper [43]. The books [12], [34] and [42], together with the papers [35] and
[36], have proved invaluable.

Following [43] we use positive sesquilinear forms to define norms on Banach space
valued random vectors which equal certain 2-convex norms on equivalent operators from
the dual of the Banach space to a Hilbert space. For details of 2-convexity the reader is
directed to section 2 of [43]. One norm in particular is equal to the 2-absolutely summing
norm; this will enable us to bound various stochastic integrals in chapters 3 and 4. The

2-convex norms yield a natural notion of covariance for pairs of random vectors.

2.1 Definitions

We introduce some notation. For a complex vector space V, V denotes V endowed with
the conjugate scalar multiplication (X, v) — Av. Write @ for v € V viewed as an element
of V.

Throughout this thesis, all adjoints of linear operators are to be interpreted in the
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Banach space sense.

A brief explanation is needed concerning relationships between finite rank operators
and tensors. Let E and F be Banach spaces and let (&x)r, (§)r and () denote
sequences in F, E* and F respectively. The space of finite rank operators £ — F' is to

be identified with the space of tensors E* ® F'; we identify the finite rank operator
£ Y E(©m (2.1)
k
in B(E, F) with the tensor
Yoo (2.2)
k

in E*®F. The space of finite rank o(E*, E) continuous (that is to say weak-* continuous)
operators E* — F'is to be identified with the space of tensors F ® F'; we identify the

finite rank weak-+ continuous operator
& > (R (2.3)
k
in B(E*, F) with the tensor

> G@m (2.4)
K

in E® F.
Given a space of algebraic tensors £ ® F', we may impose norms on that space. A

norm o on £ ® F is said to be tensorial (or a crossnorm) if

a(E®n) = lElelnlr (2.5)

for all rank one tensors £ ® n in £ ® F. A tensorial norm is said to be reasonable if

o€ @) = ¢

= [ln* [l (2.6)

for all rank one tensors {* @ n* in (E' ® F)*, where o denotes the dual norm to . Note
that we may replace equality with < in the above equation and the property remains

the same. The completion of £ ® F' with respect to the tensorial norm « is denoted by
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E ®, F. For more information consult [42] or chapter VIII of [12]; these concepts were
originally introduced in [20].

The two most commonly used reasonable tensorial norms on a space of tensors E® F
are the injective norm || ||y, with completion the injective tensor product EQF, and
the projective norm || ||, with completion the projective tensor product EQF. If

u € E® F then ||ul]y is the operator norm of u viewed as an element of B(E*, F') while,

writing u =37, &k ® ni,

1wl =inf{Z||fk||E||7lk||F} (2.7)
k

where the infimum is over all representations of u. It is well-known that, given any

u € FE® F and a reasonable tensorial norm oo on £ ® F',
lullv < a(u) < [luf|a. (2.8)

We shall also consider certain classes of norms on spaces of operators from E to F'.
Let A(E, F') denote a subspace of B(E, F') equipped with a norm « under which A(E, F)
is a Banach space. We say A(F, F) is a Banach operator ideal, and « is an operator
ideal norm, if:

(i) for all £* € E* and n € F, the rank one tensor £* ® n € A(F, F) and
a* ®@n) =& e+ lInllF; (2.9)
(ii) for all u € A(E,F), S € B(E) and T € B(F), the product TuS € A(E, F) and
a(TuS) < ||T|o(u) S]] (2.10)

The most familiar example of a Banach operator ideal is B(FE, F) equipped with the
usual operator norm; this is also the largest operator ideal in the sense that, if a is an

operator ideal norm on an operator ideal A(E, F) and u € A(E, F'), we have
Jull < a(u). (2.11)

Note that, for a an operator ideal norm on an operator ideal A(F, F), the restriction
of a to the space E* ® F' of algebraic tensors is a reasonable tensorial norm. For more

information on operator ideals the reader is directed to [11].
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We recall from, for example, [11] the definition of a 2-absolutely summing operator.
For E and F Banach spaces, the operator T': £ — F' is 2-summing if

1/2
ma(T') = sup (Z ||T£i||fv> < 00, (2.12)

where the supremum is over all finite subsets {;}; of E satisfying

sup {Z €7 (€)I17 € € B g7 - < 1} <1 (2.13)

The constant mo(7') is the 2-summing norm of T'; it is an operator ideal norm. We write
[Iy(E, F) for the space of all such T’; it forms a Banach space with norm 7y and so is
a Banach operator ideal. In the case where E and F' are both Hilbert spaces the space
[Iy(E, F) is the space of Hilbert-Schmidt operators from E to F.

Let E be a Banach space, H a Hilbert space and A(E, H) a Banach operator ideal.
We denote by S1 (E* x E*) the set of all positive sesquilinear forms on E* x E*. Through-
out this thesis all sesquilinear forms and inner products are understood to be linear in
the first variable and conjugate linear in the second.

If p is a weak-* continuous element of S; (E* x E*) we define the action of ¢ on
elements (u,v) of A(E, H) x A(E, H) as follows. Assume first that « and v are of finite
rank; the spaces Imu* and I'mv* are then finite dimensional subspaces of E*, and the

restriction of ¢ to Imu* X Imv* is of finite rank. We may write

Pt = Y6 T (2.14)

j
for some sequences (¢;); and (n;); in E. Define
plu,0) = <ulé),o(n;) > - (2.15)
J

For w in A(E, H) not of finite rank we define

o(u,u) = Sllle ©(Pu, Pu) (2.16)

where P is a finite rank orthogonal projection on H. Finally we calculate ¢(u,v) for

distinct v and v in A(E, H) by the polarisation formula

3
1 . . :
o(u,v) = 1 i o(u + v, u +7v). (2.17)
=0
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Type 2 is defined as follows. Let (X)x denote a sequence of independent real N(0,1)
random variables. A Banach space E is of (Gaussian) type 2 if there exists a finite

positive constant C' such that, for any finite sequence (&) in E,

1/2
> & Xy <C (Z ka“%) - (2.18)
P P

We denote the infimum of all allowable constants C by T(E), the type 2 constant of E.

1/2

2
E
E

Note that both the Lebesgue spaces LP and the Schatten-von Neumann spaces cP are
of type 2 for 2 < p < co. For more information on the notion of type, and the related

notion of cotype, see [11] or [42].

2.2 2-convex operator ideal norms

Let E be a complex Banach space and H a complex Hilbert space. Let D(E, H) be a
Banach space of operators £ — H equipped with a norm ¢ satisfying:

(D1) § is an operator ideal norm and D(E, H) is a Banach operator ideal;

(D2) §(u) = supp 0(Pu) for all u € D(E, H), where P is a finite rank orthogonal projec-
tion on H;

(D3) if u € D(E, H) then
[Jul] < 6(u) < mo(u). (2.19)

It is straightforward to show that both B(E, H) and TIy(F, H) satisfy these properties.

If 6 is such a norm satisfying (D1)—(D3) we say 0 is 2-convex if

2
5 (Z Pku> <> 6 (Ppu)? (2.20)
k k

for all u and each finite set of mutually orthogonal projections (Pj) on H. Note that
both operator norm || || and 2-summing norm my are 2-convex.

The notion of 2-convexity will be used in chapters 3 and 4 to bound various sums of
independent Banach space valued random vectors. For more information on 2-convexity
we direct the reader to section 2 of [43].

We have the following result, which is proposition 2.1 in [43].
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Theorem 2.2.1 Assume (D1)-(D3). The following conditions are equivalent:

(i) the norm ¢ is 2-conver;

(1) there exists a family K of positive weak-x continuous sesquilinear forms on E* x E*,
containing the rank one forms, of norm less than or equal to one and compact in the
topology of pointwise convergence of sesquilinear forms, such that for all w € D(E, H),

8(u) = sup (p(u,u))'/%; (2.21)
peEK

(i1i) there exists a family I(E) of finite subsets of B, satisfying supjer(g) D pes 6% (z)|? <
1 for all £ € E*, ||€|| <1, such that for all u € D(E, H),
1/2
d(u) = sup |uz||? . (2.22)
JEI(E) IEEL:I "

Proof See proposition 2.1 of [43], and the discussion which follows this proposition, for

details.

O

If § is operator norm || || then its associated family of sesquilinear forms is the set
of all rank one sesquilinear forms on E* x E* of norm less than or equal to one, whereas
if § is 2-summing norm 7y its associated family of sesquilinear forms is the set of all
sesquilinear forms on E* x E* of norm less than or equal to one.

If § is operator norm || || its associated family of subsets is the set of all finite J C E
such that ) |z||* < 1, whereas if § is 2-summing norm 7, its associated family is the

set of all finite J C E such that 3, |¢*(z)|” < 1 for all &* € E* satisfying [|¢*]| < 1.

2.3 Weakly measurable random vectors

In this discussion (2, F,P) will be a probability space, F will be a complex Banach
space, X will be a function 2 — FE and K will be a collection of positive sesquilinear
forms on £ x E, containing the rank one forms and contained in the set of all forms of
norm less than or equal to one. Denote by o(Ny(FE)) the cylindrical o-algebra on E;

this is the o-algebra generated by the set Ny, (E) of all weak neighbourhoods in E.
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We say X : Q — E is weakly (also known as Pettis) measurable if £*X : Q — C is
Borel measurable for all £* € E*; equivalently, X is weakly measurable if it is measurable
with respect to o(Ny(FE)). Tt is clear from the definition that the set of all weakly
measurable functions from 2 to £ forms a vector space; this is also known as the space
of cylindrical random vectors.

By contrast we say X : Q@ — FE is strongly (also known as Bochner) measurable
if it is measurable with respect to the Borel o-algebra on E and takes values almost
surely in a separable subspace of E (we say it is almost surely separably valued). This
implies in particular that || X ||z : @ — R is measurable. Pettis’ measurability theorem
([12], theorem II.2) states that X is strongly measurable if and only if it is weakly
measurable and almost surely separably valued. A further theorem states that X is
strongly measurable if and only if there exists a sequence (X,), of simple functions
(i.e. each X, = >, &;1a; for some sequence (¢;); in E and some sequence (A;); of
measurable sets in ) such that || X (w) — X, (w)||r tends to zero as n tends to infinity
for almost all w. The set of all strongly measurable X : Q@ — E forms a vector space.
More information is in [36].

Note by Pettis’ measurability theorem that if E is separable then strong and weak
notions of measurability coincide.

For X : Q — FE weakly measurable and K a set of positive sesquilinear forms as
above we may, following Pisier in [43], define a seminorm dx via the formula

1/2
5xc(X) = sup ( / @(X(w),X(w))]P’(dw)) . (2.23)
pEK Q
The only axiom of a seminorm which is unclear is the triangle inequality. However
sesquilinearity and the Cauchy-Schwarz inequality enable us to prove dx(X; + X3)? <
[65(X1) + 6k (X2)]?. Denote the seminormed space of all weakly measurable X : Q — E
with 0 (X) < oo by L2(%; E, k).

We may quotient £2(Q; E,dx) by the set of all weakly measurable X : Q — E with
d(X) = 0, which we denote by N, to obtain a normed space, which we denote by
Ly (% E, 0k ).
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The null space N is, from the definition of dx, the set of all weakly measurable
X : Q — FE satisfying £*X = 0 almost surely for all £* € E*. A more natural choice of
null space would be the set of all weakly measurable X : Q — F satisfying X 1(0) € F
and, furthermore, X = 0 almost surely. Denote this by N.

Note that N C N. Also note the condition X~(0) € F in the definition of N is
necessary since the set {0} is not necessarily in (N, (E)). Further note that N is not
necessarily a vector space.

We may ask:

(i) when is N a vector subspace of N?

(ii) when does N = N?

Proposition 2.3.1 For N and N as just defined:

(i) if {0} € 0(N(E)) then N = N;

(ii) if {0} & o(Nw(E)) but (Q,F,P) is complete, N is a vector subspace of N — it may
equal N ;

(iii) if E is separable then {0} € 0(Ny(E)) and so N = N;

(iv) if E is separable then o(Ny(E)) coincides with the Borel o-algebra on E.

Proof This is an exercise in technical measure theory; the reader is directed to the

paper [36].
O

At times we shall also need to consider the more usual Bochner LP spaces. If 1 < p < oo
and X : Q — F is a strongly measurable random vector then its Bochner LP norm is

given by

xt, = (/] ||X(w>||EP<dw>)1/p. (2.24)

Denote by LP(; E) the set of all strongly measurable X : Q — F with finite Bochner L?
norm. This is a seminormed vector space whose null space is the subspace of all strongly
measurable X : Q@ — E which are zero almost surely. Denote by LP(£; E) the resulting

quotient space; this is a Banach space.
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We may define analogous LP(2; E) in the cases 0 < p < 1; the resulting spaces are
complete quasinormed spaces.
Note that if 65 is any of the weak L? norms introduced in this section and X €

L?(%; E) then
Ik (X) < 1 X2 (2.25)

The notion of the norms §; and the spaces L2 (; E,dx) will enable us in section
2.6 to develop the theory of covariance for Banach space valued random vectors.

We shall also need the theory of expectation. Following [12] we say a weakly mea-
surable random vector X : Q) — E is weakly (or Dunford) integrable if ¢*X € L'(Q) for
all £&* € E*. This occurs if and only if

sup / 1€ X (w)| P(dw) < 0. (2.26)
§rebx,[IgxI<L/Q

For a weakly integrable X : 2 — E and A € F we see there exists

/ X (w) P(dw) € E** (2.27)
A

such that

(/AX(w)P(dw)> (€) :/Af*X(w)IP)(dw) (2.98)

for all £* € E*. When A = Q we refer to the integral as the weak expectation EX of X
with respect to P.

We note that if X € L2 (Q; E, §x) then by the Cauchy-Schwarz inequality the above
condition holds; thus the weak expectation exists and is finite as an element of E**.

It may be of course that

/ X (w)P(dw) € E (2.29)
A

for all A € F. In this case, following [12], we say X is Pettis integrable. In particular
EX € E. Denote by P?(2; E, 0x) the Pettis integrable elements of L2 (Q; E, §x).
Finally if X lies in the Bochner space L'(Q; E) we say it is Bochner (or strongly)

integrable. Bochner integrability implies Pettis integrability.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 17

Scholium For E* a dual Banach space one may develop a theory of weak-*x measurable
random vectors 2 — E*, namely functions X : @ — FE* having the property that
X¢ : Q@ — C is Borel measurable for all £ € E. Norms dx are defined on weak-
* measurable random vectors 2 — E*, with respect to sets K of weak-x continuous
sesquilinear forms on E* x E*, in an analogous manner to the dx norms on weakly
measurable random vectors.

Denote by £2.(Q; E*,d) the seminormed space of all weak-+ measurable functions
X : Q — E* satisfying 0 (X) < oo. As before we quotient to obtain a normed space
L. (Q; E* 0k).

Following [12] we say a weak-x measurable random vector X : Q — E* is weak-* (or
Gel'fand) integrable if X¢ € L'(Q2) for all ¢ € E. Elements of L2.(Q; E*, 0 ) are weak-*

integrable. For a weak-* integrable X : ) — E* and A € F we see there exists

/ X () P(dw) € B (2.30)
A

such that

( /A X(w)IP’(dw)> (€) = /A X ()¢ P(d) (2.31)

for all £ € E. When A = ) we refer to the integral as the weak-* expectation EX of X
with respect to IP.
In chapter 6 we will consider some classes of random measures on R (i.e. functions

* of Radon measures on R),

from some probability space  to the dual space Cy(R)
associated to certain ensembles of random matrices, which lie in L2. (Q; Co(R)*, k) for

a particular choice of dg.

2.4 An equivalence between random vectors and operators

We return to the notation of section 2.2 and consider the case where H = L2(Q), the
Hilbert space of complex valued square-integrable functions on (€2, F,P), quotiented by
functions which are zero almost surely. Denote by £2(€2) the corresponding seminormed

space of square-integrable functions. As before E is a complex Banach space.
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Let dx be a 2-convex norm on operators E* — L2(2) which satisifes conditions
(D1)—(D3) and is associated with a set K of positive sesquilinear forms on E x E (i.e.
weak-* continuous positive sesquilinear forms on E** x E**). Denote by D (E*, L2(Q))
the associated Banach operator ideal of operators u : E* — L2(Q) satisfying 0x (u) < oc.
Denote by D% (E*, L?()) the weak- continuous elements of Dy (E*, L%(Q2)).

Note that dx also induces a seminormed space Dg (E*, £2(€)) in an analogous way.
Furthermore when we quotient this space by the null space of operators u satisfying
Sk (u) = 0 we obtain the Banach space Dk (E*, L?(f2)); this follows because the null
space comprises those operators u which satisfy u(¢*) = 0 almost surely, for all £* in
E*, and this in turn is the space of operators u such that u(£*) lies in the null space of
L£2(Q) for all £* in E*.

Denote by ) K, for the same K, the norm on weakly measurable functions 2 — E
described in section 2.3. The associated normed space is L2 (Q; E, ) K)-

We have the following result.

Proposition 2.4.1 There is an isometric embedding
A: L2 (QE,6x) = Dk (E*, L*()) (2.32)
given by the relation
X(E)(w) =& (X (w)). (2.33)
Furthermore we have isometric isomorphisms
A: P2(Q; E,65) DY (E*, L*(Q)) (2.34)
and
A: L2 (Q; B, 0x)SDr(E*, L*(Q)) (2.35)
given by relation (2.33) and the relation
X(€)(w) = X(w)(£") (2.36)

respectively.
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Proof Referring to Theorem 2.2.1 (which is proposition 2.1 of [43]) we see the relations
(2.33) and (2.36) define isometric embeddings A : £2/(; E, 0x) < D (E*, £2(R)) and
A:L2.(Q; E*,0k) — Dy (E*, £L2(Q)) respectively between seminormed spaces.

We may quotient by the appropriate null spaces to obtain isometric embeddings
between normed quotient spaces if, given a random vector X, SK(X ) = 0 implies
5x(X) = 0. But this follows, since for the first embedding dx(X) = 0 if and only
if £*(X) = 0 almost surely, for all £* in E*, which occurs if and only if 6z (X) = 0. Sim-
ilarly, for the second embedding & xk(X) = 0 if and only if X (£*) = 0 almost surely, for
all £ in E*, which occurs if and only if §(X) = 0. Thus we have isometric embeddings
between normed spaces as required.

Furthermore the embedding A : L2.(Q; E**, dx) < D (E*, L*(Q)) is surjective; this
follows since, given X € Dg (E*, L(Q)), the relationship X (w)(¢*) = X (6*)(w) gives us
an X in L2.(Q; E**,§x) which maps to X.

Turning to the case of spaces of Pettis integrable random vectors, we know that
P2(; E, SK) is a subspace of L2(Q;F, SK) and so we have an isometric embedding
P2(Q; E,6x) — Di(E*, L2(Q)).

Now X € Dy (E*, L*(R)) (which is associated to X in L2.(Q; E**,0k)) is weak-x
continuous if and only if its adjoint X* : L%(Q) — E** takes values in E. This adjoint

mapping is given by

X*(f) = /Q X () F@)P(dw) (2.37)

where the integral is a weak-* integral.

It is clear this takes values in E for all choices of f in L2(Q) if and only if X is
E valued and Pettis integrable. Thus the image of P?(Q; E, SK) under A is precisely
Dy (B*, L*(Q)).

Henceforth we shall denote both norms by dx.
If K is the set of all positive rank one sesquilinear forms on ¥ X F of norm less than

or equal to one and X € L2 (Q; E,dx) then dx(X) = || X||. Henceforth we shall de-
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note L2,(Q; E,8k) by L2 (S E, || ||) or just L2 (; E). Thus L2 (Q; E) — B(E*, L*(Q))
isometrically.

If K is the set of all positive forms on F x E of norm less than or equal to one and
X € L2(Q; E,0k) then 65 (X) = my(X). Henceforth we shall denote L2 (Q; E, 6x) by
L2 (Q; E,m5). Thus L2 (; E, mp) — TIo(E*, L?(Q2)) isometrically.

2.5 Ideals of 2-factorable operators

Let Ey and Es be Banach spaces. Following, for example, [42] or [11] we define I'y(E1, E3)
to be the set of all operators u : £y — E3 which factor through some Hilbert space H
as u = B*A with A € B(Ey, H) and B € B(FE>, H). Tts associated norm is

v2(u) = inf{||A||||B]| : w = B*A for some A € B(Ey,H),B € B(Ey,H)} (2.38)

where the infimum runs over all such representations of u as B*A. We also define
I5(Eq, E3) to be the set of all u : By — E3 which factor through some Hilbert space H

as u = B*A with A € IlIy(Ey, H) and B € IIy(Es, H). Its associated norm is
’)’;(U) = inf{ﬂ'Q(A)TrQ(B) :u = B*A for some A € HQ(El,H),B € HQ(EQ,H)} (239)

where the infimum runs over all such representations of u as B*A. The set I's2(E4, E3)
is known as the space of 2-factorable operators from E; to Ej while the set I'5(Eq, E3)
is known as the space of 2-dominated operators from E; to E5. Both may be seen to be
Banach operator ideals, and we note that I'; is the dual operator ideal to I's; see chapter
7 of [11] for more information.

For H a Hilbert space consider a pair D;(E1, H) and Dy(Es, H) of Banach operator
ideals with 2-convex norms ¢; and dy satisfying conditions (D1)—(D3) of section 2, so
I,(E;,H) C D;(E;,H) C B(FE;, H) for each i. Assume these ideals are defined for all
possible Hilbert spaces H; we may then, following [43], define I's, 5,(F1, E3) to be the
set of all u : £y — FE3 which factor through some Hilbert space H as u = B*A with

A€ Di(E,H) and B € Dy(Es, H). Its associated norm is

’)’51’52(’11) = 1nf{61(A)62(B) :u = B*A for some A € Dl(El, H), B e DQ(EQ, H)} (240)
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where the infimum runs over all such representations of u as B*A. So
[5(E1, E3) C Ty, 5,(Er, E5) CTo(Ey, E3) (2.41)
and
Y2(u) < Yoy, (1) < v3(u) (2.42)

for all pairs (d1,d2) and appropriate operators u. The space I's, 5, (E1, E3) is a Banach
operator ideal; see section 2 of [43] for more information.

For completeness we shall now demonstrate that the 75, 5, norm is indeed a norm.

Proposition 2.5.1 v5, 5, is a norm on the space s, 5,(E1, E3).

Proof The only axiom which is unclear is the triangle inequality. Let u and v be
elements of I's, 5,(E1, E3). Fix € > 0. Assume u factors through some Hilbert space H;

asu = B*A for A: £y — Hy and B : E5s — Hy, where H{, A and B are chosen so that
51(A4)d2(B) < Y, (1) + . (2.43)

Polarising via

a4\ [ [em)
B*A = B A 2.44
< 5.(5) ) ( 51(A) (244
if necessary, we choose A and B so that d1(A) = do(B).

Further assume v factors through some Hilbert space Hs as v = D*C for C' : E; — H»

and D : Fs — Ho, where Hy, C' and D are chosen so that
(51(0)(52(1)) S V61,02 (U) + €. (2.45)

Polarising via

o o) N 6D
DC_( 52(D)D> ( 51(C)C> (2.46)

if necessary, we choose C' and D so that 0,(C) = d2(D).
Then u + v factors through the Hilbert space H; & Hy as follows. Denote by ¢y :

H, — H{ ® Hs and 12 : Hy — H; & H, the natural isometric embeddings, and by
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v+ HH ® Hy - H; and 5 : Hy & Hy — Hy the corresponding natural quotients,
satisfying (jt1 = idy, and 1509 = idy,. We see that ¢; A + 19C' is a linear operator from

FEq to Hi @ Ho, 11 B + 19D is a linear operator from Fy to H; & Hy and

(1B + 12D)* (11 A+ 12C) = B*ju A+ B*1j19C + D*1501 A+ D*1500C  (2.47)
= B*A+D*C (2.48)
= u+wo. (2.49)
Now
Y51,5, (u + v) = inf{d;(S)d2(T)} (2.50)

where the infimum is over all factorisations of u + v through some Hilbert space as T*S.

One such factorisation, through Hy @ Ha, is u 4+ v = (11 B 4+ 12D)*(11 A + 12C). Thus

’)/51’52(U+’U) < (51(L1A+L20)52(L13+L2D) (2.51)

1/2

< [61(A)2 + 6,(0)2]" [52(B)? + 62(D)?] (2.52)

as 01 and dy are 2-convex. We have chosen A, B, C' and D so that §;(A4) = d2(B) and
01(C) = d2(D); this gives

IN

’)/51’52 (u + U) 51 (A)(SQ(B) + (51 (0)52 (D) (253)

< Va0 (u) + 5,5, (v) + 2€ (2.54)

by our choice of A, B, C' and D. This inequality holds for all £ > 0, so

Y61,62 (u + U) < Y51,00 (U) + V61,60 (’U) (2'55)
as required.
O

We now consider tensor products. We will, following the approach taken in section 1 of
[43], impose 75, 5, norms on elements of £} ® E3, viewing them as finite rank operators

Ey — E3, and form completions E} s, 5 E;.
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Thus, our task is to impose a 7s, 5, norm on elements of Ef ® E3. If u € Ef ® EJ is

given by
n
u=> & ®n; (2.56)
k=1

then, regarding u as an operator £y — E5, we may factor v through an n-dimensional

Hilbert space H with orthonormal basis (e) as

u = (Z N @ 6k> <Z & ® 6k> (2.57)
k=1 k=1

where
n
Y ¢ @er: Bl H (2.58)
k=1
and
n
Y mi®er: B~ H (2.59)
k=1

are operators into H of rank n. Call these A and B respectively; we see u = B*A.

Now consider a pair of norms (d1,d2). In view of the above factorisation of v we may
impose a s, 5, norm in the usual way, yielding a norm on Ef ® E;. To obtain a more
explicit representation of the norm we apply Theorem 2.2.1 to assert the existence of
families K7 and Ky of sesquilinear forms on F; X E; and Ey X Es respectively, associated
to 61 and 05 respectively, which are compact in the topology of pointwise convergence of
sesquilinear forms, contain the rank one forms of norm less than or equal to one and are
contained in the set of all forms of norm less than or equal to one. Then

n 1/2
d1(A) = sup (Z o(&k» 52)) (2.60)
PERL \p=1
and
n 1/2
02(B) = sup < Mn;’;wi)) ; (2.61)
veRz \k=1
which we note are both finite as there are only finitely many & and 7, and the forms all

have norm less than or equal to 1. Therefore we have an explicit representation of the
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Y61, Dorm on EY ® Ej in terms of the sesquilinear forms K7 and Kb»; this is

1/2

n 1/2 n
Y61,02 (U) = inf sup (Z @(527 gZ)> sup (Z QP(UZa 7772)) ) (262)
k=1 VER: \ =1

peK1

where the infimum runs over all possible expressions of u as Y ,_; £ @ nj, for all finite
values of n. The norm 7, 5, is a reasonable tensorial norm.

If we complete Ef ® E5 with respect to the 7s 5, norm we form a Banach space
B; ©,, 5.

A question which arises at this point, motivated by the discussions on tensor products
in [42], is whether the natural inclusion map Ef ®+; ; F5 — E{®FE; of Ef ®; , Ej
into the injective tensor product of Ef and Ej is injective. That is to say, is every
element of EY ®,; ; F3 which represents the zero operator necessarily the zero element?
If (and only if) this is so, we may identify E} ®-;, 5, £5 isometrically with a subspace of

L5, 5,(E1, E5) in a canonical way.

Proposition 2.5.2 The natural map By ®-; , FE5 — E}®FE; is injective.

Proof We may regard the 75 5, norm on E} ® E3 as the restriction to the finite rank
operators of the s, 5, norm on I's, 5,(E1, E3). As any element of Ef ®-, , FEj is the
limit in 75, 5, norm of elements of Ef ® E3, we may regard elements of Ef ®,; ; E5
as the limit in ~s, 5, norm of finite rank elements of T'5, 5,(E1, F5). As T, 5,(F1, E5)
is a Banach space, this limit in 75, 5, norm exists as an element of T'5, 5,(E1, E3). We

have realised ET ®+; ; FE3 as a subspace of I's, 5, (E1, E5) and, consequently, the map is

injective.
O

Note the crucial part of the proof was realising the s, 5, norm on E} ® E5 as a restriction
to a finite dimensional subspace of the s, 5, norm on I, 5, (E1, E5). This yields a model
for the completion of E} ® E; with respect to 75, 5,, namely a subspace of I', 5, (E1, E3).

We have inclusions

Bj ©, T3 D Ff ®,,, F3 2 F{ ©; Fj. (2.69)
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If we consider the case of the projective tensor product Ef®Ej, for which the natural
map F{®FE; — Ef®F} is not injective in general, the above proof breaks down because
it is not possible to realise the projective norm on Ef ® E3 as the restriction to a finite
dimensional subspace of some norm on a Banach space of operators £y — E3. Recall
from, for example, [42] that given Fy, the natural map Fi®FEy — F1®F; is injective for
all choices of Fs if and only if the space F; has the approximation property; by definition
this means the identity map on E; belongs to the closure of the finite rank operators on
E; in the topology of uniform convergence on compact sets.

Note that we may impose s, 5, norms on tensor products of Banach spaces which
are not dual spaces, via the explicit formulation (2.62). Specifically if u € E; ® Fj is

given by
n
u=> & ®m, (2.64)
k=1

and K; and K are the collections of sesquilinear forms associated to d; and do respec-

tively, we have

" 1/2 " 1/2
Ys,,6,(u) = inf ¢ sup (Z W(ﬁkék)) sup (Z¢(nk,nk)> : (2.65)
veke \p=1

where the infimum runs over all possible expressions of u as Y ;_; & ® 1, for all finite
values of n. The norm vy, 5, is a reasonable tensorial norm.

We may realise E; ® Ey with the 5, s, norm as a subspace of a space of 2-factorable
operators in the following way. View (E; ® F2, 75, 5,) as the set of all finite rank elements
u of T's, 5,(E7, E5*) satisfying the condition that, if u factors as B*A, the operator
A : Ef — H is continuous with respect to the o(E}, E;) weak-x topology and the
operator B : E — H is continuous with respect to the o(E3, Eo) weak-* topology.

For the same reasons as before the completion E; Qs 4, B2 18 realisable as a subspace

of the space of operators I's, 5, (E7, E5*). As before we have inclusions

Ey ®y, B2 2 By ®q;, 5, F2 2 E1 Qy; Eo. (2.66)
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2.6 Covariance

Let F; and Ey be Banach spaces and let ; and d be appropriate 2-convex norms.
For X1 € L2 (Q;Ey,61) and Xy € L2 (Q; Ey, 0y) satisfying EX; = EXy = 0 (where
expectation is defined in the weak sense; we say X; and Xo are centred) we define the

covariance of X; and Xy, Cov(X1, X3), to be the sesquilinear form on E} x EJ given by

Cov(X1, X2)(£1,£3) = BET (X1)€5(Xa). (2.67)

This definition of covariance is used in [35] and [34]. Frequently we view Cov(X, X2)
as a linear operator B — E}*; in fact Cov(X1, X2) is the operator le*XTQ where, as
before, X| : Ef — L?(Q) and X, : E5 — L?(Q) are the operators associated to X; and
Xo.

If E is a Banach space and X is a centred element of L2 (Q; E, §), for some 2-convex
norm 0, we define the variance of X, Var(X), to be Cov(X, X).

We note that, by the Cauchy-Schwarz inequality, if X lies in L2 (Q; E1,6;) and X
lies in L2 (Q; By, 62) then Cov(Xy, X3) is bounded as a sesquilinear form. In fact more

is true.
Proposition 2.6.1 Viewing Cov(X1, X2) as an operator we have

Cov(X1,X2) € Ts, 5,(EY, E5"). (2.68)
Proof We see from the factorisation Cov(X1, Xo) = Xl*XTQ that

[Cov(X1, X2)llys, 5, < 01(X1)02(X2). (2.69)

In the case where X; = X9 = X we see
IVar(X)ll,,, = 6(X)*. (2.70)
Writing the covariance in the form

Cov(X1, X2)(£1,8) = E(X1 ® X2) (6 © &3) (2.71)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 27

we see from the inequality (2.69) that Cov(X71, X2) may be viewed as the weak expecta-

tion of the 4 s, 5 FE5 valued random vector X; ® X5. We have a further proposition.
Proposition 2.6.2 We have
CO'U(Xl,XQ) € (E1 ®751,52 EQ)** (2.72)

Furthermore if X1 and X9 are both Bochner integrable then

CO’U(Xl,XQ) € ®’Y§1,52 Es. (273)
Proof We see
Cov(X1,X3) = E(X; ® Xy), (2.74)

where we interpret expectation in the weak sense and view X; ® X as an F; ®rs, 159 E,
valued random vector. As it is a weak expectation it follows that Cov(X1, X2) lies in
(B1 @1, 5, Ey)**.

If Xy and Xy are both Bochner integrable then by theorem II.8 of [12] the operators
X; and X, are compact. This implies Cov(X1,X5) is a compact weak-+ continuous

operator from Ej to E; which, consequently, lies in E; s, 55 Es.
O

A detailed discussion describing conditions for Cov(X1, X3) to be compact may be found
on pages 207-209 of [34]. In particular we will see in chapter 3 by applying the Gaussian
isoperimetric inequality ([34], section 3.1) that if X; and Xy are Gaussian, Cov(X, X2)
is compact.

In the particular case X1 € L2(Q;E;,m) and Xo € L2 (; Ey,m) we see that
Cov(X1, X5) lies in (Fy s E5)**. Theorem 3.1 in [43] shows that when E; andFE,
are of type 2, E1 ®-; E, is isomorphic to the projective tensor product E;®F> with an
equivalent norm; thus Cov(Xy, X3) lies in (E;®FE3)**. Note that when E; and E, are

both Hilbert spaces, E1 ®-; F5 is the space ¢! of trace class operators.
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Coda Throughout the rest of this thesis we shall, to avoid the measure theoretic compli-
cations discussed in this chapter and expanded on in [36], assume F is separable. Thus,
in particular, strong (Bochner) and weak (Pettis) notions of measurability coincide. All
the random vectors we consider in the rest of the thesis will be cylindrical; that is to say
they will be measurable with respect to the cylindrical o-algebra on E which, as F is

separable, coincides with the Borel o-algebra.



Chapter 3

(GGaussian random vectors

and Wiener processes

This chapter contains essential preliminary material for chapter 4. We study Gaussian
random vectors, Wiener processes and It6 stochastic integrals (for deterministic inte-
grands) with values in a separable complex Banach space E. We observe that, for all E
valued cylindrical Q-Wiener processes on a probability space (2, F,P), @ factors through
1?2 with 2-summing factors.

Background information on the topics covered here may be found in [32] or [34].

More recently the subject of Banach space valued stochastic integrals was discussed in

[7]-

3.1 Gaussian random vectors

This section will consider centred Gaussian random vectors taking values in the separable
complex Banach space F.
Recall that a complex random variable X is said to be complex centred Gaussian

with variance 02 (we say X is complex N(0,0?)) if

X = %(XR +iX7) (3.1)

29
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where X and X7 are independent real N(0,0?) random variables. It is straightforward
to verify that if (Xj), is a finite sequence of independent complex centred Gaussian ran-
dom vectors on some probability space and (z), is a finite sequence in C then ), 2, X},
is a complex centred Gaussian random vector.

Let X be an E valued cylindrical random vector defined on a probability space
(Q, F,P). Following [34] we say X is centred Gaussian if, for every £* € E*, €*(X) is a
complex centred Gaussian random variable.

Consider a sequence (Xj)gez of independent N(0,02) complex random variables.
By Kolmogorov’s consistency criterion ([46], page 129) (X;)iez is a CZ valued random
vector whose finite dimensional joint distributions are the joint distributions of the Xj.

The sequence (X )kez takes values lying almost surely outside [°°. This follows from

the following proposition.

Proposition 3.1.1 Let (Xj)ren be an independent sequence of real N(0,07) random
variables. Then the following are equivalent:
(1) (Xi)ken € I almost surely;

(i) there exists M > 0 finite such that

> (1 ) <%>> < 00 (3.2)

k

where
Y L
d(t) = —/ e” 2 du. 3.3
M=—=/_ (3.3
Furthermore if (ii) holds then, denoting the infimum of all possible values of M by M’',
limsup | X;| = M’ (3.4)
k
almost surely; otherwise
lim sup | Xj| = o0 (3.5)
k

almost surely, so that (Xi)ken € [°° almost surely. Note (ii) does not hold in particular

whenever o2 /4 0. Finally if the X}, are not independent we still have (ii) = (i) above.
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Proof Fix M > 0 finite. Then

{1imsup|Xk| < M} = U < (3.6)
k J k>j
= INUIx > M (3.7)
J k>j

By the Borel-Cantelli lemmas ([53], sections 2.7 and 4.3),

0 if >, P(|Xkg| > M) <oo (Istlemma);
P JLIXel > M} ) = (3.8)
i k>j 1 if Y, P(| Xk > M) =00 (2nd lemma),

SO

1 if P(| Xgx| > M) < oo;
P (limsup|Xk| < M) - 2 Pkl > M) (3.9)
k 0 it 3, P(Xkl > M) = .

Now as Xy ~ o Zy, where each Z; ~ N(0,1), we see

P(|X;| > M) =2 (1—@ <%>> (3.10)

Ok

Thus

Lt 5, (1-0 (X)) < oo

(3.11)
0 it ¥, (1-@(2))=c

P (limsup|Xk| < M) =
k

Next, we note that if ), (1 -0 (%)) converges, it converges for all N > M and if
Yok (1 -0 (%)) diverges, it diverges for all N < M. So, noting that M = 0 yields
divergence for all possible (of)ren, we have two possibilities.
(i) For all M >0, >, (1 - (a—]vk[)) = o0o. In this case, for all M > 0,
limsup | Xg| > M (3.12)
k

almost surely, and so

limsup | Xj| = o0 (3.13)
k
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almost surely. This implies (Xj)ren & [°° almost surely.
(ii) There exists an M > 0 such that ), (1 - o (%)) < 00. Denote the infimum of all
such M by M'. Then, for all £ > 0,

limksup | Xk| > M' —¢ (3.14)
almost surely, and
limksup | Xk < M'+¢ (3.15)
almost surely. We deduce
limksup | Xy = M’ (3.16)

almost surely. This implies (Xj)ren € [°° almost surely.
If the X} are not independent the first Borel-Cantelli lemma still applies and we

have, for any M > 0,

P <limksup|Xk| < M) =1if zk: <1 - ® <U—k>> < 00, (3.17)

which yields (i7) = (7).

As an aside, this has the following corollary.

Corollary 3.1.2 We have equivalent conditions

> (1 -3 <%>> < 00 (3.18)

k

and
Zoke 27} < o0y (3.19)

thus all instances of (3.2) in Proposition 3.1.1 may be replaced with (3.19).
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Proof We note that

N
1—®(t) = —/ e 2 du. (3.20)
t

© u? 1 2 R 1 u?
/ e” 2 du=-e 2 — / —e~ 2 du (3.21)
t t ¢ u
and
0 _u? 1 Iy -2 1 W
/t e 2du=¥<1—t—2>e 2—1—3/t i 2 du, (3.22)
yielding
1 1 t2 1 £2
1—=)e2<1-9(t) < e 2. 3.23
tv 21 < t2> - (t) < t 27 ( )

In our specific case we have

2 M2 M2

O O 552 lW) Ok T 552
1——fk)e <10 (=)< e 3.24
M+ 27 < M2> - <0'k; - M2« (3:24)

which, as o3, — 0 is necessary for (3.2) or (3.19) to hold, yields the result.

O

The following result is a combination of the It6-Nisio theorem ([27]), a result on exponen-
tial integrability of Gaussian random vectors, due independently to Fernique ([16]) and
Landau and Shepp ([33]), and the Karhunen-Loéve representation of Gaussian measures

on separable Banach spaces.

Proposition 3.1.3 Let X = (X;)rez be a sequence of independent N(0,0?) complex
random variables on a probability space (2, F,P) and let (& )rez be a sequence in a sep-
arable complex Banach space E.

(a) The following are equivalent:

(i) > €k Xk converges almost surely in E;

(it) > 1 Ee Xk converges in LP(Y; E) for some (and hence for all) 0 < p < oo;

(iii) > &p Xk converges in probability.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 34

(b) If the sum 3, & X converges in L2 (Q; E, m2) then S, & Xy is a centred Gaussian
random vector and the equivalent conditions (i), (1) and (iii) of part (a) hold.
(¢) All cylindrical centred Gaussian random vectors with values in E are equal in distri-

bution to some random vector of the form . &, Xy, satisfying the equivalent conditions
(1), (ii) and (iii) of part (a).

Proof (a) This is the It6-Nisio theorem; see the original paper [27], or pages 29-36 of
[32], for details.

(b) Assume Y, & Xy converges in L2 (Q; E, m2); we shall show it is centred Gaussian.
The map (£* — &*(32,, & X)) lies in IIx(E*, L?(2)) by definition of the 72 norm. Thus,
for each £* € E*, we see that

O aXe) =) & (&)X (3.25)
K

k
is a sum, convergent in L?(£2), of scalar multiples of independent complex centred Gaus-
sians; it is therefore a complex centred Gaussian random variable. We deduce that
> i €k Xk is a centred Gaussian random vector.
As >, & Xy, is Gaussian we now apply the result, due to Fernique ([16]) and Landau

and Shepp ([33]), that there exists oz > 0 such that

> & Xy,
K

This implies condition (ii) (and hence conditions (i) and (iii)) of part (a) holds.

2

E exp{ « < 0. (3.26)

E

(c) The Karhunen-Loeve representation of Gaussian measures, which is proposition 2.6.1
of [32] and proposition 3.6 of [34], shows all cylindrical centred Gaussian random vectors
with values in £ are equal in distribution to some random vector of the form ), &, X,

satisfying condition (ii) (and hence conditions (i) and (iii)) of part (a).
O

Note that Fernique, Landau and Shepp’s result is implied by (and, indeed, motivated
the proof of) the Gaussian isoperimetric inequality, due independently to Borell ([5])

and Sudakov and Cirel’son ([47]). The Gaussian isoperimetric inequality is shown by
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Borell to be the limiting case of the isoperimetric inequality for the rotation-invariant
measure on the spheres in R” as n tends to infinity. A proof of the Gaussian isoperimetric
inequality is theorem 1.2 of [34]; for a proof of Proposition 3.1.3 (b) based on the Gaussian
isoperimetric inequality, see lemma 3.1 of [34].

Proposition 3.1.3 has the following corollary.

Corollary 3.1.4 Given a Gaussian random vector Y, £ Xy as in Proposition 3.1.3 we

may define a bounded map A : 1> — E by
(Tk)kez = Y s (3.27)
k

this has bounded adjoint A* € Tly(E*,1?).
Write AX for ", £ Xk; this converges to an almost surely E valued centred Gaussian

random vector satisfying mo(AX) = oma(A*) and Var(AX) = o2 AA*.

Proof Writing AX for ), £, X} we know from Proposition 3.1.3 that AX is almost
surely F valued and the map (¢* — ¢*(AX)) lies in TIo(E*, L?(Q2)). But, for a finite

sequence (fj*) j in E*,

2
ZHS;(AX)Hi?(Q) = ZE %:f}f(ﬁk)Xk (3.28)
J J
= Y || (3.29)
ik
= 2> 4] (3.30)
J

and so A* € TIo(E*,1?); furthermore omy(A*) = ma(AX). Tt follows that A is bounded.

Finally
Var(AX)(&],6) = 0 < A*(€7), A"(&) > (3.31)
yielding Var(AX) = 02 AA* as required.
O

For definiteness we ensure AX is always E valued by defining AX to be >, & X} at
sample points where this sum converges, and zero on the null set where it diverges.

If F is of type 2 we may deduce more.
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Corollary 3.1.5 Under the additional hypothesis that E is of type 2, the sum AX con-

verges to a centred Gaussian random vector if and only if A* € TIy(E*,[?).

Proof If AX is centred Gaussian we know from Corollary 3.1.4 that A* € IIy(E*,1?).
Conversely let us assume A* € Iy(E*,1?). Then by (0.6) on page 67 of [43], which is
based on work in [17], we have

1/2

E < 0Ty(E)my(A") < oo. (3.32)

2
E

> &G Xy
k

We deduce AX lies in L?(€2; E) and so, by Proposition 3.1.3, is centred Gaussian.

0

Corollary 3.1.4 enables us to determine, for £ a separable complex Banach space, a
factorisation property for operators Q : E* — E which are variances of centred Gaussian
random vectors in E. In the case where E is of type 2, Corollary 3.1.5 enables us to

characterise such operators () precisely.

Corollary 3.1.6 Let E be a separable complex Banach space.

(a) Let Q) be the variance of some centred Gaussian random vector in E, defined on some
probability space (Q, F,P). Then Q factors as AA* where the operator A : 1> — E has
2-summing adjoint; furthermore Q lies in B ®; E.

(b) If, furthermore, E is of type 2, then conversely any operator AA*, where A :1?> = E

has 2-summing adjoint, is the variance of some centred Gaussian random vector in E.

Proof (a) Let Q = VarZ, where Z is a centred Gaussian random vector in F, defined
on (2, F,P). By Proposition 3.1.3 (c) and Corollary 3.1.4, Z lies in L?(£2; F) and is equal
in distribution to AX, where X is a sequence of independent N (0,1) complex random
variables and A : [? — E is an operator with 2-summing adjoint. Corollary 3.1.4 now
shows Var (AX) = AA*. Thus Q = AA* as required. By Proposition 2.6.2, as AX lies
in L?(; E), Var (AX) lies in E ®,; E; thus Q lies in E ®,: E.

(b) Taking A as given, by Corollary 3.1.5 the random vector AX, for X a sequence of
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independent N(0,1) complex random variables, is a centred Gaussian random vector

with variance AA*.
O

In [50] van Neerven states that, for E a separable Banach space, no necessary and
sufficient conditions are known for an operator E* — F to be the variance of a cylindrical
Gaussian measure on F. We see that Corollary 3.1.6 provides such conditions in the case

where F is of type 2.

3.2 Wiener processes

We now consider FE valued cylindrical Wiener processes where, as usual, F is a separable
complex Banach space.

Following [8] or chapter 5 of [9] we say an E valued stochastic process (B;)cr defined
on a probability space (Q, F,P) is a cylindrical Q-Wiener process, where @ is the variance
of some cylindrical centred Gaussian random vector in E, if:

(i) for each t, By is measurable with respect to the cylindrical o-algebra on E;

(ii) the process B, has almost surely continuous sample paths and By = 0;

(iii) the process B, has independent increments;

(iv) for each s < t, B; — By is a cylindrical centred Gaussian random vector satisfying

Var(B; —B;) = Q(t — s). (3.33)

Condition (i) ensures that, for all £* € E*, the process {*(B;) is adapted to the filtration
induced on (2, F,P) by the process B;.
Proposition 3.1.3, Corollary 3.1.4 and Corollary 3.1.6 enable us to deduce various

properties of a cylindrical Q-Wiener process.

Proposition 3.2.1 Let E be a separable Banach space and let B, be an E valued cylin-
drical Q-Wiener process defined on a probability space (Q,F,P). Let Q factor as AA*,

where A : 1> — E is some operator with 2-summing adjoint given by Corollary 3.1.6.
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For s < t:
(i) By — By lies in L2,(; B, m3);
(11) mo(By — Bg) = mo(A*)(t — 3)1/2;

(iii) for T any bounded linear operator on E,
Var(T(B; — By)) = TQT*(t — s). (3.34)

Proof We observe B, — B; is a cylindrical centred Gaussian random vector satisfying
Var(B: — Bs) = Q(t — s). Proposition 3.1.3 (c) and Corollary 3.1.4 show B; — By is
equal in distribution to a random vector of the form AX() where, for each s and t,
X6t = (X ,Es’t)) kez 1s a sequence of independent N(0,% — s) complex random variables.

Corollary 3.1.4 now gives the required results immediately.
O

Note that if F is of type 2 and A : > = E is any operator with 2-summing adjoint,
there always exists a cylindrical AA*-Wiener process B;. Namely take B, = Ab; where
b; = (bgk)) ke7 is an independent sequence of complex Brownian motions on the line, with
b(()k) = 0 for each k, defined on the canonical probability space of continuous paths R — C
equipped with Wiener measure. Corollary 3.1.5 shows (Aby)cr is an F valued cylindrical
process with almost surely continuous sample paths and independent increments; for

s < t, Corollary 3.1.5 shows A(b; — by) is centred Gaussian with
Var(A(by; — by)) = AA*(t — s). (3.35)

We wish to develop the theory of stochastic integration of a deterministic family of
operators with respect to a (Q-Wiener process. For s < t, let (T,)s<u<¢ be a non-random
family of bounded linear operators on E and let B; be a cylindrical J-Wiener process

in E. Consider a sequence (Py),>1 of refining partitions of [s,#]. Thus, if

P, ={s= u(()n) < uﬁ") << u%)l)il < u(n)) =t} (3.36)

r(n

for each n, we assume that P, C P, for all n and supj(ug-@l — ugn)) 4 0 as n tends to
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infinity. We say the stochastic integral

t
/ T, dB, (3.37)
S

exists in the Itd sense as a limit in L2 (Q; E, o) if the sequence of Riemann sums

r(n)—1
jz_% u i ( u®, ~ By ) (3.38)

converges to a limit in L2 (Q; E,72) as n tends to infinity, this limit being independent
of the choice of partitions (Pp)y>1.

We have the following theorem.

Theorem 3.2.2 For E a separable Banach space, let B; be an E valued cylindrical AA*-
Wiener process defined on a probability space (2, F,IP). Then for s < t, if (Tu)s<u<t is
a non-random family of bounded linear operators on E such that (A*Ty)s<u<t is Holder

continuous in the mo norm, the stochastic integral

t
/ Ty, dBy (3.39)
S

exists in the Ito sense as a limit in L2 (Q; E, ). Furthermore

t
T (/ Tu dBu>
s

Proof Consider a partition P = {s = up < u1 < --- < u, = t} of the interval [s,¢]. Put

2 t
< / To(A*T)? du. (3.40)
S

r—1
I(P) = Y T,(By,, —By) (3.41)
=
= i[(u]-,u]url) (3.42)
=0

say. When we refine the partition by adding a point u; between u; and u;,1, the sum

changes by

I(U’j’ uj') + I(“j" U’j+1) - I(U’j’ uj+1) = (Tw/ - Tuj)(BUj+1 - Bu],,). (343)

J

By the classical theory of Riemann integration we can and do restrict ourselves to par-

tition sequences of the following form. Let there be 2" + 1 elements in the partition P,
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of [s,t] at stage n; denote the Riemann sum at stage n by I(n). At each stage we insert

a new point between each old point of the partition such that

(n)

sup(u; .y — ugn)) < M27" (3.44)
j

at stage n, for some constant M > 0.

Thus, writing u; for u

(n)
J

In+1)—I(n) =

to simplify our notation,

r—1
N U (wjsuge) + T(ujryujpn) = Twj, ujin)] (3.45)
j=0
r—1
> (Tu, — Tu;)(Buy,, — Bu,). (3.46)
j=0

By assumption (A*T)s<u<: is Holder continuous in the 75 norm; it follows that

mo (A% (T — ) < Clv —u)° (3.47)

for some fixed C' > 0, @ > 0 and all s < u < v <t. Now the norm 7y is 2-convex; see

section 2.2 of this thesis or section 2 of [43] for details of this concept. This implies

and so

1(n +1) = I(n)],

|I(n+1)—

r—1
< Y m(ANT, — T ) (uer — uyr) (3.48)
j=0
r—1
<O (ugr —uy) " (ujer — ) (3.49)
§=0
r—1
< CPMPO2TPOMN (ujyy — uy) (3.50)
4=0
= C*M?*2720n(t — ) (3.51)
I(n) |, < CM®2 " (t — )"/, (3.52)

This shows (I(n)),>1 is a Cauchy sequence in L2 (2; E, T2); it therefore converges.

If (Pp)n>1 and (Py,),>1 are any two such sequences of partitions of [s, t], it is clear the

sequence of partitions (P, UP),)n>1 also yields a convergent sequence of Riemann sums;

furthermore the limits induced by (Pn)n>1, (Pp)n>1 and (P, U Py,),>1 must coincide.
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Thus the limit of the sequence (I(n)),>1 in L2(; E, m2) is independent of the choice of
refining partitions. We deduce that the stochastic integral exists in the It6 sense as a
limit in L2 (Q; E, m2).

Finally, by the 2-convexity of the norm 7y, if s = ug < u; < -+ < u, =t is any
partition of [s, t] we have

2

r—1 r—1
my | Y Tu;(Buy,, —Buy) | <D ma(A Ty ) (uj1 —uy). (3.53)
j=0 j=0

Passing to the L2 (Q; E, m3) limit gives the required result.
O

Note that, as it is the limit in L2 (2; E, m) of a sequence of centred Gaussian random
vectors, the stochastic integral of Theorem 3.2.2 is itself a centred Gaussian random
vector. Thus by Proposition 3.1.3 (c) it also converges in the It6 sense to a limit in the
Bochner space L?(2; E).

Theorem 3.2.2 will be used in the next chapter to prove the existence of a solution

to the F valued Langevin equation.



Chapter 4

Ornstein-Uhlenbeck processes

In this chapter we study a Langevin equation for stochastic processes with values in a
separable complex Banach space E. Section 4.1 defines the equation while section 4.2
proves the existence, under certain conditions, of solutions to it. Section 4.3 considers
some explicit examples of such Langevin equations.

Background information on diffusion processes may be found in [44] or [46]. In-
formation on semigroups of operators on Banach spaces may be found in [10] or [24].
General information on infinite dimensional stochastic differential equations and Wiener
processes may be found in [8] or chapter 5 of [9].

It6 studied infinite dimensional Ornstein-Uhlenbeck processes in the time domain;
see [26]. More recently Kolsrud studied such processes from the standpoint of Gaussian

random fields in [30] and van Neerven contributed to this subject in [50].

4.1 The Langevin equation

Let E be a separable complex Banach space and (Q, F,P) be a probability space which
we assume rich enough to support all the random vectors under consideration. Consider

the E valued stochastic differential equation

dZ; + NZ,dt = dB, (4.1)

42
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for ¢t € R, where:

(L1) the operator A is a closed operator from a norm dense domain D(A) C E to E.
We seek a pair of processes (By, Z;), each defined on (Q, F,P). To ensure the existence

of L? bounded solutions to (4.1) we will impose some conditions on A. We assume the

following;:

(L2) A is the generator of a Cy group (e**);cr of operators on E; by a corollary to the

Hille-Yosida theorem, for which see section 12.3 of [24], this is equivalent to the resolvent

of A satisfying

Ch

(A +iwI)™| < m

(4.2)

for some finite constants Cy > 0 and oy > 0, all n € N and all real w such that |w| > ay;

(L3) the resolvent of A satisfies
I(A + iwI) M| < Ka (4.3)

for some finite constant K > 0 and all real w;
(L4) iA* is the generator of a Cy group (e)"),cr of operators on E* (if E is reflexive
this follows from (L2)).

For more information on these conditions, consult [10] or chapters 11, 12 and 14 of
[24]. Note that (L4), in the presence of (L2), is equivalent to the domain D(A*) of A*,
the adjoint of A, being norm dense in E*; without (L4) we only know it is weak-x dense.
For details see section 1.4 of [10] or chapter 14 of [24].

We interpret equation (4.1) in the following way. The process (By)icr is required
to be an E valued cylindrical Q-Wiener process. The process (Z;)icr is required to be
an F valued, centred Gaussian, stationary stochastic process with almost surely Holder
continuous sample paths. As Z; is stationary we may write Cov(Z¢, Zs) = ¥z (t — s) for
some function Vg, called the autocovariance function of the process. Finally we require

that B; and Z; satisfy

(20— ) + / A (€°)(Z) du = £°(B, — B,) (4.4)
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almost surely, for all £* € D(A*) and s < ¢. Following [8] or chapter 5 of [9] we call the
pair (By, Z;) a weak solution of the Langevin equation.

Condition (L4), together with the separability of E and the Hahn-Banach theorem,
implies there is a countable subset of D(A*) which separates the points of E. This ensures
that, if we know £*(B;) and £*(Z;) almost surely for all £&* € D(A*), the processes By
and Z; are almost surely determined.

Note we do not require that Z; be adapted to the filtration induced by By; we will,

however, consider important circumstances in which this is the case.

4.2 Spectral solutions of the Langevin equation

This section states and proves an existence theorem for weak solutions of equation (4.1).

Consider

1 0 N
7 = — et (A +iwl) ! dB,, 4.5
t \/%/OO ( ) w ( )

where B, is a given F valued cylindrical Q-Wiener process defined on (2, F,P). This
formula is suggested by classical harmonic analysis. Consider also B; defined by the
condition By = 0 and, for s < ¢,

ws

1 00 eiwt _ ei
B, —-B; = dB,,. 4.6
t S \/ﬁ /oo Z(_U w ( )

All our stochastic integrals will be interpreted in the It6 sense within the framework of

Theorem 3.2.2.

Theorem 4.2.1 Assume conditions (L1)-(L4) hold. The expression Z; above:
(a) converges as an Ité stochastic integral for each t € R, defining an E valued centred
Gaussian process on (Q, F,P);

(b) is a stationary process with bounded autocovariance Wz given by

Uy () = — /oo (A + iwl) " QI(E — iwl) ] dws (4.7)

:g .

(¢) has almost surely Holder continuous sample paths, of exponent « for every a < 1/2.
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The expression By above:
(d) has increments By — Bg which converge as Ito stochastic integrals for each s < t,
defining E valued centred Gaussian random vectors on (Q, F,P);
(e) is an E valued cylindrical Q- Wiener process defined on (Q, F,P).

Furthermore:

(f) the pair (B, Z;) is a weak solution of the E valued Langevin equation (4.1).

Proof (a) Assume @ factors as AA*. Let us consider, for finite a < b,

b
YA \/% / e“HA +iwl) "t dB,,. (4.8)

By Theorem 3.2.2 this will converge as an It6 stochastic integral if the family (A*[e™(A+
wwl )*1]*)a§w§b is Holder continuous in the w3 norm. This in turn will follow if the family
(e™!(A+iwI)™")4<w<p is operator norm Holder continuous, since A* is 2-summing. But,

fora <p<q<hb,

e (A +igD)™" — YA + ipl)~!
= (¢ —eP)(A+ipD) T + (A +ig) T = (A+ipD) T (4.9)

= (" —eP)(A+ipD)T = (g —p)(A+ipD) T (A +igD)™"  (4.10)
by the resolvent equation. We have |e’? —e'P!| < (¢ —p)|t|; this and condition (L3) shows
e (A +iqI) "t — P (A +ipD) H|| < Ka(lt] + Ka) (g —p) (4.11)

which proves (e!(A +iwl) 1) 4<w<p is Holder continuous in operator norm as required.
We deduce that Zga’b) converges as an It6 stochastic integral.

Thus Zga’b) € L2 (Q; E, ) for all finite a < b. The integral Zga’b) will converge to a
limit in L2,(Q; E, 72) as a | —oo and b 1 oo if, for any ¢ > 0, there exists a positive finite

N (e) such that ||ng’n)||7r2 < e for all n > m > N(e). By Theorem 3.2.2 and condition
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(L2) we have

m,n 1 m iw . _ ~ 2
2, = | [ e n s, ) (112)
1 n
< — [ m(((A+iwl)™A)*)? dw (4.13)
2
*\2 n
< “gﬁ/ (A + iwI) Y2 dw (4.14)
T m
012\71'2(14*)2
S 2n(m—an) (4.15)

for all n > m > ay, as required. We deduce that Z; = lim,| o p1oo Zga’b) converges in
L2 (Q; B, ).

For each t € R and ¢* € E* the random variable £*(Z;) is the limit in L2(Q) of a
sequence of complex centred Gaussian random variables; it is therefore a complex centred
Gaussian random variable. We deduce that, for each ¢t € R, the stochastic integral Z; is
an F valued centred Gaussian random vector.

Hence, by Proposition 3.1.3 (c), the integral Z; converges in the stronger norm of
L*(; E).

(b) Fix s < t. For finite a < b, using the notation Zga’b) from part (a),

Cov(Zga’b), Z(a’b))

S

1 b " b . N
= 5-Cov (/ e’“’t(A—i—iwI)ldBw,/ e“’s(A+7jw’I)1dBw,> (4.16)
™ a a

L. — i . s ~
= %IEIZIICO’U z%ewjt(A‘i‘ijI) I(Bwj+1_Bwj)7
]:
r—1 )
Y@ (A +iwf D) (B, | - Bw;c)> (4.17)
k=0
1 r—1
. jw i (t— . “1/5 i
_ %liglj_oelw(t IWar ((A-l—zij) (Bu,j+l—Bu,j)), (4.18)

where the L? limit is taken to mean the limit in L2, (Q; E, m3) over refinements of appro-

priate partitions ¢ = wy) = W) < wi = w] < -+ < W, = w, = b of [a,b]. By Proposition
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3.2.1 (iii) we see

Cov(Zga’b), Z(“’b))

S

r—1
1 i (s it i
= ﬁliglze i) (A 4+ iw; 1) T QIN —iw; )™ (Wi —wj)  (4.19)
§=0
1 [ _
= 5 =) (A + iwD) ™' QA — iwl) '] dw. (4.20)
™ a

Letting a | —oo and b 1 oo yields the required formula for the autocovariance; it is clear
Z; is stationary.

(c) We have, for s < t,

1 [~ . , .
Zi — 7y = ﬁ/ (e™! — ™) (A + iwI)~" dB,, (4.21)
—00

which, applying Theorem 3.2.2, yields

WZ(A*)Q
2

12, - 2,2, < /°° et — 6 [|(A 4 iwD) | do. (4.22)
—00

We now split the integral into separate parts with ranges |w| < 2ay and |w| > 2ay.
Note that ‘ei“’t — ei“’s‘ < min (2, |w|(t — 5)) < V2|w|'?(t — 5)'/? and, for |w| > 2a,, that

(Jw| — ap) ! < 2|w|~t. Applying conditions (L.2) and (L3) gives

1Z: — Zs |17,
< MmUPE0 [,
Q lw|<2ap
403 mo(A*)? / eiwt _ giws |? o (4.23)
27 w|>2a, 1w
= 4 <@ + Cﬁ) mo(A%)2(t — s) (4.24)

by Plancherel’s theorem applied to the indicator function of [s,t], as required. This
expression shows the map ¢ +— Z; is Holder continuous as a function R — L2 (Q; E, m2)
with exponent 1/2. The fact that Z; is Gaussian enables us to now apply Kolmogorov’s
continuity lemma in its vector valued form to deduce the existence of a version of Z;
with almost surely Holder continuous sample paths of exponent « for every o < 1/2; see

pages 59-61 of [44] for details.
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(d) Fix s < t. Keeping the notation of part (a) we define B%a’b) — Bga’b), for finite

a < b, in the same manner as we defined Z,Ea’b). By Theorem 3.2.2 this will converge

ezu)t _pliws

w >a§w§b

in L2 (Q; E,m) as an Itd stochastic integral if the family ( is Holder
continuous. But, fora <p < q < b,

ezqt — elas ezpt — e'Ps

t - .
/ ("% — e du (4.25)
S

</:IUIdU> (¢ —p), (4.26)

and so we have Holder continuity as required. Thus the stochastic integral Bga’b) — Bga’b)

1q ip

IN

converges in L2 (Q; E, ).
To consider the case when a | —oo and b 1 co we note by Theorem 3.2.2 that

2
dw. (4.27)

ezwt — ews

b 71_2(14*)2 b
1B —BED2, < 22
™ a

w
By Plancherel’s theorem, applied to the indicator function of [s, ¢], this integral increases
to my(A*)2(t — s) as a | —oo and b 1 oo. It follows that, for any € > 0, there exists a
positive finite N (g) such that ||B§m’")—B§m’") |z, < e foralln > m > N(e); consequently
the stochastic integral B, — By = limu_oo,bToo(B,ga’b) — Bga’b)) converges in L2 (Q; E, 7).

For s < t and £* € E* it is clear the random variable £*(B; — B;) is a complex
centred Gaussian random variable, as it is obtained as the limit in L?(Q) of complex
centred Gaussian random variables. Consequently, for s < ¢, the stochastic integral
B; — B, is an F valued centred Gaussian random vector.

Hence, by Proposition 3.1.3 (c), the integral B, — B converges in the stronger norm
of L2(; E).
(e) For s < t, by part (d) above |B; — B,||2, < m2(A*)%(t — s); we may therefore apply
Kolmogorov’s continuity lemma in the same manner as part (¢) to deduce almost sure
sample path continuity.

By a calculation similar to that of part (b),

2
dw Q (4.28)

1 00 wt _ Jiws
Var(B; —B;) = — S

2m | _s

= (t—9)Q (4.29)

)
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by Plancherel’s theorem applied to the indicator function of [s, ]; also, for s <t < u < v,

1 00 wt _ jiws —WwY __ ,—iwu
Var(Bi—By) = L [ =™ ) w0 (4.30)

21 ) o |iw|?

=0 (4.31)

again by Plancherel’s theorem, this time applied to the indicator functions of the disjoint
intervals [s,t] and [u,v]. We deduce By is a cylindrical -Wiener process as required.

(f) For ¢* € D(A*) and s < t we calculate

(20— Z / A (¢
- %g* < / (e — &) (A + iwl)~ df’,w>
1 ! e * Wy . -1 m
+ Ton A*(€7) </_ e (A +iwl) dBw> du (4.32)
1 00 [ plwl _ piws .
= — ————— ) iwé* (A +iwl) ' dB,
Ver oo< )“"
17'(' o~ t z.o.) )
+ Nor < / e du> A* (&%) (A + iwl)~" dB,, (4.33)

where the change in the order of integration in the second integral is justified by the
almost sure Holder continuity of the sample paths of Z, and the fact that, for each w,

Z, is the limit in L2(; E) of a sequence of finite sums of elements of L2(Q; E). This

“(Z,-7 / I

= \/ﬁ/ <wt7> (iwe* + A*(£))(A + iwl) L dB, (4.34)

gives

- \/—27/ <%> (iw€* + & A) (A + iwl) " dB; (4.35)
—00
we know that A*(£*) = £*A because the range of the resolvent satisfies (A +iwl) '(E) C
D(A) for all w € R. Thus

t
(20— To) + / A (€7)(Z,) du

S

- &= / (tie> £ (dB,) (4.36)

1 . 0 gt _ piws
— Eg </wTdBw> (4.37)
= {*(B;—By) (4.38)
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which is justified by the convergence in L2(Q; E) of the stochastic integral B, — B,. We

deduce (B¢, Z;) is a weak solution of the F valued Langevin equation (4.1).
O

The proof of Theorem 4.2.1 (f) naturally generalises the corresponding proof in the scalar
valued case; for details of this, see chapter XI, §10 of [13].

We now consider a condition on A under which Z; is adapted to the filtration induced
by By, and Z; is unique in distribution. The following corollary mirrors results in It6’s

paper [26].

Corollary 4.2.2 Let (By,Z;) be a weak solution of the E wvalued Langevin equation
(4.1). Assume, as well as (L1)-(L4), that the operator (—A) generates a Cy semigroup
(e*At)tzg of exponential norm decay. Then the process Zy is adapted to the filtration
induced by By; furthermore if (B}, Z}) is also a weak solution then Zj is identical in

distribution to Z;.

Proof Firstly let (B, Z;) and (B¢, Z}) be weak solutions of the E valued Langevin
equation. Setting ©; = Z} — Z; we see O, is an F valued, centred Gaussian, station-

ary stochastic process with almost surely Holder continuous sample paths defined on

(Q, F,P) which satisfies
t
(0, - ,) +/ A*(E)(0y) du = 0 (4.39)
almost surely, for all £* € D(A*) and s < t. 1t&’s paper [26] now shows, for s < ¢,
0, = Mt=9g,. (4.40)

The condition that (e‘At)tZU is of exponential norm decay, together with the requirement
that ©; be stationary, now implies ©; = 0 almost surely — we simply let £ tend to infinity
in (4.40).

Now by [26], if B; is any E valued cylindrical QQ-Wiener process then the process

t
7, = / e~ AE=v) 4B, (4.41)

—0o0
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is such that (B, Z;) is a weak solution of the E valued Langevin equation.

Combining these results we see that, given By, the process Z; is almost surely unique
and is given almost surely by the stochastic integral (4.41).

The stochastic integral (4.41) shows Z; is adapted to the filtration induced by B;.
Furthermore we see that, whenever (By, Z;) and (B}, Z}) are weak solutions, Z; must be
expressible almost surely in the form (4.41) as a stochastic integral with respect to By
and Z; must be expressible almost surely in the form (4.41) as a stochastic integral with
respect to B;. We deduce, as B; and B} have the same distribution, that Z; and Z} have

the same distribution.

4.3 Examples
Let 1 < p < oo and € > 0. Define
E={fel’®): f(()=0forall [¢| <c}, (4.42)

where f denotes the Fourier transform of f. The continuity of the Riesz projection on
LP(R) ([31], section V.B) shows E is a closed complemented subspace of LP(R); it is
therefore a reflexive Banach space. We consider various possibilities for A, each defined
via Fourier multipliers:

(i) (@)(C) = ¢ f(¢), so (e f)(z) = f(z +t) for all z € R and (e, is a Cp
group of translation operators on LP(R) with A = —i%;

(i) (@A F)(Q) = ¢ F(Q), s0 (" f)(@) = (R f)(x + 1) + (R_f)(z — t) for all z € R,
where R4 and R_ denote the positive and negative Riesz projections;

—

(iii) (eAf)(¢) = et1o8lClf(¢), implying N = A where A = —% is the Laplace
operator. The Laplacian is essentially self-adjoint on C2°(R) (see chapter 4 of [10]
for details) which enables us to define its imaginary powers by Fourier multipliers as

described. These imaginary powers (A#);cg form a Cjy group on LP(R) of polynomial

growth; see [21] for details.
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Each of the (e*");cr considered here restrict to E, yielding Cy groups. Furthermore
the condition on each f € E that f(¢) = 0 for all [¢| < e implies, in each case, that
the resolvent of A is bounded on the imaginary axis; conditions (L.2)-(L4) are therefore
satisfied. In addition neither A nor —A generate Cj semigroups of exponential norm
decay.

Thus, given any such A and any @) which is the variance of some centred Gaussian
random vector in F, the F valued Langevin equation (4.1) associated to A and @ has a

weak solution as described in Theorem 4.2.1.



Chapter 5

Some probability

distribution theory

This chapter recalls two classes of compactly supported probability distributions on R
and proves a result on the convolution of one of these. Both these distributions arise in

the theory of random matrices; these are studied in chapter 6.

5.1 The arcsine and semicircle distributions

The arcsine law with mean p and variance o is the probability measure on R given by

) S — ,u—\/ﬁagasgu-i-\/ﬁa;
P (do) = § V2w’ (5.1)

0 otherwise.
It is straightforward to verify that this does indeed give a probability measure on R with
mean g and variance o2. Usually we consider the case where = 0 and 0? = 1/2. This

is known as the standard arcsine law and is given by

—L_dr —-1<z<1,;
Pus(dz) = mV1-a? - (5.2)

0 otherwise,
do

- = (5.3)

93
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where df /27 is normalised arc length on the unit circle T. So if X is a random variable
uniformly distributed on T, its z co-ordinate is distributed according to the standard
arcsine law.

The arcsine distribution arises extensively in the theory of random walks; see chapter
I1T of [15] for more information.

An important related probability distribution is the following. The semicircle law

with mean y and variance o is the probability measure on R given by

Lo V42 — (x — p)2de p—20 <z < p+20;

P (dz) = { T (5.4)
0 otherwise.

Again it is straightforward to verify this gives a probability measure on R with mean p
and variance o2. Usually we consider the case where = 0 and 02 = 1/4. This is known

as the standard semicircle law and is given by

%\/1—x2dfp -1<z<1;

0 otherwise.

P, (dz) = (5.5)

Note that, for f a continuous bounded function on R,

/_11 f(2)Pyy(dz) = //Df(x)A(da:, dy) (5.6)

where A(dz,dy) is normalised area measure on the unit disc D. So if X is a random
variable uniformly distributed on D, its x co-ordinate is distributed according to the
standard semicircle law.

The semicircle distribution arises extensively in the theory of free random variables;

see the book [51] for more information.

5.2 Convolutions of the arcsine law

In this section we shall denote by fi; the standard arcsine density function. We shall
denote by f,, for n € N, the convolution of n standard arcsine densities. Thus if
(Xj)1<j<n is a sequence of n independent random variables, each following the standard

arcsine distribution, the random variable E?Zl X follows a distribution with density fp,.
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Such convolutions were studied recently in [4]. It is clear, as f; is a probability density
function, that f; € L'(R) and therefore f,, € L'(R).

Define the Bessel function of order zero, .Jy, to be

1 /" .
Jo(€) = = / eitcost dg (5.7)
T Jo
which, on putting ¢ = cos #, becomes
G 1/1 i (5.8)
=— e . .
0 T J_1 1—t2

We see Jj is the characteristic function of the standard arcsine density fi. We deduce
from the properties of characteristic functions that the characteristic function of f, is
Ji. Furthermore by Lévy’s inversion formula, for which see chapter 16 of [53], we may

recover f, from Jg via the formula, for s < ¢,

M _—i€s —1
/ du=tim [T e (5.9)

Mtoo f_pr 13 2

Now, note the following identity.

Proposition 5.2.1

RER = [ B 17 + 26me0s )1 2 (5.10)
which holds for all & and n in R.
Proof See §11.41 of [52] for details.
O
If £ = n this formula simplifies to
Jo(€)? = /027r Jo <2§ ‘cos g‘) ;l—i (5.11)

which we will use to evaluate the convolute fs. Recall that, for —1 < u < 1, the complete

elliptic integral of the first kind K (u) is defined to be

(5.12)

3 1
K(u) = — .
(u) /0 V1 —u?sin®4 v

We now come to the principal result of this chapter.
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Theorem 5.2.2 The function fo is given by

#K( 1—(g)2> —2<u<;

0 otherwise.

fa(u) =

Proof We know by Lévy’s inversion formula that, for s < ¢,

t M —ifs _ ,—ift d¢
e e
du = i . — 25
[ =g [ e
Thus
t M _—its _ ,—i&t 27 d d
. e e P 4 £
/ng(u) " Ml%o M 3 </0 Jo §COS2 w ) 2w
27 M _—its _ _—itt
— lim / et e, (zf‘cosf‘)d_ dip
Mtoo Jg M 1€ 21/ 2n ) 27
2w
. dep
= 1 -
i ), o)y
say, where

M efigs _ efigt ") df
[ =% 52 ‘ —‘ &
g () /_M 7 Jo( § |cos 5 ) 5

The asymptotic result

VaJy(z) — \/gcos (zp — %) =0

as £ — oo, which is detailed in §7.1 of [52], implies

o(z)] < min (1, \%)

for some constant C' > 0, which in turn gives, for ¢ # ,

g

5l
‘cos2

lgn ()] < a +

56

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

for some constants a > 0, 8 > 0; the right hand side of this inequality is integrable as a

function of ¢ € [0,2x]. Now, for ¢ # ,

M efzgs _ efzgt

. _ . e >~ —-e 14 )
J&}%OQM(QO) = Jim . 7 Jo (25‘6082‘

) e—ifs _ e—ift © df
- /OO e (2¢|eos 3)) 5

¢
2T

(5.22)

(5.23)
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as this converges as a Lebesgue integral via the asymptotic result for Jy above. Setting

v=2¢ ‘cos%‘ gives, as Jy is even,

) v Ges)

[e 0]
li _ av 24
monte) = [ ) To(w) - (5.24)
%
- 2'°°57‘f1(u)du (5.25)
2|cos2‘

by Lévy’s inversion formula. For ¢ = m,

M e—ifs _ e—ift df

li = i S 5.26
Jim, gm () dm ) 7 o (5.26)
0 s<t<lOor0<s<t
= % s<t=0o0r0=s5<t; (5.27)
1 s<0<t
t
— dim [ () du (5.28)
p—rmT s
2|cos%‘
= lim (1 . 5.29
lim <MlgologM(<p)> (5.29)

We have shown limp/oo gar(¢) exists, and is bounded and continuous, for all ¢ and that

g ()| < a+ £
1/|cos§|

that the function ¢ — a +

for some @ > 0 and B > 0 and all ¢ # w. Further we have noted
B

Jleos ]

dominated convergence theorem to give

is integrable on [0, 27]. We may therefore apply the

t 2T d(p
du = i & 5.30
[ ptan = g [ o5 (530)
2T d(p
_ I el 31
| limn(e)g (5.31)
Thus
t 2T _t
COS -+ d
folu)du = / Ao Bl 1wy du | 28 (5.32)
S 0 __ s 271'
2‘cos%|
g o ® d
_ / /25 " p () du - (5.33)
- 2|COS£‘

4 1 2‘005 | 1 dQO
_ - | 34
e L) g du | 52 (530)

2‘005 2|
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and setting v = 2u |cos §| gives

t ™ (1 rt v 1 dv dy
dy = 17y £(5.35
[ = [ (2] 100 (i) e 20

- 2P
4 cos 5

(1 [t v 1 d
- / —/ 1] (2 @> dv | 55 (5:36)
—m \ T Js ‘cosﬂ 4cos? & — v? &

tf1 (7 1 d
= / —/ 1[_1 1] v —(p d’U (537)
AT N3] e g -2 o

by Fubini’s theorem, as the integrand is positive. Now we need to know for which v and

 we have

v

This has no solutions when |v| > 2. If |v| < 2 the condition holds precisely when

—2cos™ (5-39)

Consequently

t min(t,2) 2cos™ S
/ folw)du = / 1 / L ® (540
s Vs

2
max(s,—2) \ T Jo 4 cos? % — 2

For fixed v, we replace the variable ¢ with a new variable 1) via the substitution

sin £

siny = 722 (5.42)
1-(3)

which gives

/s t folu)du = / e iQ /0 k L dp | dv  (5.43)

max(e=2) | \/1 — (1 - (%)2) sin?
min(t,2) 1 o2
B /max(s,g)PK< L= (5) ) dv (5.44)

for K a complete elliptic integral of the first kind. As s and ¢t were arbitrarily chosen

with s < ¢, this completes the proof.



Chapter 6

Random matrices

This chapter defines and develops some results for ensembles of Hermitian random ma-
trices and certain random measures on R associated to these.

The key reference on random matrix theory is [39]; this includes a detailed description
of the physical motivation for studying such ensembles. Among more recent publications

the paper [6] is particularly noteworthy.

6.1 Physical motivation

Since the pioneering work of Wigner in the 1950s, the theory of random matrices has
been developed and used in such diverse areas as statistical mechanics, nuclear physics,
quantum field theory (for example [2]) and scattering problems for one dimensional
Schrodinger operators (for example [45]). Until the late 1970s the great majority of the
random matrices considered were real and symmetric; however recent developments in
areas such as quantum chromodynamics, string theory and two-dimensional gravity have
led to a surge of interest in complex Hermitian random matrices.

The basic motivation for studying random matrices is as follows; our explanation is
taken from chapter 1 of [39].

According to quantum mechanics, the energy levels of a physical system are described

by the eigenvalues of an operator H (symmetric or Hermitian according to whether the

99
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system is real or complex) called the Hamiltonian, acting on a certain infinite dimensional
Hilbert space W. The spectrum of H, o(H), generally has both discrete and continuous
components; it is the discrete part which attracts most interest.

To avoid having to work in infinite dimensions, we restrict the action of our Hamil-
tonian H to a finite (but generally large) dimensional subspace of ¥, namely the direct
sum of a finite number of the eigenspaces associated to the discrete part of o(H). Thus
our Hamiltonian becomes a large symmetric or Hermitian matrix.

We do not, of course, have accurate knowledge of all the properties and constants
associated to the system; consequently we make statistical hypotheses and view these
quantities as random variables. In particular this means our Hamiltonian H is treated
as a random quantity.

We therefore study the properties of large random matrices. Often we seek limiting
properties of such matrices as their order approaches infinity; this corresponds to our
model encompassing more and more of the eigenspaces associated to the discrete part of

o(H).

6.2 Matrices with unitarily invariant distributions

Let (2, F,P) be a probability space and, for 1 < p < oo, let LP(£2) denote the usual space
of Borel measurable functions 0 — C having finite LP norm, quotiented by functions
which are zero almost surely. For n € N let M,,(C) denote the space of n by n complex
matrices and let M %(C) denote the space of n by n Hermitian complex matrices (the
self-adjoint part of M,,(C)).

Denote by " the simplex {(A1,... ,Ay) CR" : Ay > --- > \;}. Denote by U, the

Lie group of n by n unitary matrices equipped with Haar probability measure, which

we denote by dr. Denote by A(Aq,...,\,) the diagonal matrix with diagonal entries
AL, ..., A, in sequence. Denote by dX Lebesgue measure on MS%(C), i.e.
dX = [ d[X);; [] d Re[X);xd Im[X] ;. (6.1)

J i<k
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For each n € N define A,, to be the algebra M, (C) ® (), LF(2) of n by n matrices

with entries in ) LP(Q). We equip A, with the normalised trace %Etr. Define AJ®

Ip<oo
to be Mp*(C) ® (<o LP(€2), the self-adjoint part of A,.

If X, is an element of A4’* we refer to X,, as a random Hermitian matrix; this
definition of random matrices is taken from [51]. By construction the entries of X,, are
random variables having finite moments of all orders. The random matrix X,, induces a

Radon probability measure " on M3%(C), the law of X, given by
i (S) =P({w € Q: X,(w) € S}) (6.2)

for S a Borel subset of M3*(C).
This chapter considers ensembles of random matrices, that is sequences (X,,)n>1
where X, lies in A" for each n. In particular we shall consider ensembles (X;),>1 in

which each X, has distribution invariant under unitary conjugation; that is to say
pr({USU* : S € S}) = ™ (S) (6.3)

for all unitary U in U, and Borel subsets S of M;*(C). The law of X,, is said to be
unitarily invariant. The importance and physical motivation for unitary invariance is
detailed in [6] and [39].

We have the following invariance property.

Proposition 6.2.1 Lebesgue measure dX is a unitarily invariant measure on M3*(C).

Proof See section A.17 of [39].

Consider the map v : U,, x £" — M *(C) given by
VUM, 2n) = UM, -, M) U™ (6.4)

Proposition 6.2.2 The map v is continuous, surjective and almost surely injective,

with the only violations of injectivity occurring on the boundary of X".
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Proof This follows from the spectral theorem for Hermitian operators on C".

Denote by v*(dX) the pullback measure on U, x ¥" defined by the formula
/ X = / v (dX) (6.5)
v(S) S
for S all Borel subsets of U, x ™.

Proposition 6.2.3 The measure v*(dX) is absolutely continuous with respect to the

natural product measure dr dAy ...d\, on U, X X", according to the formula

Y (dX) = drd¢ (6.6)
where d¢ denotes the measure
d¢ = C [Ty — M) ? dry .. d), (6.7)
j<k

on X", where Cy, is a normalising constant.

Proof The argument in chapter 3 of [39] gives us
Y*(dX) = p(U) dr d¢ (6.8)

for some probability density function p on U,,. The left invariance of d7 and the unitary
invariance of dX now tell us that p(UV') = p(V) for all U and V in U, ; this implies p is

identically equal to 1. We deduce the required formula.

O
The values of the constants C, are known.
Proposition 6.2.4 The value of C), is
- n(n—1)/2 69)

[Tt
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Proof See appendix 2 of [2]. The method is due to Mehta; see section 5.2 of [39].

O

We seek representations of those laws of random Hermitian matrices which are absolutely
continuous with respect to Lebesgue measure on M3*(C).

Let ¢, (X)dX be a Radon probability measure on M %(C) which is absolutely con-
tinuous with respect to Lebesgue measure dX. Here ¢, : M *(C) — R is an integrable
function. We have a pullback probability measure v*(p,(X)dX) on U, x X" via the

formula

Y (on(X) dX) = 7" (n)(U, A1, ..., A)7*(dX) (6.10)

where v* () denotes the composition ¢, oy and X = UA(Ay,... ,  \,)U™.

We observe a condition for unitary invariance.
Proposition 6.2.5 The measure p,(X)dX is unitarily invariant if and only if
on(UXU™) = @, (X) (6.11)

for all X in M3*(C) and U in Uy; equivalently, v, (X)dX is unitarily invariant if and

only if
Y (o) (U A1y s An) =Y (o) (I, A, oy M) (6.12)
for allU € Uy, and (A1,... ,\,) € 2.

Proof The representation (6.10), together with the left invariance of d7 and the unitary

invariance of dX, inform us that

Y (n) UV, A1y M) = v (on) (Vo A1, 5 An) (6.13)

for all U and V in U,, and (Aq,...,A,) € ™. This gives the required conclusions.
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In such circumstances we say the function ¢,, is itself unitarily invariant; we may (with
a slight abuse of notation) regard v*(¢,) as a function from X" to R.
It is often difficult working on the simplex ™. The following proposition allows us

to work with the space U, x R" rather than U, x ¥™. Consider the map
m: R - X" (6.14)
which takes (A1,...,A,) € R" to its decreasing rearrangement in X".

Proposition 6.2.6 The map 7 is continuous, surjective and almost surely n! to 1, with
the only points for which it is not n! to 1 occurring on the preimage of the boundary of
X" If € is any probability measure on Uy, x 3™ there is a pullback measure 7*(C) of total

mass n!; it follows that %W*(C) s a probability measure on U, X R™.

Proof This is immediate from the definitions.
O

Thus, given any Radon probability measure ¢, (X)dX on M3%(C), there is a pullback
probability measure on U, x R" given by

LT (0 (n(X) X)) = S (0 (@) (U A A drde (615)

where 7 (v*(¢p)) denotes the composition ¢, oyom and X = UA(Aq,... ,\,)U*.

Let us summarise what we know for a random n by n Hermitian matrix X,, with
unitarily invariant law g~ given by ¢, (X)dX. We see that (abusing notation slightly)
the composition 7*(y*(¢;,)) may be viewed as a positive integrable function R* — R.

If F: M;*(C) — C is a locally integrable function which is unitarily invariant, so
F(UXU*) = F(X) (6.16)

for all X in M;*(C) and U in U,, we see that (again abusing notation slightly) the
composition 7*(y*(F')) may be viewed as a locally integrable function R* — C. We
observe the formula

BF(G) = = [ w0 EN O A (@) A (61)

Tl
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In practice the most common use of this formula occurs when F' is of the form ¢r f,
where f is a function from M;*(C) to itself.

Note that, as ¢, is unitarily invariant,

(Y (en)) ALy -5 An) = (AL, .., An)) (6.18)

and is a positive symmetric function of (A1,... ,\;) € R? lying in L'(R?). Similarly, as
F is unitarily invariant we see 7*(y*(F')) is a symmetric function of (Ay,...,\,) € R”
lying in L} (R™).

For example if F/(X) = || X||, which is a unitarily invariant function, we observe that

7*(F)(>‘17 .- 7>‘n) = ma‘X(|>‘1|a |>\n|) and 71-*(ﬂy*(};’))(kh s 7>\n) = maxXi1<j<n |>‘J|

6.3 The level spacing distributions

Given a random Hermitian n by n matrix X,, with unitarily invariant law ¢, (X)dX,
define the n-tuple (\(X},),... , \n (X)) to be the ordered eigenvalues of X,,, where
A (Xp) > -+ > A(Xy). Note this is an element of X™. We have the following proposi-

tion, whose proof is immediate.

Proposition 6.3.1 Define a probability density function p, on R* wvia the formula

]' * %
oAy An) = e JTOG = AP (7 (en)) (s s An). (6.19)
<k
Then
P((A(Xn)y--- s (X)) €8) = /l(s) Pn( Ay s An) dAy . dy, (6.20)
for all Borel subsets S of 3.
O

We refer to the density p, as the joint density of the eigenvalues of X,.
We may define, for r =1,... ,n — 1, a probability density function p], on R" by the
formula

10/ T = 2027 (5 (@) s+ 5 An) g1 - d. (6:21)
nIRETT Gk

oA, Ar) = oy
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For completeness set p” = p,. The family of probability density functions pl,... , p" is
known as the family of level spacing distributions; p} is particularly important and may
be viewed as the probability density of a randomly selected eigenvalue.

Note that, if f is a bounded continuous function from R to C then, via functional
calculus, for any n we may extend f to a map from M *(C) to M,(C). It therefore

makes sense to consider, for X,, an n by n random matrix,

TR ) = o [ S0 | R0 ) O A (622)
o \ w2

— /R F(B)pL(t) dt, (6.23)

which is a useful result.

In studying random matrices it is common to seek ensembles (X, ),>1 such that
(ph)n>1 tends weakly to a limiting probability density as n tends to infinity. This limit,
when it exists, is referred to as the integrated density of states (IDS) by physicists; see

[6] for example.

6.4 The empirical distribution of the eigenvalues

We next define an important class of random measures. Write M(R) for the vector space
of all Radon measures on R. By the Riesz representation theorem this may be viewed
as Cp(R)*, where Cy(R) is the space of continuous functions from R to C which vanish
at infinity; we equip M(R) with the dual norm. Denote by M;(R) the closed subset of
M(R) comprising all Radon probability measures on R. Let (X,),>1 be an ensemble of
random Hermitian matrices defined on the probability space (2, F,P). Define, for w €

and each n,

1 n
vn(w) =~ D O (Xu(w))- (6.24)
j=1
It is clear that, for each n, v, is a function from Q to M;(R); it is a random probability

measure on R. We refer to v, as the empirical distribution of the eigenvalues of X,,.
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Note that, for f € Cy(R),

[ fematan = 30 10(6) (6.25)
R =

for this reason v, is often described as the spectral multiplicity measure of X,,. We
see that, viewing v, as a map Q — Cy(R)*, v, is a weak-x measurable random vector.

Furthermore, viewing v, as an operator from Cp(R) to L?(f2),
o\ 1/2
) <1 (6.27)

and so vy, lies in L2. (©; Co(R)*). It follows that the weak-* expectation Ev,, exists. For

/ £ (B (dt)
R

“VTLHB Co(R),L2(Q)) = sup (E
(oL = omyllfil<t

f S CO(R)a
/ f(t) (Evp) (dt) = E / F (Bvalde) (6.28)
R R
_ %Ewﬂxm (6.29)
- [ 1o (6.30)
R
which shows us that
(Evy) (dt) = p (1) di (6.31)

for each n.
Note that by a corollary to Grothendieck’s inequality, detailed in theorem 3.5 of [11]
(the result was originally proved in [20]), B(Co(R), L?(2)) equals TI5(Co(R), L? (2)) with

llop < m2(v) < Kl llop (6.32)

for all elements v of B(Cp(R), L?(2)); here x5 denotes Grothendieck’s constant in C.
Consequently the spaces L2.(£2; Co(R)*) and L2.(9Q; Co(R)*, m2) coincide; it follows
that vy, lies in L2.(Q; Co(R)*, m3) for each n.
Viewing vy, as an operator once more, an identical argument to (6.27) shows that v,
lies in the space B(Cy(R), L2(2)) for each n. Here C(R) denotes the bounded continuous

functions from R to C.
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This chapter will consider circumstances under which ||v;, —Evy |50, (r),22(0)) tends
to zero as n tends to infinity, and furthermore p. = Ev,, tends weakly to some limit p'
(the integrated density of states) as n tends to infinity; it will then follow that v, — p'
in the Banach space B(Cy(R), L?(Q2)) as n tends to infinity. This will imply v,, — p! in
the Banach space B(Cy(R), L2(Q)) = L2, (Q; M(R)) as n tends to infinity.

Lemma 6.4.1 For f € Cy(R) and all n,

2
vp, — Euvy, ) (dt)

= /|f)\1| (A1) dAy +

/ f(mf(Az)[(1—%)pi(xl,h)—pz(xl)pk(&) Doddo. (633)
RQ

Proof A calculation shows

2

E /R F(6) (v — Evi)(df)

= B[S0 - B Y T0) (6.34
j=1 j=1
= —EZIf Wt 5B S 50y
Jj#k

i2 (E Zf(kj)) (E > f(M)) (6.35)
j= k=1
= /|f )\1 | )\1 d)\l =+
(1 - H) / FONF2)PE (A1, A2) dAy dAg —
R?

( [ronsonan) ([ roam0e ) (6.36)

= /|f>\1 2oL (A1) dAg +

1 _ |
é FONf () [(1 n) pn(A1s2) P}z(Al)P}z(Az)] dhidy  (6.37)

as required.
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To obtain more effective bounds on the sequence (v, —Ev;, ),>1 we need to make further

hypotheses on the laws of the (X),>1.

6.5 Matrices generated by weights

Specific ensembles (X},),>1 of random Hermitian matrices with unitarily invariant laws
may be generated according to the following procedure.

Let w : R — [0,00) be an integrable function which has finite moments of all orders
and induces a probability measure w(z)dz on R. Such a function is known as a weight
function or a probability density function. Write suppw for the support of w. We may

define a function v : suppw — R via

e @) g e suppw;
w(r) = (6.38)
0 otherwise.

The function v is often referred to as the potential.

Consider as before an ensemble of random Hermitian matrices (X,),>1 where, for
each n, X, has unitarily invariant law given by ¢, (X)dX. We know that 7*(v*(¢p))
is a non-negative symmetric function on R". This section will consider the special case

under which, for each n, ¢, is generated from w via the formula
(7 (en)) Ms- -5 An) = K [T w(N) (6.39)

where K, is a normalising constant; we know this to be finite since w has finite moments
of all orders. Note that, because w has finite moments of all orders, each element of the
ensemble (X, ),>1 lies in A5*. Some ensembles of this type, and the physical motivation
for studying them, are discussed in [45].

We may also define ¢, (X)dX via functional calculus as follows:

K e X)X o(X) C suppw;
on(X)dX = " (X)e (6.40)

0 otherwise,

where o(X) denotes the spectrum of X.
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Note that the entries of the random matrices generated in this way are not in general
independent. The most important case where the entries are independent occurs with
Gaussian random matrices, i.e. ensembles with v(z) a convex quadratic polynomial and
supp w the entire real line. There is an extensive theory of Gaussian random matrices and
random matrices with independent (or weakly independent) entries. See, for example,
[22] or [39].

Now, let w be a weight function and let Py, Py,... be the sequence of orthonormal
polynomials associated to it; see [48] for background details of this subject. Let (X}, )n>1
be the ensemble of random matrices generated from the weight function w in the above

way. Then the following result holds.

Lemma 6.5.1 For each n and r the level spacing distributions p] are given by the

formula
1 r
r (n — ’f’)' S -
PNy Ar) = S det > Pi(A) (M) TTw). (6.41)
‘ j=0 s,t=1 j=1
In particular, for the case r =1,
1 n—1
phO) = = | S B00? | win), (6.2
j=0
and for the case r = 2,
(A5 A2)
2
n ) . 1 n—1
= 71 | Pn(A)en(X2) — D PP () | wh)w(Xe) | . (6.43)
§=0

Proof These are quoted without proof in [6], (2.28)—(2.30) and proved in [39], sections
5.2, 6.1 and A.13.

O

The following result was proved, under a different framework and using different notation,
by Boutet de Monvel, Pastur and Shcherbina in section 2 of [6]. Our proof differs from

theirs; in particular it avoids use of the Stieltjes transform.
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Theorem 6.5.2 For f € Cy(R) and all n,

2
1 2 v

t) (v — Evy ) (dt)

and thus
lvn — Evalle,m),c2) < —F=>
implying that (vn, — Evy)p>1 converges to zero in B(Cy(R), L?(Q)).

Proof We have, by Lemma, 6.4.1 and Lemma, 6.5.1,

2
(vn — Evy)(dt)

/|f >‘1 |2 )\1)d>\1
1 - n—1

n2 /1%2 fA)f(A2) ZPJ(Al)P](AQ) w(A)w(Az) dAy do
=0

= /|f ) PpL (M) dhg —

n—1 2

1
_2

/ FONP ) PO (M) oy

IN

/|f (A)?pk (M) d\y

as required.

71

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

O

The next section examines the case in which suppw is a compact interval; we will show

that, provided w satisfies certain smoothness conditions, p. tends weakly to an arcsine

distribution as n tends to infinity. It follows that the sequence (v,),>1 converges in the

Banach space B(Cy(R), L?(Q2)) to an arcsine distribution.

Scholium One may, using the same weight function w, define a slightly different en-

semble of random Hermitian matrices (Y),>1. The matrix Y, has unitarily invariant

law 1, (Y) dY where

n

T W) s dn) = KU T w(N)
j=1

(6.49)
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for K,, a normalising constant; we know this to be finite since w has finite moments of
all orders. Consequently each Y, lies in A

We may also, as before, define 1, (Y) dY via functional calculus as follows:

K et M) gy o(Y) C suppw;
(V) dY = (6.50)

0 otherwise,

where o(Y) denotes the spectrum of Y.

Ensembles of this type have been studied extensively, notably in [6] where the physical
motivation for studying such ensembles is discussed. In this paper Boutet de Monvel,
Pastur and Shcherbina show that, provided the potential v satisfies a certain growth
condition, the density pl tends weakly to an absolutely continuous limit p', a formula
for which is given as a function of w. A result identical in statement to Theorem 6.5.2,

namely that

1
|vn = Evn e, ®),r2)) = O (%) (6.51)

as n tends to infinity, is stated and proved. It is deduced that the sequence (vp)p>1
converges to p' in the Banach space B(Cy(R), L%(f2)). Note that Boutet de Monvel,
Pastur and Shcherbina express their results in a different form, involving the Stieltjes
transform, and that our Theorem 6.5.2 provides an alternative proof to their result
(6.51).

When one applies Boutet de Monvel, Pastur and Shcherbina’s theorem to Gaussian
random matrices (suppw = R and v a convex quadratic polynomial) we obtain the
famous semicircle law of Wigner. The limit distribution is a semicircle distribution; see
[22] or sections 4.2, 5.4 and A.8 of [39] for more information. Note, though, that in the
Gaussian case we actually obtain almost sure convergence of the empirical distributions,
not just convergence in B(Cy(R), L?(R2)); this follows from the fact that, in the Gaussian

case,

1
v — Eva e, )2 0)) = O <ﬁ> (6.52)

as n tends to infinity, not just O (ﬁ)
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6.6 Matrices generated by compactly supported weights

We now assume suppw = [—1,1] and w is twice differentiable with only finitely many
zeros on (—1,1), all of finite order. Such ensembles were discussed recently in [45].

Then we have the following result due to Szego.

Lemma 6.6.1 For allt e (—1,1),

N1/, 1)2 _(2 2 1
(1 — )" w(t) 2 Py(t) cos(ncos™  t+(t)) +en(t) (6.53)

T
where v depends on w but not n and e,(t) tends to zero uniformly in t as n tends to

infinity.

Proof See theorem 12.1.6 of [48].

In fact the function + is given by
v(cos 0) = Hlog{w(cos #)|sin |} (6.54)

where H denotes the Hilbert transform. See section 10.2 of [48] for details.
We now use this lemma, together with Lemma 6.5.1, to obtain an analogous result

for the density p..

Lemma 6.6.2 For allt € (—1,1),

1 cos((n —1)cos 1+ 2y(t))sin(ncos ' t)
1— 212, () = =
( ) pn( ) T + mr(l _ t2)1/2

+ 7 () (6.55)
where 1y, (t) tends to zero uniformly in t as n tends to infinity.

Proof Applying Lemma 6.5.1 and Lemma 6.6.1, and writing 6 for cos ™! ¢, we have

n—1
(=220 = (=) [ YR | wi) (6.56)
=0
2 n—1 ’ 1 n—1
= EZCOSQ(jem(t))JFEZej(t)? (6.57)
§=0 j=0
1 n—1

™ nm

n—1
- 4 izcos2(j0+7(t)) +%Z<€j(t)2- (6.58)
j=0 Jj=0
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Of the three summands on the right hand side, the third clearly tends to zero uniformly

in ¢ as n tends to infinity; denote this by 7, (¢). Considering the second, we have

1 n—1 1 2in (1) 1— 62’in9
- _ 7

1 (o sinnf
= R illn=1)0+2v(t) 27 (6.60)

nmw sin @
_ cos((n — 1)9-!-‘27(t))sinn9 (6.61)

n sin 6
which gives the desired-for expression.

O

These lemmas yield the following result, which is stated without proof by Pastur at the

end of his paper [41] and attributed to a remark by M. Sodin.

Theorem 6.6.3 The density p. tends weakly to the standard arcsine density as n tends

to infinity.

Proof Applying Lemma 6.6.2 we require that
1
[,
tend to zero as n tends to infinity. Making the substitution ¢ = cos 0 gives
1 /7

ol
< L[ costtn= 10+ 2900500 %) - ( [ (S @) " oo

n \Jo T 0 sin 0 T

by the Cauchy-Schwarz inequality. The left hand integral is clearly less than or equal to

cos((n — 1) cos 1t + 2y(t)) sin(ncos ' t)
nm(1 — t?)

‘ dt (6.62)

cos((n — 1)8 + 2y(cos )) sinnd
sin 6

g

™

1 since |cosf| < 1 for all #. For the right hand integral we note the integrand is a Fejér

kernel and recall from Fourier analysis (see, for example, page 35 of [14]) that

T (sinn@\ 2 do

We conclude that the overall product is less than or equal to ﬁ We are finished.
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We deduce that the sequence (vy,),>1 of empirical distributions of the eigenvalues of

the ensemble (X,),>1 converges in the Banach space B(Cy(R), L%()) to the standard

arcsine distribution.



Chapter 7

Some analytic function theory

This chapter studies Bergman spaces of analytic functions and various notions of cotype,
characterised in terms of analytic functions, for Banach spaces.

The books [18] and [31] provide an introduction to analytic function theory, while
more specific information on Bergman spaces may be found in the papers [1] and [23].

Background details on the various forms of cotype considered may be found in [54].

7.1 A result on Horowitz products
We start with definitions. We have the unit disc
D={zeC]||z| <1}, (7.1)

the pseudohyperbolic metric for the disc

w—z
= 7.2
plev) = |22 (72)
where z,w € D, and the Blaschke factor
a a—z
B, = —— 7.3
D) = (i (73)

for z € .
Recall that a sequence (a;) C I is said to be H* interpolating if, given any bounded

sequence (zj) C C, there exists a function f € H*(ID) satisfying f(a;) = z; for each j.

76
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Here H* (D) denotes the Hardy space of bounded analytic functions on . For more
information consult chapter VII of [18].
We say a sequence (a;) C D satisfies the Carleson separation condition with constant

d, for some § > 0, if for all &,

H plaj,ar) > 6. (7.4)
J#k

By Carleson’s theorem, for which see theorem VII.1.1 of [18] for example, a sequence
in D is H* interpolating if and only if it satisfies the Carleson separation condition for
some 0. We call ¢ the Carleson interpolation constant for (a;).

If (aj) C D we define its Horowitz product to be
J

It may easily be shown this product converges locally uniformly to an analytic function
on I, with zeros (aj), if and only if 37, (1 — la;|)? < co. See [25] for details. In particular
the Horowitz product is a well-defined analytic function for H* interpolating sequences.

Consider the Bergman space L2(DD) of analytic functions f : D — C satisfying
1330 = [[ 1£G)PdAG) < o0 (7.6)
D

where dA(z) denotes normalised area measure on D.

The zeros (aj) of a function f lying in L2(D) satisfy > = la;])> < oo; thus
their Horowitz product P, defines an analytic function on D with zeros that of f.
Furthermore ([23], page 114) F(,;) is a contractive divisor on L2(D) in the sense that
f/ P,y lies in L3 (D) and satisfies || f /Pyl r2m) < I fll2(m)-

We note that any H> interpolating sequence (a;) is a Bergman space zero sequence
as the Blaschke product for (a;) is trivially in H>°(D) and thus L2(D); for details on
the theory of Blaschke products consult section I1.2 of [18] or section IV.A of [31]. The
Horowitz product for (a;) may grow dramatically near the boundary of D, however, and

is not necessarily an element of L2(ID). We have the following result.
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Theorem 7.1.1 There exists an H> interpolating sequence (a;) C D for which the

corresponding Horowitz product P,y does not lie in the Bergman space L2(D). That is

2

[ B - 5o )| dai) = . @)
D J

Before proving this, we will prove the following.

Lemma 7.1.2 Suppose we have a sequence (a;) C D satisfying the Carleson separation

i)
condition with constant . Fiz ar and n € (0, L{g) Then for any z € D satisfying

p(z,ak) <n (7.8)
we have
TLpteay) > 67 el (7.9
iz
In particular if n < /2 then
1 2—4
H p(z,a5) > 5m10g(5_2) >0 (7.10)
J#k
which implies the cruder inequality
2
H p(z,a;) > e~ =3 (e(3))” 5 (7.11)

j#k
Proof of Lemma 7.1.2 For any u,v,w € D we have the standard result for the

pseudohyperbolic metric ([18], lemma I1.1.4) that

|o(u, w) — p(v, w)|

p(u,v) > T — plu w)pw.w)’ (7.12)
Thus
o (aj, ax) — p(z, ar)
gp( jaj) > ];[1 a]’ak) ) (7.13)
_ 1+PZ a))(1 — plaj, ax))
! - o(az, a0)p(z, ar) ] (r14)
> T1 [ (H") 1—p(aj,ak))]. (7.15)

j#k
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Now on the interval [0, K] for 0 < K < 1,

_(—log(l—K))
e">1l—-z>e K , (7.16)

and so as

0< G%Z) (1= plaj,an)) < G%Z) (1-9), (7.17)

and the right hand side of this expression is less than 1 precisely when n < 2%5, we see

_log(l—(1+n)(1—5)):| 147
- =1 ) (1=p(aj,az))
1— G +77> (1—plaj,ar) > e { (=)= (%) T (as)
-n
5— )
-{-‘%(1}21 )]a—pw,ak))
= e (7.19)
( — log (2=22t0n) )
_ [e*U*ﬂ@jﬂk»} N (7.20)
(mﬂ‘iiﬁf”))
> pla, ar) (7.21)
= M%ﬂ@fﬂ%uihﬁ) (7.22)
So
L5 108 (5= 53 )
Hp(zaaj) > Hp(ajaa'k) (723)
i#k 7k
s )
> 18 o\F=mmdan ) (7.24)
Now, suppose n < §/2. Then as
1—n 1 2(1 — §)
= 1 2
5—2n+on 2—5[ +6—(2—6)n] (7.25)

we see that this quantity is increasing as 1 increases from 0. Thus, for any n < 6/2, this

quantity is less than or equal to its value at n = §/2. So

1—n L—n
—_— < — 7.26
o0—=2n+dn T 02040057 (7.26)
2 —
_ 279 (7.27)

62
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Thus, as § < 1 and log is increasing,

-5
H p(z,a;) > 5ﬁlog(25—2) > 0. (7.28)
J#k
Now
2—0 2
1
= log2+ 2log <S> (7.30)
1
< (log2+2)log (S) (7.31)
< 3log (%) (7.32)
as log (3) < 1. So, as § < 1,
H p(z,a;) > g7z 108(5) (7.33)
ik
_ i e(3) S . (7.34)
O

It will also be useful later to use the following result.

Lemma 7.1.3 There exists a sequence (\;) C D, lying on the positive real azis and

satisfying 0 < Ay < Ao < -+, which is H*® interpolating in Carleson’s sense and yet

2(2 — )20 (1 = ))? =0 (7.35)

J

where § is the Carleson interpolation constant for (X;).

Proof of Lemma 7.1.3 Consider the sequence
Aj=1—al™! (7.36)

for j = 1,2,---, where 0 < o« < 1. We shall first show the sequence (7.36) is H>

interpolating.
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By Carleson’s theorem ([18], theroem VII.1.1) a sequence (a;) C D is H* interpo-

lating if and only if firstly it is separated, in the sense that for all j # k,

plaj, ar) >n (7.37)

for some constant 1 > 0, and secondly the measure

> (1= lajl) b, (7.38)

J

is a Carleson measure. Now for our sequence (7.36) we have from above that, for j < k,

; 1—aki
-1 k—1 _
p(l—a7 1 —-a""") = T (7.39)
1—akd
1l—«
> T o (7.41)

as, for fixed j, the quantity on the second-to-last line increases with k. Thus, for any
a € (0,1), our sequence is separated with n = (1 —a)/(1 + «).

We now need to show the measure Ej ozjfld(l,aj_l) is Carleson. As our sequence
lies along the positive real axis, we see this is Carleson if and only if there is a constant

C > 0 such that, for every ¢ > 0,

Y dTl< e (7.42)

Jjrai—1<e

But

Z o7 = Z o1 (7.43)
jrai=1<e Jj:j>1+(loge/ log a)

ol 15

= (7.44)

1—«

o155

1—a

€

_ : 4
T (7.46)

(7.45)

thus, for any « € (0, 1), our measure is Carleson with C'=1/(1 — «).
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Thus for all @ € (0,1) the sequence (7.36) is H* interpolating. Assume, for fixed «,

that (7.36) is H* interpolating with constant §. For all j < k we have

5 < ) (7.47)
od 1 _ okl
A (7.48)
1—aki
= < (7.49)

1+ akfJ—ab 1
which leads, putting k = j + 1, to

11—«
0 —— .
<1+a—aJ (7.50)

for each j. As the term on the right hand side decreases and o/ tends to zero as j

increases we see

1—«

0 < . 7.51
T l+a ( )
Now
S - 01— )2 = ST H)af2i D, (7.52)
J J
which tends to infinity provided (2 — §)a > 1. As
-« a(l + 3a)
2-8a>(2- S s :
( 5)0‘—( <1+a>>0‘ l+a (7.53)
we see the sum (7.35) tends to infinity if
al +3a) 1 (7.54)
14+

But this holds if and only if (1 + 3a) > 1+ «, which in turn is equivalent to o > 1/3.
As a > 0, we see the sum (7.35) tends to infinity if o > 1/+/3.
We have thus shown that, for any a € (1/V/3,1), the sequence (7.36) satisfies the

requirements of the lemma.
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We may now finally prove our main result.

Proof of Theorem 7.1.1 Let (a;) C D be an H* interpolating sequence with constant
d, so for all k,

1 r(aj.ar) > 6. (7.55)
J#k
For any w € D and 1 > 0, let
Hy(w) ={z € C| p(w,2) <n} (7.56)

denote the pseudohyperbolic ball of radius n about w. Consider the balls Hy /2(aj). Note
that, because of the Carleson separation condition, these balls are disjoint. Fix k. Then
for any z € Hys/o(ar,),
[I B (2)(2 = By, (2)) = Buy(2) [] Bo,(2) [](2 = Ba,(2) [[(2 = Buy(2)),  (7.57)
J J#k i<k i>k

which gives

\P(aﬂ(z)\ = B, (2)| [[|Bo;(2)| [[ 2= Ba;(2)| [] 12— B (2)]- (7.58)
J#k J<k J>k
Now
12— By, (2)| >1 (7.59)

for all 7 > k and

[11Bs;(2)] = [T oz, 05) > e 5 (05(2)" 5 0 (7.60)
J#k i#k
by Lemma 7.1.2, so
— -3 (1og(1))?
Py (2)] > e m7 G 1By, ()] [T [2 = By (2)] - (7.61)
i<k

Consider ‘2 — By, (z)‘ for 7 < k. Certainly these are all greater than or equal to 1. But

can we improve on this? Note that

2— Baj (2) =2— Ba]- (ar) + Baj (ar) — Baj (2) (7.62)
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and therefore
12— By, (2)| = |2 — Ba, (ar)| — | Ba,; (2) — Ba, (ar)] - (7.63)

Now, the generalised form of Schwarz’s lemma ([18], lemma I.1.2) states that analytic

functions f : D — I are contractions for the pseudohyperbolic metric, that is

p(f(2), f(w)) < p(z, w) (7.64)
for all z,w € . Thus, as Blaschke factors are analytic functions D — I, we have
p(Ba, (2), Ba; (ar)) < p(z,a1) < 6/2, (7.65)
which implies

< 6. (7.66)

| Ba, (2) — Ba, (ax)| < (5/2) ‘1 — B, (ar) B, (2)

So
|2 = B, (2)| > |2 — By, (ax)| — 6. (7.67)

Henceforth we will assume the (a;) lie along the positive real axis, with0 < a; < as <.
This implies that B, (ax) < 0 for all j < k, which in turn implies ‘2 — By, (ak)‘ > 2 for

all 5 < k. Thus
12— By(2)| >2—4 (7.68)
for all j < k. So

> e~ (0(3) (2 — 5118, (2)], (7.69)

[P (2

and thus

// ‘Pa] ) z)>e‘%(log(%))2( 2(k—1) / Bu, ()2 dA().  (7.70)

H5/2 ak' H5/2 ak.

Let us consider this last integral. Put

Z — Qf

= 7.71
—_ (7.71)
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then
w + a
= .72
T ltamuw (7.72)
which yields, upon calculating the Jacobian,
(1 — |ag|*)?
dA = dA 7.73
B = T wwmr( +awe ) (7.73)
(1 — ax*)?
— "~ dA(w 7.74
ST 77
(1 —Jaxl*)?
———— dA(w 7.75
= (1= fagl)? dA(w) (7.76)
where we interpret all inequalities in the sense of positive measures on ID. Thus
J[ Ba@Paae > [[ 1wl a-ja)? ) (7.77)
HS/Z (lk \w|<5/2
_ 5/2
_ |“k| / / r3 dr df (7.78)
0=0Jr=
5/2
— 21— |ak|)2/ " dr (7.79)
0
5/2)4
= o a2 P2 (7.80)
54
= 1— .81
o o (7.81)
So
o 2
[ 1Papta)] dae) > gem 500 2 - 5201~ a? (7.82)
Hs/z(ag)
and hence, as the Hy/o(ay) are disjoint,
2
// ‘P(aj)(z) Z // ‘P (z)| dA(2) (7.83)
D H5/2 ax)
> O i 08 S 2 - a2 V(1 gl (7.8
32 ; ag .

Thus our theorem will be proved if we can exhibit an interpolating sequence (a;) with

constant 0, lying along the positive real axis, satisfying

D 2= 6)F (1 — Jay|)? = co. (7.85)

k
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We observe that Lemma, 7.1.3 provides such a sequence, namely (1 —a/~!) with « lying

in (1/v/3,1). The proof is complete.

7.2 On analytic Lusin cotype

Let E be a Banach space, let D denote the unit disc in C, let TN denote the infinite
torus equipped with normalised Haar measure, let 2 < ¢ < 0o, let LI(T"; E) denote the
Bochner L9 space of functions from TV to E and let H9(D; E) denote the Hardy space

of analytic functions f : D — FE satisfying

2w ” do 1/q
Il =sup ([ el g ) <o (7.56)

Let HY (D; E) denote the closure of the E valued polynomials in the space H?(DD; E).

We say E is of analytic Lusin cotype ¢ if there exists C' > 0 such that for all
f € HY(D; E), equivalently for all f € HI(D; E),

1 1/q
([a=ntiglya) < e, (7.87)

where f,(e??) = f(re?). Note that we may replace the left hand side above with any of

the following, which are all equivalent up to constants:

1 1/q
IGo(Dl, where Gy = ([0 =n e ar) L sy

which is a variant of the Littlewood-Paley g-function;

1/q
1Sq(F)Il, where Sq(f)(2) = (/F( )(1 =KD dA(C)) : (7.89)
which is a variant of the Lusin area integral; and
1/q
> 2 Hf,’,nHZ . (7.90)

n>0

Here z € Tand I'(2) = {( € D : largz —arg (| < 1 — [{|}.
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We say the space H?(D; E) satisfies a radial lower g-estimate if there exists C' > 1

such that, for all sequences 0 <rp <7 <---<ry <1land f € HI(D; E),
1/q

> e = fracallg < Clifllg (7.91)

n>0
where we set f,._, = 0. Notice that the property remains the same when we only require
that f € HI(D; E).
We say E is of Hardy (respectively analytic) martingale cotype ¢ if there exists C' > 0
such that, for all Hardy (respectively analytic) martingales (My),>o with M, lying in
LY(TY; E) for each n,

1/q

ST IMy — M4 | < Csup| Ml (7.92)
n>0 n>0

where we set M_; = 0. Definitions and basic properties of Hardy and analytic mar-
tingales are in [54]. In [43] Pisier shows that a Banach space E has Hardy martingale
cotype ¢ if and only if H?(DD; E) satisfies a radial lower g-estimate (theorem 7.8).

In [54] Xu shows that, for a Banach space E, E has Hardy martingale cotype ¢ implies
E is of analytic Lusin cotype ¢ (theorem 5.1(i)) and, furthermore, E is of analytic Lusin
cotype ¢ implies E has analytic martingale cotype ¢ (theorem 5.1(ii)). Xu conjectures
that analytic martingale cotype and Hardy martingale cotype are identical properties.

We see that, if it could be proved that E of analytic Lusin cotype ¢ implies H?(D; E)
satisfies a radial lower g-estimate, it would follow that Hardy martingale cotype and
analytic Lusin cotype are identical properties.

We will prove a somewhat weaker result.

Theorem 7.2.1 If E is a Banach space of analytic Lusin cotype q then H1(D; E) satis-
fies a geometric radial lower q-estimate; that is to say, given any K satisfying 0 < K < 1,
the radial lower q-estimate condition (7.91) holds, with constant C depending on K, for

all sequences 0 < rop <ry <--- <ry <1 satisfying

1—
N (7.93)
IL—rp

for all n.
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Proof Let f € HY(D;E) and 0 < K < 1. It suffices to show there is a finite C,

depending on K but independent of f, such that

1
Sl = frilly < [Ca=rit gl ar (7.94)

n>1

for all sequences 0 <71y <r; <--- < ry < 1 satisfying (7.93). Now, we have

27 . . do
o= Frucdlly = [ £ = s 52 (7.95)
2T Tn . a
= / / f!(re®y dr g. (7.96)
0 Tn—1 E

Notice this last step employs the analyticity of f.
We now use the result that, if P is any Radon probability measure on [ry_1,7,]

and X is any element of LI([r,_1,7y],P; E) then, by Holder’s inequality, [|EX| <

-1
(E||X||qE)1/q. Take P to be the probability measure ldTTT [log (111’;;1 )} and X to be

the function 7 — (1 —r)f'(re?). Then

Tn . q
/ f!(re') dr
Tn—1 E

™ ) d — -1
/ (1 =) f'(re) - : _TT [log <711 _Z;)]

q

) [log (%)] q(7.97)

Tn . q d'l" 1 " q—1
< [l s (52 |
< /Tnl( r)? || f (re )E el S (7.98)
1—r,_ a1 pry ‘
= |:10g <#>] / (1 _ T)qfl ‘ f/(reze)Hq dr. (7.99)
1- "n n—1 E
Thus we have
Dol e = Fracally
n>1
~ 2m 1 —rp qg—1 Tn ) , y q do
< D /0 [log <ﬁ>] /r_ (1 =nrt| e ars| (7100
nZl = n—1
e Z |:10g <w>:|QI /'T‘n (1 _ T)qil Hleq d’]"] (7101)
1—7r, . rllq
77,21 L n—1
< su -1 ﬂ ‘Z*l. 11_ =1 ¢19 4 102
RS R (=) frllg dr (7.102)
n>1 L —Tn 0
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As g > 2 and log is an increasing function,

QIS )

for all n. Thus we may take C' = [log (%)]qil; the proof is complete.

89
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Chapter 8

Unresolved questions

This last chapter will detail some possible avenues for future research.

1) On stochastic integration with predictable integrands
Let E be a separable Banach space. Theorem 3.2.2 considered the stochastic integral
in F of a deterministic integrand with respect to a (Q-Wiener process. Under what

circumstances may we generalise this, and define an It6 stochastic integral

t
/ T, dB.,, (8.1)
S

for (Ty)s<u<¢ a random family of bounded linear operators on E which is predictable with
respect to the filtration induced by the Q-Wiener process B, 7 Under what circumstances
may we define the integral in the case where B, is a more general stochastic process in

FE with independent increments? These questions were considered recently in the paper

7).

2) On uniqueness and adaptedness of the Ornstein-Uhlenbeck process
Within the framework of Theorem 4.2.1, under what precise circumstances is the Banach

space valued Ornstein-Uhlenbeck process

1 o _
7y = —— et A +iwI)" " dB, 8.2
v= o= [ ) )

90
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unique in distribution? Under what precise circumstances is Z; adapted to the filtration
induced by the @-Wiener process B;? Corollary 4.2.2 gives a sufficient condition for

both uniqueness and adaptedness.

3) On the almost sure convergence of (v, —Ev,),>
Within the framework of Theorem 6.5.2, under what precise circumstances do we have
almost sure convergence of the sequence (v, — Ev,)p>1 to zero? This occurs in the case

of Gaussian random matrices; see [22] for more details.

4) On the zeros of an orthogonal polynomial

Within the framework of sections 6.5 and 6.6, let w be a weight function on R and let
(Pn)n>0 denote the sequence of orthonormal polynomials associated to w. For each n > 1
let (aj(P))7—; denote the set of zeros of P, where vy > -+ > . Define a probability

measure K, on R for each n > 1 via

n

1
Fin =~ > boy(p)- (8.3)

j=1
The probability measure k,, is known as the empirical distribution of the zeros of P, ; it
is natural to ask how this behaves as n tends to infinity.

Under certain circumstances the measures (k,),>1 and the random measures (v, )n>1
associated to the ensemble (X,,),>1 converge to the same limit as n tends to infinity;
this limit is the integrated density of states p'. The measures (Kn)n>1 converge weakly
while the random measures (v,)n>1 converge in B(Cy(R), L?(Q2)).

In [41] Pastur proved this holds in the special case where suppw is the whole of R
and w(z) = exp{—|z|"} for some r > 1.

This result also holds when the weight function w has compact support; this was
proved by Szegé in [48]. In his paper [45] Shirai used Szegd’s results to calculate the
limiting value of % log Edet (A — X,,) !, for complex A and compactly supported w, as n
tends to infinity.

Under what precise circumstances do (ki )n>1 and (v, )n>1 converge to the same limit
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as n tends to infinity?

5) On spectral representations and analytic functions

The Ornstein-Uhlenbeck process (8.2) provides an example of a spectral representation
for a Banach space valued weakly stationary stochastic process. What other Banach
space valued weakly stationary processes may be expressed as a stochastic integral in
this way and under precisely which circumstances may we represent the autocovariance
function of a Banach space valued weakly stationary process as a spectral integral?

In other words, given a weakly stationary process X; in a Banach space F, under
what circumstance may we write

00
X; = / et du, (8.4)
—0
where U, is a spectral stochastic process with independent increments? If X; has auto-
covariance function ¥ then under what circumstances may we write
0o
B(t) = / £ Y (dw) (8.5)
—0
where T is a measure on R taking values in a space of covariance operators? If we do
have such a measure T, under what circumstances does Y factor as (C*, where ¢ is an
analytic function on the upper half plane? This problem was considered extensively in
[43].

When considering such factorisations, should we view our analytic functions as el-
ements of vector valued Hardy spaces, as was done in the finite dimensional case by
Masani and Wiener ([37], [38]) and more recently in the general case by Pisier ([43]), or
should we be viewing them as elements of more general spaces, such as vector valued
Bergman spaces?

Such a factorisation theory is likely to have major applications to the prediction
theory of Banach space valued stochastic processes; such a conjecture was made by

Pisier at the end of [43].
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