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A study of stochasticprocesses in Banach spacesJames Stuart Groves, MASubmitted to the University of Lancaster in July 2000for the degree of Doctor of PhilosophyAbstractThe theory of 2-convex norms is applied to Banach space valued random vectors. Useis made of a norm on random vectors, introduced by Pisier, equal to the 2-absolutelysumming norm on an associated space of operators.For Q the variance of some centred Gaussian random vector in a separable Banachspace it is shown that, necessarily, Q factors through l2 as a product of 2-summingoperators. This factorisation condition is su�cient when the Banach space is of Gaussiantype 2. The stochastic integral of a family of operators with respect to a cylindricalQ-Wiener process is shown to exist under a H�older continuity condition involving the2-summing norm.A Langevin equation dZt +�Ztdt = dBtwith values in a separable Banach space is studied. The operator � is closed and denselyde�ned. A weak solution (Zt;Bt), where Zt is centred, Gaussian and stationary whileBtis a Q-Wiener process, is given when i� and i�� generate C0 groups and the resolvent of� is uniformly bounded on the imaginary axis. Both Zt and Bt are stochastic integralswith respect to a spectral Q-Wiener process.The convolution of two arcsine probability densities is shown to be an elliptic integral.
ii



ABSTRACT iiiEnsembles (Xn)n�1 of random Hermitian matrices are considered. Each Xn is nby n with distribution invariant under unitary conjugation and induced by a positiveweight function on R. New proofs are given of results, due to Boutet de Monvel, Pastur,Shcherbina and Sodin, on the behaviour of the empirical distribution of the eigenvaluesof Xn as n tends to in�nity.Results in analytic function theory are proved. An H1 interpolating sequence in thedisc D whose Horowitz product does not lie in the Bergman space L2a(D ) is exhibited. Acondition satis�ed by Banach spaces of non-trivial analytic Lusin cotype is obtained.
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Chapter 1
Introduction
This thesis considers various aspects of the theory of Banach space valued random vectorsand stochastic processes. This topic has been extensively studied in recent years; ofnotable interest are the books [8] and [34].1.1 Ornstein-Uhlenbeck processesThe thesis will study a Langevin equation for stochastic processes with values in aseparable complex Banach space E. The one-dimensional Langevin equation is the Itôdi�erential equation dZt + �Ztdt = dbt (1.1)for t 2 R, where the constant � > 0 describes a frictional resistance. We seek a pair ofprocesses (bt; Zt), de�ned on a probability space (
;F ;P), which solve equation (1.1);the process (bt)t2R is required to be a complex Brownian motion on the line with b0 = 0and the process (Zt)t2R is required to be a complex valued centred Gaussian stationarystochastic process which is adapted to the �ltration induced by bt and has almost surelyH�older continuous sample paths. The concept of a stationary stochastic process wasintroduced by Khinchin in [28].It is well known, following Uhlenbeck and Ornstein's paper [49], that solutions (bt; Zt)of equation (1.1) exist. The stationary process Zt is unique in distribution and called the1



CHAPTER 1. INTRODUCTION 2Ornstein-Uhlenbeck process with parameter �. We may write Zt as a stochastic spectralintegral Zt = 1p2� Z 1�1 ei!t�+ i! d~b!; (1.2)where (~b!)!2R is a given complex Brownian motion on the line de�ned on (
;F ;P) with~b0 = 0. The process bt is given in terms of ~b! by the condition b0 = 0 and the stochasticspectral integral, for s < t,bt � bs = 1p2� Z 1�1 ei!t � ei!si! d~b!: (1.3)The formulae (1.2) and (1.3) were originally derived by mathematicians developing thetheory of linear �lters on stationary stochastic processes. Of note are Blanc-Lapierre andFortet's paper [3], which discusses the basic properties of �lters, and Kolmogorov's paper[29], which discusses spectral representations of solutions to linear constant coe�cientstochastic di�erential equations | formula (24) of Kolmogorov's paper is a generalisedform of (1.2). See chapter XI of [13] for a detailed description of the spectral theory ofscalar valued stationary stochastic processes.Adaptedness of the process Zt to the �ltration induced by bt follows from the existenceof a time domain integral Zt = Z t�1 e��(t�u) dbu; (1.4)which expresses Zt as a stochastic integral with respect to bt. All stochastic integralsare interpreted in the Itô sense. The autocovariance of the process Zt isCov(Zs; Zt) = e��js�tj2� : (1.5)The Ornstein-Uhlenbeck process is Gaussian, strongly Markovian and stationary withalmost surely H�older continuous sample paths.For more information, particularly on the physical motivation for studying theseprocesses, we refer the reader to [19] or [44].In chapter 4 of this thesis we consider a generalisation of the Langevin equation tothe Banach space valued case. We let E be a separable complex Banach space and



CHAPTER 1. INTRODUCTION 3consider the stochastic di�erential equationdZt +�Ztdt = dBt (1.6)for t 2 R, where � is a closed operator from a norm dense domain D(�) � E to E.We seek a pair of processes (Bt;Zt), de�ned on a probability space (
;F ;P), whichare a weak solution to equation (1.6); the concept of a weak solution follows that ofDa Prato and Zabczyk, for which see [8], and is de�ned formally in chapter 4. Theapproach we adopt of seeking a pair of processes, neither of which is given in advance, isused by �ksendal in [40]. The process (Bt)t2R is required to be an E valued cylindricalQ-Wiener process; our terminology for Wiener processes follows that used in [8]. Theprocess (Zt)t2R is required to be an E valued, centred Gaussian, stationary stochasticprocess with almost surely H�older continuous sample paths.When generalising results on scalar valued random variables and stochastic processesto the Banach space valued case, several problems arise concerning how to describeconcepts such as expectation, L2 boundedness, covariance and stationarity in a widersetting. Chapter 2 of this thesis uses ideas developed by G. Pisier in the paper [43]to develop the theory of spaces of Banach space valued random vectors with boundedvariance. Various weak forms of the L2 norm are considered; these are contrasted withthe more usual Bochner L2 norm.Particular use is made of a norm on spaces of random vectors, introduced by Pisier,which is equal to the 2-absolutely summing norm on an associated space of linear op-erators; this norm is denoted by �2. Chapter 3 characterises Gaussian random vectorsand cylindrical Q-Wiener processes in a separable Banach space E using this norm; it isshown that, necessarily, Q factors through l2 as AA�, where A is an operator from l2 toE with 2-summing adjoint. This factorisation condition is shown to be su�cient whenE is of Gaussian type 2.Chapter 3 also considers the theory of stochastic integration in a separable Banachspace for deterministic integrands with respect to a cylindrical Q-Wiener process. Thefollowing theorem is proved.



CHAPTER 1. INTRODUCTION 4Theorem 1.1.1 For E a separable Banach space, let Bt be an E valued cylindrical AA�-Wiener process de�ned on a probability space (
;F ;P). Then for s < t, if (Tu)s�u�t isa non-random family of bounded linear operators on E such that (A�T �u )s�u�t is H�oldercontinuous in the �2 norm, the stochastic integralZ ts Tu dBu (1.7)exists in the Itô sense, as the L2 limit of appropriate Riemann sums under re�nementof partitions. Furthermore�2�Z ts Tu dBu�2 � Z ts �2(A�T �u )2 du: (1.8)Having formalised the framework under which Banach space valued stochastic pro-cesses will be discussed we prove the existence in chapter 4, under certain boundednessconditions on �, of pairs of processes (Bt;Zt) which solve the Banach space valuedLangevin equation in the weak sense.Theorem 1.1.2 Assume i� and i�� generate C0 groups of operators on E and theresolvent of � is uniformly bounded on the imaginary axis. Consider the stochasticspectral integral Zt = 1p2� Z 1�1 ei!t(� + i!I)�1 d ~B! ; (1.9)where ~B! is a given E valued cylindrical Q-Wiener process de�ned on (
;F ;P). De�neBt subject to B0 = 0 and the stochastic spectral integral, for s < t,Bt �Bs = 1p2� Z 1�1 ei!t � ei!si! d ~B!: (1.10)The processes Zt and Bt converge in L2 as Itô stochastic integrals and the pair (Bt;Zt)is a weak solution of equation (1.6).The process Zt is a generalisation to the E valued case of the classical Ornstein-Uhlenbeck process. Such a generalisation has been done previously, notably by Itô in hispaper [26]; the di�erence in our case is that our solution Zt is represented as a stochasticspectral integral, rather than an integral in the time domain.



CHAPTER 1. INTRODUCTION 5Note we do not require that Zt be adapted to the �ltration induced by Bt. We obtainadaptedness in the important case where (��) generates a C0 semigroup (e��t)t�0 ofexponential norm decay, however, by demonstrating the existence of a time domainintegral Zt = Z t�1 e��(t�u) dBu (1.11)which expresses Zt as a stochastic integral with respect to Bt.Chapter 4 also considers some speci�c examples of E valued Langevin equations andtheir weak solutions. Each example corresponds to an operator � for which neither �nor (��) generate C0 semigroups of exponential norm decay.1.2 Random matricesThe thesis also concerns itself with the theory of random matrices. These arise innumerous areas of statistical and quantum physics; the book [39] provides an introductionto the subject.Chapter 6 considers ensembles (Xn)n�1 of random Hermitian matrices. Each Xn isn by n and de�ned on a probability space (
;F ;P). The distribution of Xn is invariantunder conjugation by unitary maps and induced, via functional calculus, by a positiveweight function on R. Such matrices were studied, for example, in the papers [6] and[41].We study a fundamental sequence of random measures associated to (Xn)n�1. Foreach Xn de�ne the n-tuple (�1(Xn); : : : ; �n(Xn)) to be the eigenvalues of Xn arrangedin decreasing order. De�ne, for ! 2 
 and each n,�n(!) = 1n nXj=1 ��j(Xn(!)): (1.12)The random probability measure �n is referred to as the empirical distribution of theeigenvalues of Xn. It is also known as the spectral multiplicity measure.The framework developed in chapter 2 for studying classes of random vectors isapplied to these random measures; this enables us to de�ne the expectation E �n for each



CHAPTER 1. INTRODUCTION 6n. The concept of L2 norm convergence for such sequences is studied in this setting.Chapter 6 will prove some results on the limiting behaviour of �n as n tends toin�nity. We prove the following.Theorem 1.2.1 The sequence (�n � E �n)n�1 tends to zero in L2 norm as n tends toin�nity. Furthermore if the weight function generating (Xn)n�1 is supported on [�1; 1]and twice di�erentiable on (�1; 1) with only �nitely many zeros, all of �nite order, then�n tends to the standard arcsine distribution in norm as n tends to in�nity.These results are known| the �rst sentence above is due to Boutet de Monvel, Pasturand Shcherbina and stated, with proof, in their paper [6] while the second sentence isstated by Pastur in his paper [41] and attributed to Sodin. The proofs we give arenew, however. Furthermore by stating and proving these results using the frameworkdeveloped in chapter 2, we manage to simplify notation and avoid use of the Stieltjestransform.The arcsine probability distribution appears prominently in the results of chapter6. In chapter 5 we give background information on this distribution and show that theconvolution of two standard arcsine probability densities may be expressed as a completeelliptic integral of the �rst kind.1.3 Analytic function theoryThe �nal part of the thesis obtains some results in analytic function theory.Chapter 7 considers Bergman spaces and Horowitz products on the disc D . Horowitzproducts were introduced in [25] and play a rôle in Bergman space theory analogousto the rôle played by Blaschke products in Hardy space theory. The Horowitz productof a Bergman space zero sequence (aj) converges locally uniformly on D to an analyticfunction with zeros (aj).We exhibit a sequence (aj) in D which is H1 interpolating, in Carleson's sense, yetthe Horowitz product associated to (aj) does not lie in the Bergman space L2a(D ).



CHAPTER 1. INTRODUCTION 7Chapter 7 also considers the concept of analytic Lusin cotype for Banach spaces. It isshown that, if E is a Banach space of analytic Lusin cotype q, the Hardy space Hq(D ;E)satis�es a so-called geometric radial lower q-estimate.This part of the thesis is essentially separate from the parts preceding it. Analyticfunction theory is connected to the theory of stochastic processes, however, via the theoryof spectral representations of stationary stochastic processes; the Ornstein-Uhlenbeckprocesses of chapter 4 are examples of such representations.Masani and Wiener, in their papers [37] and [38], famously used analytic functiontheory to study spectral representations of stochastic processes in C n and develop aprediction theory for such processes. It seems likely that, as such results are extendedto the Banach space valued case, analytic function theory will continue play a crucialrôle; this was conjectured by Pisier at the end of his paper [43].



Chapter 2
Banach space valuedrandom vectors
In this chapter we develop the formalism we need to adequately deal with the theoryof Banach space valued random vectors and their covariances. The ideas largely derivefrom Pisier's paper [43]. The books [12], [34] and [42], together with the papers [35] and[36], have proved invaluable.Following [43] we use positive sesquilinear forms to de�ne norms on Banach spacevalued random vectors which equal certain 2-convex norms on equivalent operators fromthe dual of the Banach space to a Hilbert space. For details of 2-convexity the reader isdirected to section 2 of [43]. One norm in particular is equal to the 2-absolutely summingnorm; this will enable us to bound various stochastic integrals in chapters 3 and 4. The2-convex norms yield a natural notion of covariance for pairs of random vectors.2.1 De�nitionsWe introduce some notation. For a complex vector space V , V denotes V endowed withthe conjugate scalar multiplication (�; v) 7! �v. Write v for v 2 V viewed as an elementof V .Throughout this thesis, all adjoints of linear operators are to be interpreted in the8



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 9Banach space sense.A brief explanation is needed concerning relationships between �nite rank operatorsand tensors. Let E and F be Banach spaces and let (�k)k, (��k)k and (�k)k denotesequences in E, E� and F respectively. The space of �nite rank operators E ! F is tobe identi�ed with the space of tensors E� 
 F ; we identify the �nite rank operator� 7!Xk ��k(�)�k (2.1)in B(E;F ) with the tensor Xk ��k 
 �k (2.2)inE�
F . The space of �nite rank �(E�; E) continuous (that is to say weak-� continuous)operators E� ! F is to be identi�ed with the space of tensors E 
 F ; we identify the�nite rank weak-� continuous operator�� 7!Xk ��(�k)�k (2.3)in B(E�; F ) with the tensor Xk �k 
 �k (2.4)in E 
 F .Given a space of algebraic tensors E 
 F , we may impose norms on that space. Anorm � on E 
 F is said to be tensorial (or a crossnorm) if�(� 
 �) = k�kEk�kF (2.5)for all rank one tensors � 
 � in E 
 F . A tensorial norm is said to be reasonable if��(�� 
 ��) = k��kE�k��kF � (2.6)for all rank one tensors ��
 �� in (E 
F )�, where �� denotes the dual norm to �. Notethat we may replace equality with � in the above equation and the property remainsthe same. The completion of E 
 F with respect to the tensorial norm � is denoted by



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 10E 
� F . For more information consult [42] or chapter VIII of [12]; these concepts wereoriginally introduced in [20].The two most commonly used reasonable tensorial norms on a space of tensors E
Fare the injective norm k k_, with completion the injective tensor product E �
F , andthe projective norm k k^, with completion the projective tensor product E
̂F . Ifu 2 E 
F then kuk_ is the operator norm of u viewed as an element of B(E�; F ) while,writing u =Pk �k 
 �k, kuk^ = inf(Xk k�kkEk�kkF) (2.7)where the in�mum is over all representations of u. It is well-known that, given anyu 2 E 
 F and a reasonable tensorial norm � on E 
 F ,kuk_ � �(u) � kuk^: (2.8)We shall also consider certain classes of norms on spaces of operators from E to F .Let A(E;F ) denote a subspace of B(E;F ) equipped with a norm � under which A(E;F )is a Banach space. We say A(E;F ) is a Banach operator ideal, and � is an operatorideal norm, if:(i) for all �� 2 E� and � 2 F , the rank one tensor �� 
 � 2 A(E;F ) and�(�� 
 �) = k��kE�k�kF ; (2.9)(ii) for all u 2 A(E;F ), S 2 B(E) and T 2 B(F ), the product TuS 2 A(E;F ) and�(TuS) � kTk�(u)kSk: (2.10)The most familiar example of a Banach operator ideal is B(E;F ) equipped with theusual operator norm; this is also the largest operator ideal in the sense that, if � is anoperator ideal norm on an operator ideal A(E;F ) and u 2 A(E;F ), we havekuk � �(u): (2.11)Note that, for � an operator ideal norm on an operator ideal A(E;F ), the restrictionof � to the space E� 
 F of algebraic tensors is a reasonable tensorial norm. For moreinformation on operator ideals the reader is directed to [11].



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 11We recall from, for example, [11] the de�nition of a 2-absolutely summing operator.For E and F Banach spaces, the operator T : E ! F is 2-summing if�2(T ) = supf�igi Xi kT�ik2F!1=2 <1; (2.12)where the supremum is over all �nite subsets f�igi of E satisfyingsup(Xi j��(�i)j2 : �� 2 E�; k��kE� � 1) � 1: (2.13)The constant �2(T ) is the 2-summing norm of T ; it is an operator ideal norm. We write�2(E;F ) for the space of all such T ; it forms a Banach space with norm �2 and so isa Banach operator ideal. In the case where E and F are both Hilbert spaces the space�2(E;F ) is the space of Hilbert-Schmidt operators from E to F .Let E be a Banach space, H a Hilbert space and A(E;H) a Banach operator ideal.We denote by S+(E��E�) the set of all positive sesquilinear forms on E��E�. Through-out this thesis all sesquilinear forms and inner products are understood to be linear inthe �rst variable and conjugate linear in the second.If ' is a weak-� continuous element of S+(E� � E�) we de�ne the action of ' onelements (u; v) of A(E;H)�A(E;H) as follows. Assume �rst that u and v are of �niterank; the spaces Imu� and Imv� are then �nite dimensional subspaces of E�, and therestriction of ' to Imu� � Imv� is of �nite rank. We may write'jImu��Imv� =Xj �j 
 �j (2.14)for some sequences (�j)j and (�j)j in E. De�ne'(u; v) =Xj < u(�j); v(�j) >H : (2.15)For u in A(E;H) not of �nite rank we de�ne'(u; u) = supP '(Pu; Pu) (2.16)where P is a �nite rank orthogonal projection on H. Finally we calculate '(u; v) fordistinct u and v in A(E;H) by the polarisation formula'(u; v) = 14 3Xj=0 ij'(u+ ijv; u+ ijv): (2.17)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 12Type 2 is de�ned as follows. Let (Xk)k denote a sequence of independent real N(0; 1)random variables. A Banach space E is of (Gaussian) type 2 if there exists a �nitepositive constant C such that, for any �nite sequence (�k)k in E,0@E 




Xk �kXk




2E1A1=2 � C  Xk k�kk2E!1=2 : (2.18)We denote the in�mum of all allowable constants C by T2(E), the type 2 constant of E.Note that both the Lebesgue spaces Lp and the Schatten-von Neumann spaces cp areof type 2 for 2 � p < 1. For more information on the notion of type, and the relatednotion of cotype, see [11] or [42].2.2 2-convex operator ideal normsLet E be a complex Banach space and H a complex Hilbert space. Let D(E;H) be aBanach space of operators E ! H equipped with a norm � satisfying:(D1) � is an operator ideal norm and D(E;H) is a Banach operator ideal;(D2) �(u) = supP �(Pu) for all u 2 D(E;H), where P is a �nite rank orthogonal projec-tion on H;(D3) if u 2 D(E;H) then kuk � �(u) � �2(u): (2.19)It is straightforward to show that both B(E;H) and �2(E;H) satisfy these properties.If � is such a norm satisfying (D1){(D3) we say � is 2-convex if� Xk Pku!2 �Xk � (Pku)2 (2.20)for all u and each �nite set of mutually orthogonal projections (Pk) on H. Note thatboth operator norm k k and 2-summing norm �2 are 2-convex.The notion of 2-convexity will be used in chapters 3 and 4 to bound various sums ofindependent Banach space valued random vectors. For more information on 2-convexitywe direct the reader to section 2 of [43].We have the following result, which is proposition 2.1 in [43].



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 13Theorem 2.2.1 Assume (D1){(D3). The following conditions are equivalent:(i) the norm � is 2-convex;(ii) there exists a family K of positive weak-� continuous sesquilinear forms on E��E�,containing the rank one forms, of norm less than or equal to one and compact in thetopology of pointwise convergence of sesquilinear forms, such that for all u 2 D(E;H),�(u) = sup'2K('(u; u))1=2 ; (2.21)(iii) there exists a family I(E) of �nite subsets of E, satisfying supJ2I(E)Px2J j��(x)j2 �1 for all �� 2 E�, k�k � 1, such that for all u 2 D(E;H),�(u) = supJ2I(E) Xx2J kuxk2H!1=2 : (2.22)Proof See proposition 2.1 of [43], and the discussion which follows this proposition, fordetails. �If � is operator norm k k then its associated family of sesquilinear forms is the setof all rank one sesquilinear forms on E��E� of norm less than or equal to one, whereasif � is 2-summing norm �2 its associated family of sesquilinear forms is the set of allsesquilinear forms on E� �E� of norm less than or equal to one.If � is operator norm k k its associated family of subsets is the set of all �nite J � Esuch thatPx2J kxk2 � 1, whereas if � is 2-summing norm �2 its associated family is theset of all �nite J � E such that Px2J j��(x)j2 � 1 for all �� 2 E� satisfying k��k � 1.2.3 Weakly measurable random vectorsIn this discussion (
;F ;P) will be a probability space, E will be a complex Banachspace, X will be a function 
 ! E and K will be a collection of positive sesquilinearforms on E �E, containing the rank one forms and contained in the set of all forms ofnorm less than or equal to one. Denote by �(Nw(E)) the cylindrical �-algebra on E;this is the �-algebra generated by the set Nw(E) of all weak neighbourhoods in E.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 14We say X : 
 ! E is weakly (also known as Pettis) measurable if ��X : 
 ! C isBorel measurable for all �� 2 E�; equivalently, X is weakly measurable if it is measurablewith respect to �(Nw(E)). It is clear from the de�nition that the set of all weaklymeasurable functions from 
 to E forms a vector space; this is also known as the spaceof cylindrical random vectors.By contrast we say X : 
 ! E is strongly (also known as Bochner) measurableif it is measurable with respect to the Borel �-algebra on E and takes values almostsurely in a separable subspace of E (we say it is almost surely separably valued). Thisimplies in particular that kXkE : 
 ! R is measurable. Pettis' measurability theorem([12], theorem II.2) states that X is strongly measurable if and only if it is weaklymeasurable and almost surely separably valued. A further theorem states that X isstrongly measurable if and only if there exists a sequence (Xn)n of simple functions(i.e. each Xn = Pj �j1Aj for some sequence (�j)j in E and some sequence (Aj)j ofmeasurable sets in 
) such that kX(!) �Xn(!)kE tends to zero as n tends to in�nityfor almost all !. The set of all strongly measurable X : 
 ! E forms a vector space.More information is in [36].Note by Pettis' measurability theorem that if E is separable then strong and weaknotions of measurability coincide.For X : 
 ! E weakly measurable and K a set of positive sesquilinear forms asabove we may, following Pisier in [43], de�ne a seminorm �K via the formula�K(X) = sup'2K�Z
 '(X(!);X(!))P(d!)�1=2 : (2.23)The only axiom of a seminorm which is unclear is the triangle inequality. Howeversesquilinearity and the Cauchy-Schwarz inequality enable us to prove �K(X1 +X2)2 �[�K(X1)+ �K(X2)]2. Denote the seminormed space of all weakly measurable X : 
! Ewith �K(X) <1 by L2w(
;E; �K).We may quotient L2w(
;E; �K) by the set of all weakly measurable X : 
! E with�K(X) = 0, which we denote by N , to obtain a normed space, which we denote byL2w(
;E; �K).



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 15The null space N is, from the de�nition of �K , the set of all weakly measurableX : 
 ! E satisfying ��X = 0 almost surely for all �� 2 E�. A more natural choice ofnull space would be the set of all weakly measurable X : 
! E satisfying X�1(0) 2 Fand, furthermore, X = 0 almost surely. Denote this by ~N .Note that ~N � N . Also note the condition X�1(0) 2 F in the de�nition of ~N isnecessary since the set f0g is not necessarily in �(Nw(E)). Further note that ~N is notnecessarily a vector space.We may ask:(i) when is ~N a vector subspace of N?(ii) when does ~N = N?Proposition 2.3.1 For N and ~N as just de�ned:(i) if f0g 2 �(Nw(E)) then ~N = N ;(ii) if f0g 62 �(Nw(E)) but (
;F ;P) is complete, ~N is a vector subspace of N | it mayequal N ;(iii) if E is separable then f0g 2 �(Nw(E)) and so ~N = N ;(iv) if E is separable then �(Nw(E)) coincides with the Borel �-algebra on E.Proof This is an exercise in technical measure theory; the reader is directed to thepaper [36]. �At times we shall also need to consider the more usual Bochner Lp spaces. If 1 � p <1and X : 
 ! E is a strongly measurable random vector then its Bochner Lp norm isgiven by kXkp = �Z
 kX(!)kEP(d!)�1=p : (2.24)Denote by Lp(
;E) the set of all strongly measurable X : 
! E with �nite Bochner Lpnorm. This is a seminormed vector space whose null space is the subspace of all stronglymeasurable X : 
! E which are zero almost surely. Denote by Lp(
;E) the resultingquotient space; this is a Banach space.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 16We may de�ne analogous Lp(
;E) in the cases 0 < p < 1; the resulting spaces arecomplete quasinormed spaces.Note that if �K is any of the weak L2 norms introduced in this section and X 2L2(
;E) then �K(X) � kXk2: (2.25)The notion of the norms �K and the spaces L2w(
;E; �K) will enable us in section2.6 to develop the theory of covariance for Banach space valued random vectors.We shall also need the theory of expectation. Following [12] we say a weakly mea-surable random vector X : 
! E is weakly (or Dunford) integrable if ��X 2 L1(
) forall �� 2 E�. This occurs if and only ifsup��2E�;k��k�1Z
 j��X(!)jP(d!) <1: (2.26)For a weakly integrable X : 
! E and A 2 F we see there existsZAX(!)P(d!) 2 E�� (2.27)such that �ZAX(!)P(d!)� (��) = ZA ��X(!)P(d!) (2.28)for all �� 2 E�. When A = 
 we refer to the integral as the weak expectation EX of Xwith respect to P.We note that if X 2 L2w(
;E; �K) then by the Cauchy-Schwarz inequality the abovecondition holds; thus the weak expectation exists and is �nite as an element of E��.It may be of course that ZAX(!)P(d!) 2 E (2.29)for all A 2 F . In this case, following [12], we say X is Pettis integrable. In particularEX 2 E. Denote by P 2(
;E; �K) the Pettis integrable elements of L2w(
;E; �K).Finally if X lies in the Bochner space L1(
;E) we say it is Bochner (or strongly)integrable. Bochner integrability implies Pettis integrability.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 17Scholium For E� a dual Banach space one may develop a theory of weak-� measurablerandom vectors 
 ! E�, namely functions X : 
 ! E� having the property thatX� : 
 ! C is Borel measurable for all � 2 E. Norms �K are de�ned on weak-� measurable random vectors 
 ! E�, with respect to sets K of weak-� continuoussesquilinear forms on E� � E�, in an analogous manner to the �K norms on weaklymeasurable random vectors.Denote by L2w�(
;E�; �K) the seminormed space of all weak-� measurable functionsX : 
 ! E� satisfying �K(X) < 1. As before we quotient to obtain a normed spaceL2w�(
;E�; �K).Following [12] we say a weak-� measurable random vector X : 
! E� is weak-� (orGel'fand) integrable if X� 2 L1(
) for all � 2 E. Elements of L2w�(
;E�; �K) are weak-�integrable. For a weak-� integrable X : 
! E� and A 2 F we see there existsZAX(!)P(d!) 2 E� (2.30)such that �ZAX(!)P(d!)� (�) = ZAX(!)� P(d!) (2.31)for all � 2 E. When A = 
 we refer to the integral as the weak-� expectation EX of Xwith respect to P.In chapter 6 we will consider some classes of random measures on R (i.e. functionsfrom some probability space 
 to the dual space C0(R)� of Radon measures on R),associated to certain ensembles of random matrices, which lie in L2w�(
;C0(R)� ; �K) fora particular choice of �K .2.4 An equivalence between random vectors and operatorsWe return to the notation of section 2.2 and consider the case where H = L2(
), theHilbert space of complex valued square-integrable functions on (
;F ;P), quotiented byfunctions which are zero almost surely. Denote by L2(
) the corresponding seminormedspace of square-integrable functions. As before E is a complex Banach space.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 18Let �K be a 2-convex norm on operators E� ! L2(
) which satisifes conditions(D1){(D3) and is associated with a set K of positive sesquilinear forms on E � E (i.e.weak-� continuous positive sesquilinear forms on E���E��). Denote by DK(E�; L2(
))the associated Banach operator ideal of operators u : E� ! L2(
) satisfying �K(u) <1.Denote by Dw�K (E�; L2(
)) the weak-� continuous elements of DK(E�; L2(
)).Note that �K also induces a seminormed space DK(E�;L2(
)) in an analogous way.Furthermore when we quotient this space by the null space of operators u satisfying�K(u) = 0 we obtain the Banach space DK(E�; L2(
)); this follows because the nullspace comprises those operators u which satisfy u(��) = 0 almost surely, for all �� inE�, and this in turn is the space of operators u such that u(��) lies in the null space ofL2(
) for all �� in E�.Denote by ~�K , for the same K, the norm on weakly measurable functions 
 ! Edescribed in section 2.3. The associated normed space is L2w(
;E; ~�K).We have the following result.Proposition 2.4.1 There is an isometric embedding^ : L2w(
;E; ~�K) ,! DK(E�; L2(
)) (2.32)given by the relation X̂(��)(!) = ��(X(!)): (2.33)Furthermore we have isometric isomorphisms^ : P 2(
;E; ~�K) ~!Dw�K (E�; L2(
)) (2.34)and ^ : L2w�(
;E��; ~�K) ~!DK(E�; L2(
)) (2.35)given by relation (2.33) and the relationX̂(��)(!) = X(!)(��) (2.36)respectively.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 19Proof Referring to Theorem 2.2.1 (which is proposition 2.1 of [43]) we see the relations(2.33) and (2.36) de�ne isometric embeddings ^ : L2w(
;E; ~�K) ,! DK(E�;L2(
)) and^ : L2w�(
;E��; ~�K) ,! DK(E�;L2(
)) respectively between seminormed spaces.We may quotient by the appropriate null spaces to obtain isometric embeddingsbetween normed quotient spaces if, given a random vector X, ~�K(X) = 0 implies�K(X̂) = 0. But this follows, since for the �rst embedding ~�K(X) = 0 if and onlyif ��(X) = 0 almost surely, for all �� in E�, which occurs if and only if �K(X̂) = 0. Sim-ilarly, for the second embedding ~�K(X) = 0 if and only if X(��) = 0 almost surely, forall �� in E�, which occurs if and only if �(X̂) = 0. Thus we have isometric embeddingsbetween normed spaces as required.Furthermore the embedding ^ : L2w�(
;E��; ~�K) ,! DK(E�; L2(
)) is surjective; thisfollows since, given X̂ 2 DK(E�; L2(
)), the relationship X(!)(��) = X̂(��)(!) gives usan X in L2w�(
;E��; ~�K) which maps to X̂.Turning to the case of spaces of Pettis integrable random vectors, we know thatP 2(
;E; ~�K) is a subspace of L2w(
;E; ~�K) and so we have an isometric embeddingP 2(
;E; ~�K) ,! DK(E�; L2(
)).Now X̂ 2 DK(E�; L2(
)) (which is associated to X in L2w�(
;E��; ~�K)) is weak-�continuous if and only if its adjoint X̂� : L2(
) ! E�� takes values in E. This adjointmapping is given by X̂�(f) = Z
X(!)f(!)P(d!) (2.37)where the integral is a weak-� integral.It is clear this takes values in E for all choices of f in L2(
) if and only if X isE valued and Pettis integrable. Thus the image of P 2(
;E; ~�K) under ^ is preciselyDw�K (E�; L2(
)). �Henceforth we shall denote both norms by �K .If K is the set of all positive rank one sesquilinear forms on E �E of norm less thanor equal to one and X 2 L2w(
;E; �K) then �K(X) = kX̂k. Henceforth we shall de-
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;E; �K) by L2w(
;E; k k) or just L2w(
;E). Thus L2w(
;E) ,! B(E�; L2(
))isometrically.If K is the set of all positive forms on E �E of norm less than or equal to one andX 2 L2w(
;E; �K) then �K(X) = �2(X̂). Henceforth we shall denote L2w(
;E; �K) byL2w(
;E; �2). Thus L2w(
;E; �2) ,! �2(E�; L2(
)) isometrically.2.5 Ideals of 2-factorable operatorsLet E1 andE2 be Banach spaces. Following, for example, [42] or [11] we de�ne �2(E1; E�2)to be the set of all operators u : E1 ! E�2 which factor through some Hilbert space Has u = B�A with A 2 B(E1;H) and B 2 B(E2;H). Its associated norm is
2(u) = inffkAkkBk : u = B�A for some A 2 B(E1;H); B 2 B(E2;H)g (2.38)where the in�mum runs over all such representations of u as B�A. We also de�ne��2(E1; E�2) to be the set of all u : E1 ! E�2 which factor through some Hilbert space Has u = B�A with A 2 �2(E1;H) and B 2 �2(E2;H). Its associated norm is
�2(u) = inff�2(A)�2(B) : u = B�A for some A 2 �2(E1;H); B 2 �2(E2;H)g (2.39)where the in�mum runs over all such representations of u as B�A. The set �2(E1; E�2)is known as the space of 2-factorable operators from E1 to E�2 while the set ��2(E1; E�2)is known as the space of 2-dominated operators from E1 to E�2 . Both may be seen to beBanach operator ideals, and we note that ��2 is the dual operator ideal to �2; see chapter7 of [11] for more information.For H a Hilbert space consider a pair D1(E1;H) and D2(E2;H) of Banach operatorideals with 2-convex norms �1 and �2 satisfying conditions (D1){(D3) of section 2, so�2(Ei;H) � Di(Ei;H) � B(Ei;H) for each i. Assume these ideals are de�ned for allpossible Hilbert spaces H; we may then, following [43], de�ne ��1;�2(E1; E�2 ) to be theset of all u : E1 ! E�2 which factor through some Hilbert space H as u = B�A withA 2 D1(E1;H) and B 2 D2(E2;H). Its associated norm is
�1;�2(u) = inff�1(A)�2(B) : u = B�A for some A 2 D1(E1;H); B 2 D2(E2;H)g (2.40)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 21where the in�mum runs over all such representations of u as B�A. So��2(E1; E�2) � ��1;�2(E1; E�2) � �2(E1; E�2) (2.41)and 
2(u) � 
�1;�2(u) � 
�2(u) (2.42)for all pairs (�1; �2) and appropriate operators u. The space ��1;�2(E1; E�2) is a Banachoperator ideal; see section 2 of [43] for more information.For completeness we shall now demonstrate that the 
�1;�2 norm is indeed a norm.Proposition 2.5.1 
�1;�2 is a norm on the space ��1;�2(E1; E�2).Proof The only axiom which is unclear is the triangle inequality. Let u and v beelements of ��1;�2(E1; E�2). Fix " > 0. Assume u factors through some Hilbert space H1as u = B�A for A : E1 ! H1 and B : E2 ! H1, where H1, A and B are chosen so that�1(A)�2(B) � 
�1;�2(u) + ": (2.43)Polarising via B�A =  s �1(A)�2(B)B!� s�2(B)�1(A)A! (2.44)if necessary, we choose A and B so that �1(A) = �2(B).Further assume v factors through some Hilbert spaceH2 as v = D�C for C : E1 ! H2and D : E2 ! H2, where H2, C and D are chosen so that�1(C)�2(D) � 
�1;�2(v) + ": (2.45)Polarising via D�C =  s �1(C)�2(D)D!� s�2(D)�1(C)C! (2.46)if necessary, we choose C and D so that �1(C) = �2(D).Then u + v factors through the Hilbert space H1 � H2 as follows. Denote by �1 :H1 ,! H1 � H2 and �2 : H2 ,! H1 � H2 the natural isometric embeddings, and by



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 22��1 : H1 � H2 � H1 and ��2 : H1 � H2 � H2 the corresponding natural quotients,satisfying ��1�1 = idH1 and ��2�2 = idH2 . We see that �1A + �2C is a linear operator fromE1 to H1 �H2, �1B + �2D is a linear operator from E2 to H1 �H2 and(�1B + �2D)�(�1A+ �2C) = B���1�1A+B���1�2C +D���2�1A+D���2�2C (2.47)= B�A+D�C (2.48)= u+ v: (2.49)Now 
�1;�2(u+ v) = inff�1(S)�2(T )g (2.50)where the in�mum is over all factorisations of u+ v through some Hilbert space as T �S.One such factorisation, through H1 �H2, is u+ v = (�1B + �2D)�(�1A+ �2C). Thus
�1;�2(u+ v) � �1(�1A+ �2C)�2(�1B + �2D) (2.51)� ��1(A)2 + �1(C)2�1=2 ��2(B)2 + �2(D)2�1=2 (2.52)as �1 and �2 are 2-convex. We have chosen A, B, C and D so that �1(A) = �2(B) and�1(C) = �2(D); this gives
�1;�2(u+ v) � �1(A)�2(B) + �1(C)�2(D) (2.53)� 
�1;�2(u) + 
�1;�2(v) + 2" (2.54)by our choice of A, B, C and D. This inequality holds for all " > 0, so
�1;�2(u+ v) � 
�1;�2(u) + 
�1;�2(v) (2.55)as required. �We now consider tensor products. We will, following the approach taken in section 1 of[43], impose 
�1;�2 norms on elements of E�1 
E�2 , viewing them as �nite rank operatorsE1 ! E�2 , and form completions E�1 

�1;�2 E�2 .



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 23Thus, our task is to impose a 
�1;�2 norm on elements of E�1 
E�2 . If u 2 E�1 
E�2 isgiven by u = nXk=1 ��k 
 ��k (2.56)then, regarding u as an operator E1 ! E�2 , we may factor u through an n-dimensionalHilbert space H with orthonormal basis (ek) asu =  nXk=1 ��k 
 ek!� nXk=1 ��k 
 ek! (2.57)where nXk=1 ��k 
 ek : E1 ! H (2.58)and nXk=1 ��k 
 ek : E2 ! H (2.59)are operators into H of rank n. Call these A and B respectively; we see u = B�A.Now consider a pair of norms (�1; �2). In view of the above factorisation of u we mayimpose a 
�1;�2 norm in the usual way, yielding a norm on E�1 
 E�2 . To obtain a moreexplicit representation of the norm we apply Theorem 2.2.1 to assert the existence offamiliesK1 and K2 of sesquilinear forms on E1�E1 and E2�E2 respectively, associatedto �1 and �2 respectively, which are compact in the topology of pointwise convergence ofsesquilinear forms, contain the rank one forms of norm less than or equal to one and arecontained in the set of all forms of norm less than or equal to one. Then�1(A) = sup'2K1 nXk=1'(��k; ��k)!1=2 (2.60)and �2(B) = sup 2K2 nXk=1 (��k; ��k)!1=2 ; (2.61)which we note are both �nite as there are only �nitely many �k and �k and the forms allhave norm less than or equal to 1. Therefore we have an explicit representation of the
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�1;�2 norm on E�1 
E�2 in terms of the sesquilinear forms K1 and K2; this is
�1;�2(u) = inf8<: sup'2K1 nXk=1'(��k; ��k)!1=2 sup 2K2 nXk=1 (��k; ��k)!1=29=; ; (2.62)where the in�mum runs over all possible expressions of u as Pnk=1 ��k 
 ��k, for all �nitevalues of n. The norm 
�1;�2 is a reasonable tensorial norm.If we complete E�1 
 E�2 with respect to the 
�1;�2 norm we form a Banach spaceE�1 

�1;�2 E�2 .A question which arises at this point, motivated by the discussions on tensor productsin [42], is whether the natural inclusion map E�1 

�1;�2 E�2 ! E�1 �
E�2 of E�1 

�1;�2 E�2into the injective tensor product of E�1 and E�2 is injective. That is to say, is everyelement of E�1

�1;�2 E�2 which represents the zero operator necessarily the zero element?If (and only if) this is so, we may identify E�1 

�1;�2 E�2 isometrically with a subspace of��1;�2(E1; E�2) in a canonical way.Proposition 2.5.2 The natural map E�1 

�1;�2 E�2 ! E�1 �
E�2 is injective.Proof We may regard the 
�1;�2 norm on E�1 
 E�2 as the restriction to the �nite rankoperators of the 
�1;�2 norm on ��1;�2(E1; E�2). As any element of E�1 

�1;�2 E�2 is thelimit in 
�1;�2 norm of elements of E�1 
 E�2 , we may regard elements of E�1 

�1;�2 E�2as the limit in 
�1;�2 norm of �nite rank elements of ��1;�2(E1; E�2 ). As ��1;�2(E1; E�2)is a Banach space, this limit in 
�1;�2 norm exists as an element of ��1;�2(E1; E�2). Wehave realised E�1 

�1;�2 E�2 as a subspace of ��1;�2(E1; E�2) and, consequently, the map isinjective. �Note the crucial part of the proof was realising the 
�1;�2 norm on E�1
E�2 as a restrictionto a �nite dimensional subspace of the 
�1;�2 norm on ��1;�2(E1; E�2). This yields a modelfor the completion of E�1
E�2 with respect to 
�1;�2 , namely a subspace of ��1;�2(E1; E�2).We have inclusions E�1 

2 E�2 � E�1 

�1;�2 E�2 � E�1 

�2 E�2 : (2.63)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 25If we consider the case of the projective tensor product E�1
̂E�2 , for which the naturalmap E�1
̂E�2 ! E�1 �
E�2 is not injective in general, the above proof breaks down becauseit is not possible to realise the projective norm on E�1 
E�2 as the restriction to a �nitedimensional subspace of some norm on a Banach space of operators E1 ! E�2 . Recallfrom, for example, [42] that given E1, the natural map E1
̂E2 ! E1 �
E2 is injective forall choices of E2 if and only if the space E1 has the approximation property; by de�nitionthis means the identity map on E1 belongs to the closure of the �nite rank operators onE1 in the topology of uniform convergence on compact sets.Note that we may impose 
�1;�2 norms on tensor products of Banach spaces whichare not dual spaces, via the explicit formulation (2.62). Speci�cally if u 2 E1 
 E2 isgiven by u = nXk=1 �k 
 �k; (2.64)and K1 and K2 are the collections of sesquilinear forms associated to �1 and �2 respec-tively, we have
�1;�2(u) = inf8<: sup'2K1 nXk=1'(�k; �k)!1=2 sup 2K2 nXk=1 (�k; �k)!1=29=; ; (2.65)where the in�mum runs over all possible expressions of u as Pnk=1 �k 
 �k, for all �nitevalues of n. The norm 
�1;�2 is a reasonable tensorial norm.We may realise E1
E2 with the 
�1;�2 norm as a subspace of a space of 2-factorableoperators in the following way. View (E1
E2; 
�1;�2) as the set of all �nite rank elementsu of ��1;�2(E�1 ; E��2 ) satisfying the condition that, if u factors as B�A, the operatorA : E�1 ! H is continuous with respect to the �(E�1 ; E1) weak-� topology and theoperator B : E�2 ! H is continuous with respect to the �(E�2 ; E2) weak-� topology.For the same reasons as before the completion E1

�1;�2E2 is realisable as a subspaceof the space of operators ��1;�2(E�1 ; E��2 ). As before we have inclusionsE1 

2 E2 � E1 

�1;�2 E2 � E1 

�2 E2: (2.66)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 262.6 CovarianceLet E1 and E2 be Banach spaces and let �1 and �2 be appropriate 2-convex norms.For X1 2 L2w(
;E1; �1) and X2 2 L2w(
;E2; �2) satisfying EX1 = EX2 = 0 (whereexpectation is de�ned in the weak sense; we say X1 and X2 are centred) we de�ne thecovariance of X1 and X2, Cov(X1;X2), to be the sesquilinear form on E�1 �E�2 given byCov(X1;X2)(��1 ; ��2) = E ��1 (X1)��2(X2): (2.67)This de�nition of covariance is used in [35] and [34]. Frequently we view Cov(X1;X2)as a linear operator �E�2 ! E��1 ; in fact Cov(X1;X2) is the operator X̂1�X̂2 where, asbefore, X̂1 : E�1 ! L2(
) and X̂2 : E�2 ! L2(
) are the operators associated to X1 andX2.If E is a Banach space and X is a centred element of L2w(
;E; �), for some 2-convexnorm �, we de�ne the variance of X, V ar(X), to be Cov(X;X).We note that, by the Cauchy-Schwarz inequality, if X1 lies in L2w(
;E1; �1) and X2lies in L2w(
;E2; �2) then Cov(X1;X2) is bounded as a sesquilinear form. In fact moreis true.Proposition 2.6.1 Viewing Cov(X1;X2) as an operator we haveCov(X1;X2) 2 ��1;�2( �E�1 ; E��2 ): (2.68)Proof We see from the factorisation Cov(X1;X2) = X̂1�X̂2 thatkCov(X1;X2)k
�1 ;�2 � �1(X1)�2(X2): (2.69)�In the case where X1 = X2 = X we seekV ar(X)k
�;� = �(X)2: (2.70)Writing the covariance in the formCov(X1;X2)(��1 ; ��2) = E (X1 
 �X2)(��1 
 ���2) (2.71)



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 27we see from the inequality (2.69) that Cov(X1;X2) may be viewed as the weak expecta-tion of the E1

�1;�2 �E2 valued random vector X1 
 �X2. We have a further proposition.Proposition 2.6.2 We haveCov(X1;X2) 2 (E1 

�1;�2 �E2)��: (2.72)Furthermore if X1 and X2 are both Bochner integrable thenCov(X1;X2) 2 E1 

�1;�2 �E2: (2.73)Proof We see Cov(X1;X2) = E (X1 
 �X2); (2.74)where we interpret expectation in the weak sense and view X1 
 �X2 as an E1 

�1;�2 �E2valued random vector. As it is a weak expectation it follows that Cov(X1;X2) lies in(E1 

�1;�2 �E2)��.If X1 and X2 are both Bochner integrable then by theorem II.8 of [12] the operatorsX̂1 and X̂2 are compact. This implies Cov(X1;X2) is a compact weak-� continuousoperator from �E�2 to E1 which, consequently, lies in E1 

�1;�2 �E2. �A detailed discussion describing conditions for Cov(X1;X2) to be compact may be foundon pages 207{209 of [34]. In particular we will see in chapter 3 by applying the Gaussianisoperimetric inequality ([34], section 3.1) that if X1 and X2 are Gaussian, Cov(X1;X2)is compact.In the particular case X1 2 L2w(
;E1; �2) and X2 2 L2w(
;E2; �2) we see thatCov(X1;X2) lies in (E1 

�2 �E2)��. Theorem 3.1 in [43] shows that when E1 andE2are of type 2, E1 

�2 �E2 is isomorphic to the projective tensor product E1
̂ �E2 with anequivalent norm; thus Cov(X1;X2) lies in (E1
̂ �E2)��. Note that when E1 and E2 areboth Hilbert spaces, E1 

�2 �E2 is the space c1 of trace class operators.



CHAPTER 2. BANACH SPACE VALUED RANDOM VECTORS 28Coda Throughout the rest of this thesis we shall, to avoid the measure theoretic compli-cations discussed in this chapter and expanded on in [36], assume E is separable. Thus,in particular, strong (Bochner) and weak (Pettis) notions of measurability coincide. Allthe random vectors we consider in the rest of the thesis will be cylindrical; that is to saythey will be measurable with respect to the cylindrical �-algebra on E which, as E isseparable, coincides with the Borel �-algebra.



Chapter 3
Gaussian random vectorsand Wiener processes
This chapter contains essential preliminary material for chapter 4. We study Gaussianrandom vectors, Wiener processes and Itô stochastic integrals (for deterministic inte-grands) with values in a separable complex Banach space E. We observe that, for all Evalued cylindricalQ-Wiener processes on a probability space (
;F ;P), Q factors throughl2 with 2-summing factors.Background information on the topics covered here may be found in [32] or [34].More recently the subject of Banach space valued stochastic integrals was discussed in[7].3.1 Gaussian random vectorsThis section will consider centred Gaussian random vectors taking values in the separablecomplex Banach space E.Recall that a complex random variable X is said to be complex centred Gaussianwith variance �2 (we say X is complex N(0; �2)) ifX = 1p2(XR + iXI) (3.1)29



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 30where XR and XI are independent real N(0; �2) random variables. It is straightforwardto verify that if (Xk)k is a �nite sequence of independent complex centred Gaussian ran-dom vectors on some probability space and (zk)k is a �nite sequence in C thenPk zkXkis a complex centred Gaussian random vector.Let X be an E valued cylindrical random vector de�ned on a probability space(
;F ;P). Following [34] we say X is centred Gaussian if, for every �� 2 E�, ��(X) is acomplex centred Gaussian random variable.Consider a sequence (Xk)k2Z of independent N(0; �2) complex random variables.By Kolmogorov's consistency criterion ([46], page 129) (Xk)k2Z is a C Z valued randomvector whose �nite dimensional joint distributions are the joint distributions of the Xk.The sequence (Xk)k2Z takes values lying almost surely outside l1. This follows fromthe following proposition.Proposition 3.1.1 Let (Xk)k2N be an independent sequence of real N(0; �2k) randomvariables. Then the following are equivalent:(i) (Xk)k2N 2 l1 almost surely;(ii) there exists M > 0 �nite such thatXk �1� ��M�k�� <1 (3.2)where �(t) = 1p2� Z t�1 e�u22 du: (3.3)Furthermore if (ii) holds then, denoting the in�mum of all possible values of M by M 0,lim supk jXkj =M 0 (3.4)almost surely; otherwise lim supk jXkj =1 (3.5)almost surely, so that (Xk)k2N 62 l1 almost surely. Note (ii) does not hold in particularwhenever �2k 6! 0. Finally if the Xk are not independent we still have (ii)) (i) above.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 31Proof Fix M > 0 �nite. Then�lim supk jXkj �M� = [j \k�jfjXkj �Mg (3.6)= 24\j [k�jfjXkj > Mg35c : (3.7)By the Borel-Cantelli lemmas ([53], sections 2.7 and 4.3),P0@\j [k�jfjXkj > Mg1A = 8><>: 0 if Pk P(jXkj > M) <1 (1st lemma);1 if Pk P(jXkj > M) =1 (2nd lemma); (3.8)so P�lim supk jXkj �M� = 8><>: 1 if Pk P(jXkj > M) <1;0 if Pk P(jXkj > M) =1: (3.9)Now as Xk � �kZk, where each Zk � N(0; 1), we seeP(jXkj > M) = 2�1� ��M�k�� : (3.10)Thus P�lim supk jXkj �M� = 8><>: 1 if Pk �1� ��M�k�� <1;0 if Pk �1� ��M�k�� =1: (3.11)Next, we note that if Pk �1� ��M�k�� converges, it converges for all N > M and ifPk �1� ��M�k�� diverges, it diverges for all N < M . So, noting that M = 0 yieldsdivergence for all possible (�k)k2N , we have two possibilities.(i) For all M > 0, Pk �1� ��M�k�� =1. In this case, for all M > 0,lim supk jXkj > M (3.12)almost surely, and so lim supk jXkj =1 (3.13)



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 32almost surely. This implies (Xk)k2N 62 l1 almost surely.(ii) There exists an M > 0 such that Pk �1� ��M�k�� <1. Denote the in�mum of allsuch M by M 0. Then, for all " > 0,lim supk jXkj > M 0 � " (3.14)almost surely, and lim supk jXkj �M 0 + " (3.15)almost surely. We deduce lim supk jXkj =M 0 (3.16)almost surely. This implies (Xk)k2N 2 l1 almost surely.If the Xk are not independent the �rst Borel-Cantelli lemma still applies and wehave, for any M > 0,P�lim supk jXkj �M� = 1 if Xk �1� ��M�k�� <1; (3.17)which yields (ii)) (i). �As an aside, this has the following corollary.Corollary 3.1.2 We have equivalent conditionsXk �1� ��M�k�� <1 (3.18)and Xk �ke�M22�2k <1; (3.19)thus all instances of (3.2) in Proposition 3.1.1 may be replaced with (3.19).



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 33Proof We note that 1� �(t) = 1p2� Z 1t e�u22 du: (3.20)Integrating by parts we haveZ 1t e�u22 du = 1t e� t22 � Z 1t 1u2 e�u22 du (3.21)and Z 1t e�u22 du = 1t �1� 1t2� e� t22 + 3Z 1t 1u4 e�u22 du; (3.22)yielding 1tp2� �1� 1t2� e� t22 � 1� �(t) � 1tp2�e� t22 : (3.23)In our speci�c case we have�kMp2� �1� �2kM2� e�M22�2k � 1� ��M�k� � �kMp2�e�M22�2k (3.24)which, as �k ! 0 is necessary for (3.2) or (3.19) to hold, yields the result. �The following result is a combination of the Itô-Nisio theorem ([27]), a result on exponen-tial integrability of Gaussian random vectors, due independently to Fernique ([16]) andLandau and Shepp ([33]), and the Karhunen-Lo�eve representation of Gaussian measureson separable Banach spaces.Proposition 3.1.3 Let X = (Xk)k2Z be a sequence of independent N(0; �2) complexrandom variables on a probability space (
;F ;P) and let (�k)k2Z be a sequence in a sep-arable complex Banach space E.(a) The following are equivalent:(i) Pk �kXk converges almost surely in E;(ii) Pk �kXk converges in Lp(
;E) for some (and hence for all) 0 < p <1;(iii) Pk �kXk converges in probability.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 34(b) If the sum Pk �kXk converges in L2w(
;E; �2) then Pk �kXk is a centred Gaussianrandom vector and the equivalent conditions (i), (ii) and (iii) of part (a) hold.(c) All cylindrical centred Gaussian random vectors with values in E are equal in distri-bution to some random vector of the form Pk �kXk, satisfying the equivalent conditions(i), (ii) and (iii) of part (a).Proof (a) This is the Itô-Nisio theorem; see the original paper [27], or pages 29{36 of[32], for details.(b) Assume Pk �kXk converges in L2w(
;E; �2); we shall show it is centred Gaussian.The map (�� 7! ��(Pk �kXk)) lies in �2(E�; L2(
)) by de�nition of the �2 norm. Thus,for each �� 2 E�, we see that ��(Xk �kXk) =Xk ��(�k)Xk (3.25)is a sum, convergent in L2(
), of scalar multiples of independent complex centred Gaus-sians; it is therefore a complex centred Gaussian random variable. We deduce thatPk �kXk is a centred Gaussian random vector.AsPk �kXk is Gaussian we now apply the result, due to Fernique ([16]) and Landauand Shepp ([33]), that there exists � > 0 such thatE exp8<:�




Xk �kXk




2E9=; <1: (3.26)This implies condition (ii) (and hence conditions (i) and (iii)) of part (a) holds.(c) The Karhunen-Lo�eve representation of Gaussian measures, which is proposition 2.6.1of [32] and proposition 3.6 of [34], shows all cylindrical centred Gaussian random vectorswith values in E are equal in distribution to some random vector of the form Pk �kXk,satisfying condition (ii) (and hence conditions (i) and (iii)) of part (a). �Note that Fernique, Landau and Shepp's result is implied by (and, indeed, motivatedthe proof of) the Gaussian isoperimetric inequality, due independently to Borell ([5])and Sudakov and Cirel'son ([47]). The Gaussian isoperimetric inequality is shown by



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 35Borell to be the limiting case of the isoperimetric inequality for the rotation-invariantmeasure on the spheres in Rn as n tends to in�nity. A proof of the Gaussian isoperimetricinequality is theorem 1.2 of [34]; for a proof of Proposition 3.1.3 (b) based on the Gaussianisoperimetric inequality, see lemma 3.1 of [34].Proposition 3.1.3 has the following corollary.Corollary 3.1.4 Given a Gaussian random vector Pk �kXk as in Proposition 3.1.3 wemay de�ne a bounded map A : l2 ! E by(xk)k2Z 7!Xk �kxk; (3.27)this has bounded adjoint A� 2 �2(E�; l2).Write AX forPk �kXk; this converges to an almost surely E valued centred Gaussianrandom vector satisfying �2(AX) = ��2(A�) and V ar(AX) = �2AA�.Proof Writing AX for Pk �kXk we know from Proposition 3.1.3 that AX is almostsurely E valued and the map (�� 7! ��(AX)) lies in �2(E�; L2(
)). But, for a �nitesequence (��j )j in E�,Xj 

��j (AX)

2L2(
) = Xj E �����Xk ��j (�k)Xk�����2 (3.28)= �2Xj;k ����j (�k)��2 (3.29)= �2Xj 

A�(��j )

2l2 (3.30)and so A� 2 �2(E�; l2); furthermore ��2(A�) = �2(AX). It follows that A is bounded.Finally V ar(AX)(��1 ; ��2) = �2 < A�(��1); A�(��2) >l2 (3.31)yielding V ar(AX) = �2AA� as required. �For de�niteness we ensure AX is always E valued by de�ning AX to be Pk �kXk atsample points where this sum converges, and zero on the null set where it diverges.If E is of type 2 we may deduce more.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 36Corollary 3.1.5 Under the additional hypothesis that E is of type 2, the sum AX con-verges to a centred Gaussian random vector if and only if A� 2 �2(E�; l2).Proof If AX is centred Gaussian we know from Corollary 3.1.4 that A� 2 �2(E�; l2).Conversely let us assume A� 2 �2(E�; l2). Then by (0.6) on page 67 of [43], which isbased on work in [17], we have0@E 




Xk �kXk




2E1A1=2 � �T2(E)�2(A�) <1: (3.32)We deduce AX lies in L2(
;E) and so, by Proposition 3.1.3, is centred Gaussian. �Corollary 3.1.4 enables us to determine, for E a separable complex Banach space, afactorisation property for operators Q : E� ! E which are variances of centred Gaussianrandom vectors in E. In the case where E is of type 2, Corollary 3.1.5 enables us tocharacterise such operators Q precisely.Corollary 3.1.6 Let E be a separable complex Banach space.(a) Let Q be the variance of some centred Gaussian random vector in E, de�ned on someprobability space (
;F ;P). Then Q factors as AA� where the operator A : l2 ! E has2-summing adjoint; furthermore Q lies in E 

�2 E.(b) If, furthermore, E is of type 2, then conversely any operator AA�, where A : l2 ! Ehas 2-summing adjoint, is the variance of some centred Gaussian random vector in E.Proof (a) Let Q = V arZ, where Z is a centred Gaussian random vector in E, de�nedon (
;F ;P). By Proposition 3.1.3 (c) and Corollary 3.1.4, Z lies in L2(
;E) and is equalin distribution to AX, where X is a sequence of independent N(0; 1) complex randomvariables and A : l2 ! E is an operator with 2-summing adjoint. Corollary 3.1.4 nowshows V ar (AX) = AA�. Thus Q = AA� as required. By Proposition 2.6.2, as AX liesin L2(
;E), V ar (AX) lies in E 

�2 E; thus Q lies in E 

�2 E.(b) Taking A as given, by Corollary 3.1.5 the random vector AX, for X a sequence of



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 37independent N(0; 1) complex random variables, is a centred Gaussian random vectorwith variance AA�. �In [50] van Neerven states that, for E a separable Banach space, no necessary andsu�cient conditions are known for an operator E� ! E to be the variance of a cylindricalGaussian measure on E. We see that Corollary 3.1.6 provides such conditions in the casewhere E is of type 2.3.2 Wiener processesWe now consider E valued cylindrical Wiener processes where, as usual, E is a separablecomplex Banach space.Following [8] or chapter 5 of [9] we say an E valued stochastic process (Bt)t2R de�nedon a probability space (
;F ;P) is a cylindricalQ-Wiener process, whereQ is the varianceof some cylindrical centred Gaussian random vector in E, if:(i) for each t, Bt is measurable with respect to the cylindrical �-algebra on E;(ii) the process Bt has almost surely continuous sample paths and B0 = 0;(iii) the process Bt has independent increments;(iv) for each s < t, Bt �Bs is a cylindrical centred Gaussian random vector satisfyingV ar(Bt �Bs) = Q(t� s): (3.33)Condition (i) ensures that, for all �� 2 E�, the process ��(Bt) is adapted to the �ltrationinduced on (
;F ;P) by the process Bt.Proposition 3.1.3, Corollary 3.1.4 and Corollary 3.1.6 enable us to deduce variousproperties of a cylindrical Q-Wiener process.Proposition 3.2.1 Let E be a separable Banach space and let Bt be an E valued cylin-drical Q-Wiener process de�ned on a probability space (
;F ;P). Let Q factor as AA�,where A : l2 ! E is some operator with 2-summing adjoint given by Corollary 3.1.6.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 38For s < t:(i) Bt �Bs lies in L2w(
;E; �2);(ii) �2(Bt �Bs) = �2(A�)(t� s)1=2;(iii) for T any bounded linear operator on E,V ar(T (Bt �Bs)) = TQT �(t� s): (3.34)Proof We observe Bt �Bs is a cylindrical centred Gaussian random vector satisfyingV ar(Bt � Bs) = Q(t � s). Proposition 3.1.3 (c) and Corollary 3.1.4 show Bt � Bs isequal in distribution to a random vector of the form AX(s;t) where, for each s and t,X(s;t) = (X(s;t)k )k2Z is a sequence of independent N(0; t� s) complex random variables.Corollary 3.1.4 now gives the required results immediately. �Note that if E is of type 2 and A : l2 ! E is any operator with 2-summing adjoint,there always exists a cylindrical AA�-Wiener process Bt. Namely take Bt = Abt wherebt = (b(k)t )k2Z is an independent sequence of complex Brownian motions on the line, withb(k)0 = 0 for each k, de�ned on the canonical probability space of continuous paths R ! Cequipped withWiener measure. Corollary 3.1.5 shows (Abt)t2R is an E valued cylindricalprocess with almost surely continuous sample paths and independent increments; fors < t, Corollary 3.1.5 shows A(bt � bs) is centred Gaussian withV ar(A(bt � bs)) = AA�(t� s): (3.35)We wish to develop the theory of stochastic integration of a deterministic family ofoperators with respect to a Q-Wiener process. For s < t, let (Tu)s�u�t be a non-randomfamily of bounded linear operators on E and let Bt be a cylindrical Q-Wiener processin E. Consider a sequence (Pn)n�1 of re�ning partitions of [s; t]. Thus, ifPn = fs = u(n)0 < u(n)1 < � � � < u(n)r(n)�1 < u(n)r(n) = tg (3.36)for each n, we assume that Pn � Pn+1 for all n and supj(u(n)j+1 � u(n)j ) # 0 as n tends to



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 39in�nity. We say the stochastic integralZ ts Tu dBu (3.37)exists in the Itô sense as a limit in L2w(
;E; �2) if the sequence of Riemann sumsr(n)�1Xj=0 Tu(n)j (Bu(n)j+1 �Bu(n)j ) (3.38)converges to a limit in L2w(
;E; �2) as n tends to in�nity, this limit being independentof the choice of partitions (Pn)n�1.We have the following theorem.Theorem 3.2.2 For E a separable Banach space, let Bt be an E valued cylindrical AA�-Wiener process de�ned on a probability space (
;F ;P). Then for s < t, if (Tu)s�u�t isa non-random family of bounded linear operators on E such that (A�T �u )s�u�t is H�oldercontinuous in the �2 norm, the stochastic integralZ ts Tu dBu (3.39)exists in the Itô sense as a limit in L2w(
;E; �2). Furthermore�2�Z ts Tu dBu�2 � Z ts �2(A�T �u )2 du: (3.40)Proof Consider a partition P = fs = u0 < u1 < � � � < ur = tg of the interval [s; t]. PutI(P) = r�1Xj=0 Tuj (Buj+1 �Buj ) (3.41)= r�1Xj=0 I(uj ; uj+1) (3.42)say. When we re�ne the partition by adding a point uj0 between uj and uj+1, the sumchanges byI(uj ; uj0) + I(uj0 ; uj+1)� I(uj ; uj+1) = (Tuj0 � Tuj )(Buj+1 �Buj0 ): (3.43)By the classical theory of Riemann integration we can and do restrict ourselves to par-tition sequences of the following form. Let there be 2n + 1 elements in the partition Pn



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 40of [s; t] at stage n; denote the Riemann sum at stage n by I(n). At each stage we inserta new point between each old point of the partition such thatsupj (u(n)j+1 � u(n)j ) �M2�n (3.44)at stage n, for some constant M > 0.Thus, writing uj for u(n)j to simplify our notation,I(n+ 1)� I(n) = r�1Xj=0[I(uj ; uj0) + I(uj0 ; uj+1)� I(uj ; uj+1)] (3.45)= r�1Xj=0(Tuj0 � Tuj )(Buj+1 �Buj0 ): (3.46)By assumption (A�T �u )s�u�t is H�older continuous in the �2 norm; it follows that�2(A�(T �v � T �u )) � C(v � u)� (3.47)for some �xed C > 0, � > 0 and all s � u < v � t. Now the norm �2 is 2-convex; seesection 2.2 of this thesis or section 2 of [43] for details of this concept. This implieskI(n+ 1)� I(n)k2�2 � r�1Xj=0 �2(A�(T �uj0 � T �uj ))2(uj+1 � uj0) (3.48)� C2 r�1Xj=0(uj0 � uj)2�(uj+1 � uj0) (3.49)< C2M2�2�2�n r�1Xj=0(uj+1 � uj) (3.50)= C2M2�2�2�n(t� s) (3.51)and so kI(n+ 1)� I(n)k�2 < CM�2��n(t� s)1=2: (3.52)This shows (I(n))n�1 is a Cauchy sequence in L2w(
;E; �2); it therefore converges.If (Pn)n�1 and (P 0n)n�1 are any two such sequences of partitions of [s; t], it is clear thesequence of partitions (Pn [P 0n)n�1 also yields a convergent sequence of Riemann sums;furthermore the limits induced by (Pn)n�1, (P 0n)n�1 and (Pn [ P 0n)n�1 must coincide.



CHAPTER 3. GAUSSIAN RANDOM VECTORS AND WIENER PROCESSES 41Thus the limit of the sequence (I(n))n�1 in L2w(
;E; �2) is independent of the choice ofre�ning partitions. We deduce that the stochastic integral exists in the Itô sense as alimit in L2w(
;E; �2).Finally, by the 2-convexity of the norm �2, if s = u0 < u1 < � � � < ur = t is anypartition of [s; t] we have�20@r�1Xj=0 Tuj (Buj+1 �Buj )1A2 � r�1Xj=0 �2(A�T �uj )2(uj+1 � uj): (3.53)Passing to the L2w(
;E; �2) limit gives the required result. �Note that, as it is the limit in L2w(
;E; �2) of a sequence of centred Gaussian randomvectors, the stochastic integral of Theorem 3.2.2 is itself a centred Gaussian randomvector. Thus by Proposition 3.1.3 (c) it also converges in the Itô sense to a limit in theBochner space L2(
;E).Theorem 3.2.2 will be used in the next chapter to prove the existence of a solutionto the E valued Langevin equation.



Chapter 4
Ornstein-Uhlenbeck processes
In this chapter we study a Langevin equation for stochastic processes with values in aseparable complex Banach space E. Section 4.1 de�nes the equation while section 4.2proves the existence, under certain conditions, of solutions to it. Section 4.3 considerssome explicit examples of such Langevin equations.Background information on di�usion processes may be found in [44] or [46]. In-formation on semigroups of operators on Banach spaces may be found in [10] or [24].General information on in�nite dimensional stochastic di�erential equations and Wienerprocesses may be found in [8] or chapter 5 of [9].Itô studied in�nite dimensional Ornstein-Uhlenbeck processes in the time domain;see [26]. More recently Kolsrud studied such processes from the standpoint of Gaussianrandom �elds in [30] and van Neerven contributed to this subject in [50].4.1 The Langevin equationLet E be a separable complex Banach space and (
;F ;P) be a probability space whichwe assume rich enough to support all the random vectors under consideration. Considerthe E valued stochastic di�erential equationdZt +�Ztdt = dBt (4.1)42



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 43for t 2 R, where:(L1) the operator � is a closed operator from a norm dense domain D(�) � E to E.We seek a pair of processes (Bt;Zt), each de�ned on (
;F ;P). To ensure the existenceof L2 bounded solutions to (4.1) we will impose some conditions on �. We assume thefollowing:(L2) i� is the generator of a C0 group (eit�)t2R of operators on E; by a corollary to theHille-Yosida theorem, for which see section 12.3 of [24], this is equivalent to the resolventof � satisfying k(� + i!I)�nk � C�(j!j � ��)n (4.2)for some �nite constants C� > 0 and �� � 0, all n 2 N and all real ! such that j!j > ��;(L3) the resolvent of � satis�es k(� + i!I)�1k � K� (4.3)for some �nite constant K� > 0 and all real !;(L4) i�� is the generator of a C0 group (eit��)t2R of operators on E� (if E is re
exivethis follows from (L2)).For more information on these conditions, consult [10] or chapters 11, 12 and 14 of[24]. Note that (L4), in the presence of (L2), is equivalent to the domain D(��) of ��,the adjoint of �, being norm dense in E�; without (L4) we only know it is weak-� dense.For details see section 1.4 of [10] or chapter 14 of [24].We interpret equation (4.1) in the following way. The process (Bt)t2R is requiredto be an E valued cylindrical Q-Wiener process. The process (Zt)t2R is required to bean E valued, centred Gaussian, stationary stochastic process with almost surely H�oldercontinuous sample paths. As Zt is stationary we may write Cov(Zt;Zs) = 	Z(t� s) forsome function 	Z, called the autocovariance function of the process. Finally we requirethat Bt and Zt satisfy��(Zt � Zs) + Z ts ��(��)(Zu) du = ��(Bt �Bs) (4.4)



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 44almost surely, for all �� 2 D(��) and s < t. Following [8] or chapter 5 of [9] we call thepair (Bt;Zt) a weak solution of the Langevin equation.Condition (L4), together with the separability of E and the Hahn-Banach theorem,implies there is a countable subset of D(��) which separates the points of E. This ensuresthat, if we know ��(Bt) and ��(Zt) almost surely for all �� 2 D(��), the processes Btand Zt are almost surely determined.Note we do not require that Zt be adapted to the �ltration induced by Bt; we will,however, consider important circumstances in which this is the case.4.2 Spectral solutions of the Langevin equationThis section states and proves an existence theorem for weak solutions of equation (4.1).Consider Zt = 1p2� Z 1�1 ei!t(� + i!I)�1 d ~B! ; (4.5)where ~B! is a given E valued cylindrical Q-Wiener process de�ned on (
;F ;P). Thisformula is suggested by classical harmonic analysis. Consider also Bt de�ned by thecondition B0 = 0 and, for s < t,Bt �Bs = 1p2� Z 1�1 ei!t � ei!si! d ~B!: (4.6)All our stochastic integrals will be interpreted in the Itô sense within the framework ofTheorem 3.2.2.Theorem 4.2.1 Assume conditions (L1){(L4) hold. The expression Zt above:(a) converges as an Itô stochastic integral for each t 2 R, de�ning an E valued centredGaussian process on (
;F ;P);(b) is a stationary process with bounded autocovariance 	Z given by	Z(u) = 12� Z 1�1 ei!u(� + i!I)�1Q[(�� i!I)�1]� d!; (4.7)(c) has almost surely H�older continuous sample paths, of exponent � for every � < 1=2.



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 45The expression Bt above:(d) has increments Bt � Bs which converge as Itô stochastic integrals for each s < t,de�ning E valued centred Gaussian random vectors on (
;F ;P);(e) is an E valued cylindrical Q-Wiener process de�ned on (
;F ;P).Furthermore:(f) the pair (Bt;Zt) is a weak solution of the E valued Langevin equation (4.1).Proof (a) Assume Q factors as AA�. Let us consider, for �nite a < b,Z(a;b)t = 1p2� Z ba ei!t(� + i!I)�1 d ~B!: (4.8)By Theorem 3.2.2 this will converge as an Itô stochastic integral if the family (A�[ei!t(�+i!I)�1]�)a�!�b is H�older continuous in the �2 norm. This in turn will follow if the family(ei!t(�+i!I)�1)a�!�b is operator norm H�older continuous, since A� is 2-summing. But,for a � p < q � b,eiqt(� + iqI)�1 � eipt(� + ipI)�1= (eiqt � eipt)(� + ipI)�1 + eiqt((� + iqI)�1 � (� + ipI)�1) (4.9)= (eiqt � eipt)(� + ipI)�1 � eiqt(q � p)(� + ipI)�1(� + iqI)�1 (4.10)by the resolvent equation. We have jeiqt�eiptj � (q�p)jtj; this and condition (L3) showskeiqt(� + iqI)�1 � eipt(� + ipI)�1k � K�(jtj+K�)(q � p) (4.11)which proves (ei!t(�+ i!I)�1)a�!�b is H�older continuous in operator norm as required.We deduce that Z(a;b)t converges as an Itô stochastic integral.Thus Z(a;b)t 2 L2w(
;E; �2) for all �nite a < b. The integral Z(a;b)t will converge to alimit in L2w(
;E; �2) as a # �1 and b " 1 if, for any " > 0, there exists a positive �niteN(") such that kZ(m;n)t k�2 < " for all n > m � N("). By Theorem 3.2.2 and condition



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 46(L2) we have kZ(m;n)t k2�2 = 



 1p2� Z nm ei!t(� + i!I)�1 d ~B!



2�2 (4.12)� 12� Z nm �2(((� + i!I)�1A)�)2 d! (4.13)� �2(A�)22� Z nm k(� + i!I)�1k2 d! (4.14)< C2��2(A�)22�(m� ��) (4.15)for all n > m > ��, as required. We deduce that Zt = lima#�1;b"1Z(a;b)t converges inL2w(
;E; �2).For each t 2 R and �� 2 E� the random variable ��(Zt) is the limit in L2(
) of asequence of complex centred Gaussian random variables; it is therefore a complex centredGaussian random variable. We deduce that, for each t 2 R, the stochastic integral Zt isan E valued centred Gaussian random vector.Hence, by Proposition 3.1.3 (c), the integral Zt converges in the stronger norm ofL2(
;E).(b) Fix s < t. For �nite a < b, using the notation Z(a;b)t from part (a),Cov(Z(a;b)t ;Z(a;b)s )= 12�Cov�Z ba ei!t(� + i!I)�1 d ~B!;Z ba ei!0s(� + i!0I)�1 d ~B!0� (4.16)= 12� limL2 Cov0@r�1Xj=0 ei!j t(� + i!jI)�1( ~B!j+1 � ~B!j );r�1Xk=0 ei!0ks(� + i!0kI)�1( ~B!0k+1 � ~B!0k)! (4.17)= 12� limL2 r�1Xj=0 ei!j(t�s)V ar �(� + i!jI)�1( ~B!j+1 � ~B!j )� ; (4.18)where the L2 limit is taken to mean the limit in L2w(
;E; �2) over re�nements of appro-priate partitions a = !0 = !00 < !1 = !01 < � � � < !r = !0r = b of [a; b]. By Proposition



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 473.2.1 (iii) we see Cov(Z(a;b)t ;Z(a;b)s )= 12� limL2 r�1Xj=0 ei!j(t�s)(� + i!jI)�1Q[(�� i!jI)�1]�(!j+1 � !j) (4.19)= 12� Z ba ei!(t�s)(� + i!I)�1Q[(�� i!I)�1]� d!: (4.20)Letting a # �1 and b " 1 yields the required formula for the autocovariance; it is clearZt is stationary.(c) We have, for s < t,Zt � Zs = 1p2� Z 1�1(ei!t � ei!s)(� + i!I)�1 d ~B!; (4.21)which, applying Theorem 3.2.2, yieldskZt � Zsk2�2 � �2(A�)22� Z 1�1 ��ei!t � ei!s��2 

(� + i!I)�1

2 d!: (4.22)We now split the integral into separate parts with ranges j!j < 2�� and j!j � 2��.Note that ��ei!t � ei!s�� � min (2; j!j(t� s)) � p2j!j1=2(t� s)1=2 and, for j!j � 2��, that(j!j � ��)�1 � 2j!j�1. Applying conditions (L2) and (L3) giveskZt � Zsk2�2� K2��2(A�)2(t� s)� Zj!j<2�� j!j d!+ 4C2��2(A�)22� Zj!j�2�� ����ei!t � ei!si! ����2 d! (4.23)= 4��2�K2�� + C2���2(A�)2(t� s) (4.24)by Plancherel's theorem applied to the indicator function of [s; t], as required. Thisexpression shows the map t 7! Zt is H�older continuous as a function R ! L2w(
;E; �2)with exponent 1/2. The fact that Zt is Gaussian enables us to now apply Kolmogorov'scontinuity lemma in its vector valued form to deduce the existence of a version of Ztwith almost surely H�older continuous sample paths of exponent � for every � < 1=2; seepages 59{61 of [44] for details.



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 48(d) Fix s < t. Keeping the notation of part (a) we de�ne B(a;b)t � B(a;b)s , for �nitea < b, in the same manner as we de�ned Z(a;b)t . By Theorem 3.2.2 this will convergein L2w(
;E; �2) as an Itô stochastic integral if the family � ei!t�ei!si! �a�!�b is H�oldercontinuous. But, for a � p < q � b,����eiqt � eiqsiq � eipt � eipsip ���� = ����Z ts (eiqu � eipu) du���� (4.25)� �Z ts juj du� (q � p); (4.26)and so we have H�older continuity as required. Thus the stochastic integral B(a;b)t �B(a;b)sconverges in L2w(
;E; �2).To consider the case when a # �1 and b " 1 we note by Theorem 3.2.2 thatkB(a;b)t �B(a;b)s k2�2 � �2(A�)22� Z ba ����ei!t � ei!si! ����2 d!: (4.27)By Plancherel's theorem, applied to the indicator function of [s; t], this integral increasesto �2(A�)2(t � s) as a # �1 and b " 1. It follows that, for any " > 0, there exists apositive �niteN(") such that kB(m;n)t �B(m;n)s k�2 < " for all n > m � N("); consequentlythe stochastic integral Bt�Bs = lima#�1;b"1(B(a;b)t �B(a;b)s ) converges in L2w(
;E; �2).For s < t and �� 2 E� it is clear the random variable ��(Bt � Bs) is a complexcentred Gaussian random variable, as it is obtained as the limit in L2(
) of complexcentred Gaussian random variables. Consequently, for s < t, the stochastic integralBt �Bs is an E valued centred Gaussian random vector.Hence, by Proposition 3.1.3 (c), the integral Bt�Bs converges in the stronger normof L2(
;E).(e) For s < t, by part (d) above kBt �Bsk2�2 � �2(A�)2(t� s); we may therefore applyKolmogorov's continuity lemma in the same manner as part (c) to deduce almost suresample path continuity.By a calculation similar to that of part (b),V ar(Bt �Bs) = 12� Z 1�1 ����ei!t � ei!si! ����2 d!Q (4.28)= (t� s)Q (4.29)



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 49by Plancherel's theorem applied to the indicator function of [s; t]; also, for s < t < u < v,V ar(Bt �Bs) = 12� Z 1�1 (ei!t � ei!s)(e�i!v � e�i!u)ji!j2 d!Q (4.30)= 0 (4.31)again by Plancherel's theorem, this time applied to the indicator functions of the disjointintervals [s; t] and [u; v]. We deduce Bt is a cylindrical Q-Wiener process as required.(f) For �� 2 D(��) and s < t we calculate��(Zt � Zs) + Z ts ��(��)(Zu) du= 1p2� ���Z 1�1(ei!t � ei!s)(� + i!I)�1 d ~B!�+ 1p2� Z ts ��(��)�Z 1�1 ei!u(� + i!I)�1 d ~B!� du (4.32)= 1p2� Z 1�1�ei!t � ei!si! � i!��(� + i!I)�1 d ~B!+ 1p2� Z 1�1�Z ts ei!u du���(��)(� + i!I)�1 d ~B! (4.33)where the change in the order of integration in the second integral is justi�ed by thealmost sure H�older continuity of the sample paths of Zu and the fact that, for each u,Zu is the limit in L2(
;E) of a sequence of �nite sums of elements of L2(
;E). Thisgives ��(Zt � Zs) + Z ts ��(��)(Zu) du= 1p2� Z 1�1�ei!t � ei!si! � (i!�� +��(��))(� + i!I)�1 d ~B! (4.34)= 1p2� Z 1�1�ei!t � ei!si! � (i!�� + ���)(� + i!I)�1 d ~B!; (4.35)we know that ��(��) = ��� because the range of the resolvent satis�es (�+ i!I)�1(E) �D(�) for all ! 2 R. Thus ��(Zt � Zs) + Z ts ��(��)(Zu) du= 1p2� Z 1�1�ei!t � ei!si! � ��(d ~B!) (4.36)= 1p2� ���Z 1�1 ei!t � ei!si! d ~B!� (4.37)= ��(Bt �Bs) (4.38)



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 50which is justi�ed by the convergence in L2(
;E) of the stochastic integral Bt �Bs. Wededuce (Bt;Zt) is a weak solution of the E valued Langevin equation (4.1). �The proof of Theorem 4.2.1 (f) naturally generalises the corresponding proof in the scalarvalued case; for details of this, see chapter XI, x10 of [13].We now consider a condition on � under which Zt is adapted to the �ltration inducedby Bt, and Zt is unique in distribution. The following corollary mirrors results in Itô'spaper [26].Corollary 4.2.2 Let (Bt;Zt) be a weak solution of the E valued Langevin equation(4.1). Assume, as well as (L1){(L4), that the operator (��) generates a C0 semigroup(e��t)t�0 of exponential norm decay. Then the process Zt is adapted to the �ltrationinduced by Bt; furthermore if (B0t;Z0t) is also a weak solution then Z0t is identical indistribution to Zt.Proof Firstly let (Bt;Zt) and (Bt;Z0t) be weak solutions of the E valued Langevinequation. Setting �t = Z0t � Zt we see �t is an E valued, centred Gaussian, station-ary stochastic process with almost surely H�older continuous sample paths de�ned on(
;F ;P) which satis�es ��(�t ��s) + Z ts ��(��)(�u) du = 0 (4.39)almost surely, for all �� 2 D(��) and s < t. Itô's paper [26] now shows, for s < t,�t = e��(t�s)�s: (4.40)The condition that (e��t)t�0 is of exponential norm decay, together with the requirementthat �t be stationary, now implies �t = 0 almost surely | we simply let t tend to in�nityin (4.40).Now by [26], if Bt is any E valued cylindrical Q-Wiener process then the processZt = Z t�1 e��(t�u) dBu (4.41)



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 51is such that (Bt;Zt) is a weak solution of the E valued Langevin equation.Combining these results we see that, given Bt, the process Zt is almost surely uniqueand is given almost surely by the stochastic integral (4.41).The stochastic integral (4.41) shows Zt is adapted to the �ltration induced by Bt.Furthermore we see that, whenever (Bt;Zt) and (B0t;Z0t) are weak solutions, Zt must beexpressible almost surely in the form (4.41) as a stochastic integral with respect to Btand Z0t must be expressible almost surely in the form (4.41) as a stochastic integral withrespect to B0t. We deduce, as Bt and B0t have the same distribution, that Zt and Z0t havethe same distribution. �4.3 ExamplesLet 1 < p <1 and " > 0. De�neE = nf 2 Lp(R) : f̂(�) = 0 for all j�j � "o ; (4.42)where f̂ denotes the Fourier transform of f . The continuity of the Riesz projection onLp(R) ([31], section V.B) shows E is a closed complemented subspace of Lp(R); it istherefore a re
exive Banach space. We consider various possibilities for �, each de�nedvia Fourier multipliers:(i) \(eit�f)(�) = eit� f̂(�), so (eit�f)(x) = f(x + t) for all x 2 R and (eit�)t2R is a C0group of translation operators on Lp(R) with � = �i ddx ;(ii) \(eit�f)(�) = eitj�jf̂(�), so (eit�f)(x) = (R+f)(x + t) + (R�f)(x � t) for all x 2 R,where R+ and R� denote the positive and negative Riesz projections;(iii) \(eit�f)(�) = eit log j�jf̂(�), implying eit� = �it where � = � d2dx2 is the Laplaceoperator. The Laplacian is essentially self-adjoint on C1c (R) (see chapter 4 of [10]for details) which enables us to de�ne its imaginary powers by Fourier multipliers asdescribed. These imaginary powers (�it)t2R form a C0 group on Lp(R) of polynomialgrowth; see [21] for details.



CHAPTER 4. ORNSTEIN-UHLENBECK PROCESSES 52Each of the (eit�)t2R considered here restrict to E, yielding C0 groups. Furthermorethe condition on each f 2 E that f̂(�) = 0 for all j�j � " implies, in each case, thatthe resolvent of � is bounded on the imaginary axis; conditions (L2)-(L4) are thereforesatis�ed. In addition neither � nor �� generate C0 semigroups of exponential normdecay.Thus, given any such � and any Q which is the variance of some centred Gaussianrandom vector in E, the E valued Langevin equation (4.1) associated to � and Q has aweak solution as described in Theorem 4.2.1.



Chapter 5
Some probabilitydistribution theory
This chapter recalls two classes of compactly supported probability distributions on Rand proves a result on the convolution of one of these. Both these distributions arise inthe theory of random matrices; these are studied in chapter 6.5.1 The arcsine and semicircle distributionsThe arcsine law with mean � and variance �2 is the probability measure on R given byP�;�2as (dx) = 8><>: 1�p2�2�(x��)2 dx ��p2� � x � �+p2�;0 otherwise: (5.1)It is straightforward to verify that this does indeed give a probability measure on R withmean � and variance �2. Usually we consider the case where � = 0 and �2 = 1=2. Thisis known as the standard arcsine law and is given byPas(dx) = 8><>: 1�p1�x2 dx �1 � x � 1;0 otherwise; (5.2)= d�2� (5.3)53



CHAPTER 5. SOME PROBABILITY DISTRIBUTION THEORY 54where d�=2� is normalised arc length on the unit circle T. So if X is a random variableuniformly distributed on T, its x co-ordinate is distributed according to the standardarcsine law.The arcsine distribution arises extensively in the theory of random walks; see chapterIII of [15] for more information.An important related probability distribution is the following. The semicircle lawwith mean � and variance �2 is the probability measure on R given byP�;�2ss (dx) = 8><>: 12��2p4�2 � (x� �)2 dx �� 2� � x � �+ 2�;0 otherwise: (5.4)Again it is straightforward to verify this gives a probability measure on R with mean �and variance �2. Usually we consider the case where � = 0 and �2 = 1=4. This is knownas the standard semicircle law and is given byPss(dx) = 8><>: 2�p1� x2 dx �1 � x � 1;0 otherwise: (5.5)Note that, for f a continuous bounded function on R,Z 1�1 f(x)Pss(dx) = ZZ D f(x)A(dx; dy) (5.6)where A(dx; dy) is normalised area measure on the unit disc D . So if X is a randomvariable uniformly distributed on D , its x co-ordinate is distributed according to thestandard semicircle law.The semicircle distribution arises extensively in the theory of free random variables;see the book [51] for more information.5.2 Convolutions of the arcsine lawIn this section we shall denote by f1 the standard arcsine density function. We shalldenote by fn, for n 2 N, the convolution of n standard arcsine densities. Thus if(Xj)1�j�n is a sequence of n independent random variables, each following the standardarcsine distribution, the random variablePnj=1Xj follows a distribution with density fn.



CHAPTER 5. SOME PROBABILITY DISTRIBUTION THEORY 55Such convolutions were studied recently in [4]. It is clear, as f1 is a probability densityfunction, that f1 2 L1(R) and therefore fn 2 L1(R).De�ne the Bessel function of order zero, J0, to beJ0(�) = 1� Z �0 ei� cos � d� (5.7)which, on putting t = cos �, becomesJ0(�) = 1� Z 1�1 ei�t 1p1� t2dt: (5.8)We see J0 is the characteristic function of the standard arcsine density f1. We deducefrom the properties of characteristic functions that the characteristic function of fn isJn0 . Furthermore by L�evy's inversion formula, for which see chapter 16 of [53], we mayrecover fn from Jn0 via the formula, for s < t,Z ts fn(u) du = limM"1Z M�M e�i�s � e�i�ti� J0(�)n d�2� : (5.9)Now, note the following identity.Proposition 5.2.1J0(�)J0(�) = Z 2�0 J0((�2 + �2 + 2�� cos')1=2)d'2� (5.10)which holds for all � and � in R.Proof See x11.41 of [52] for details. �If � = � this formula simpli�es toJ0(�)2 = Z 2�0 J0 �2� ���cos '2 ���� d'2� (5.11)which we will use to evaluate the convolute f2. Recall that, for �1 < u < 1, the completeelliptic integral of the �rst kind K(u) is de�ned to beK(u) = Z �20 1p1� u2 sin2  d : (5.12)We now come to the principal result of this chapter.



CHAPTER 5. SOME PROBABILITY DISTRIBUTION THEORY 56Theorem 5.2.2 The function f2 is given byf2(u) = 8><>: 1�2K �q1� �u2 �2� �2 � u � 2;0 otherwise: (5.13)Proof We know by L�evy's inversion formula that, for s < t,Z ts f2(u) du = limM"1Z M�M e�i�s � e�i�ti� J0(�)2 d�2� : (5.14)Thus Z ts f2(u) du = limM"1Z M�M e�i�s � e�i�ti� �Z 2�0 J0 �2� ���cos '2 ���� d'2�� d�2� (5.15)= limM"1Z 2�0 �Z M�M e�i�s � e�i�ti� J0 �2� ���cos '2 ���� d�2�� d'2� (5.16)= limM"1Z 2�0 gM (')d'2� (5.17)say, where gM (') = Z M�M e�i�s � e�i�ti� J0 �2� ���cos '2 ���� d�2� : (5.18)The asymptotic result pxJ0(x)�r 2� cos�x� �4�! 0 (5.19)as x!1, which is detailed in x7.1 of [52], impliesjJ0(x)j � min�1; Cpx� (5.20)for some constant C > 0, which in turn gives, for ' 6= �,jgM (')j � �+ �q��cos '2 �� (5.21)for some constants � > 0, � > 0; the right hand side of this inequality is integrable as afunction of ' 2 [0; 2�]. Now, for ' 6= �,limM"1 gM (') = limM"1Z M�M e�i�s � e�i�ti� J0 �2� ���cos '2 ���� d�2� (5.22)= Z 1�1 e�i�s � e�i�ti� J0 �2� ���cos '2 ���� d�2� (5.23)



CHAPTER 5. SOME PROBABILITY DISTRIBUTION THEORY 57as this converges as a Lebesgue integral via the asymptotic result for J0 above. Setting� = 2� ��cos '2 �� gives, as J0 is even,limM"1 gM (') = Z 1�1 e�i�� s2jcos '2 j� � e�i�� t2jcos '2 j�i� J0(�)d�2� (5.24)= Z t2jcos '2 js2jcos '2 j f1(u) du (5.25)by L�evy's inversion formula. For ' = �,limM"1 gM (�) = limM"1Z M�M e�i�s � e�i�ti� d�2� (5.26)= 8>>>><>>>>: 0 s < t < 0 or 0 < s < t;12 s < t = 0 or 0 = s < t;1 s < 0 < t (5.27)= lim'!� Z t2jcos '2 js2jcos '2 j f1(u) du (5.28)= lim'!�� limM"1 gM (')� : (5.29)We have shown limM"1 gM (') exists, and is bounded and continuous, for all ' and thatjgM (')j � �+ �qjcos '2 j for some � > 0 and � > 0 and all ' 6= �. Further we have notedthat the function ' 7! �+ �qjcos '2 j is integrable on [0; 2�]. We may therefore apply thedominated convergence theorem to giveZ ts f2(u) du = limM"1Z 2�0 gM (')d'2� (5.30)= Z 2�0 limM"1 gM (')d'2� : (5.31)Thus Z ts f2(u) du = Z 2�0 0@Z t2jcos '2 js2jcos '2 j f1(u) du1A d'2� (5.32)= Z ���0@Z t2jcos '2 js2jcos '2 j f1(u) du1A d'2� (5.33)= Z ���0@ 1� Z t2jcos '2 js2jcos '2 j 1[�1;1](u) 1p1� u2 du1A d'2� (5.34)



CHAPTER 5. SOME PROBABILITY DISTRIBUTION THEORY 58and setting v = 2u ��cos '2 �� givesZ ts f2(u) du = Z ���0@ 1� Z ts 1[�1;1] v2 ��cos '2 ��! 1q1� v24 cos2 '2 dv2 ��cos '2 ��1A d'2�(5.35)= Z ���0@ 1� Z ts 1[�1;1] v2 ��cos '2 ��! 1q4 cos2 '2 � v2 dv1A d'2� (5.36)= Z ts 0@ 1� Z ��� 1[�1;1] v2 ��cos '2 ��! 1q4 cos2 '2 � v2 d'2�1A dv (5.37)by Fubini's theorem, as the integrand is positive. Now we need to know for which v and' we have �1 � v2 ��cos '2 �� � 1: (5.38)This has no solutions when jvj > 2. If jvj � 2 the condition holds precisely when�2 cos�1 jvj2 � ' � 2 cos�1 jvj2 : (5.39)ConsequentlyZ ts f2(u) du = Z min(t;2)max(s;�2)0@ 1� Z 2 cos�1 jvj2�2 cos�1 jvj2 1q4 cos2 '2 � v2 d'2�1A dv (5.40)= Z min(t;2)max(s;�2)0@ 1�2 Z 2 cos�1 jvj20 1q4 cos2 '2 � v2 d'1A dv: (5.41)For �xed v, we replace the variable ' with a new variable  via the substitutionsin = sin '2q1� �v2�2 (5.42)which givesZ ts f2(u) du = Z min(t;2)max(s;�2)0BB@ 1�2 Z �20 1r1� �1� �v2�2� sin2  d 1CCA dv (5.43)= Z min(t;2)max(s;�2) 1�2K  r1� �v2�2! dv (5.44)for K a complete elliptic integral of the �rst kind. As s and t were arbitrarily chosenwith s < t, this completes the proof. �



Chapter 6
Random matrices
This chapter de�nes and develops some results for ensembles of Hermitian random ma-trices and certain random measures on R associated to these.The key reference on random matrix theory is [39]; this includes a detailed descriptionof the physical motivation for studying such ensembles. Among more recent publicationsthe paper [6] is particularly noteworthy.6.1 Physical motivationSince the pioneering work of Wigner in the 1950s, the theory of random matrices hasbeen developed and used in such diverse areas as statistical mechanics, nuclear physics,quantum �eld theory (for example [2]) and scattering problems for one dimensionalSchr�odinger operators (for example [45]). Until the late 1970s the great majority of therandom matrices considered were real and symmetric; however recent developments inareas such as quantum chromodynamics, string theory and two-dimensional gravity haveled to a surge of interest in complex Hermitian random matrices.The basic motivation for studying random matrices is as follows; our explanation istaken from chapter 1 of [39].According to quantum mechanics, the energy levels of a physical system are describedby the eigenvalues of an operator H (symmetric or Hermitian according to whether the59



CHAPTER 6. RANDOM MATRICES 60system is real or complex) called the Hamiltonian, acting on a certain in�nite dimensionalHilbert space 	. The spectrum of H, �(H), generally has both discrete and continuouscomponents; it is the discrete part which attracts most interest.To avoid having to work in in�nite dimensions, we restrict the action of our Hamil-tonian H to a �nite (but generally large) dimensional subspace of 	, namely the directsum of a �nite number of the eigenspaces associated to the discrete part of �(H). Thusour Hamiltonian becomes a large symmetric or Hermitian matrix.We do not, of course, have accurate knowledge of all the properties and constantsassociated to the system; consequently we make statistical hypotheses and view thesequantities as random variables. In particular this means our Hamiltonian H is treatedas a random quantity.We therefore study the properties of large random matrices. Often we seek limitingproperties of such matrices as their order approaches in�nity; this corresponds to ourmodel encompassing more and more of the eigenspaces associated to the discrete part of�(H).6.2 Matrices with unitarily invariant distributionsLet (
;F ;P) be a probability space and, for 1 � p <1, let Lp(
) denote the usual spaceof Borel measurable functions 
 ! C having �nite Lp norm, quotiented by functionswhich are zero almost surely. For n 2 N let Mn(C ) denote the space of n by n complexmatrices and let M san (C ) denote the space of n by n Hermitian complex matrices (theself-adjoint part of Mn(C )).Denote by �n the simplex f(�1; : : : ; �n) � Rn : �1 � � � � � �ng. Denote by Un theLie group of n by n unitary matrices equipped with Haar probability measure, whichwe denote by d� . Denote by �(�1; : : : ; �n) the diagonal matrix with diagonal entries�1; : : : ; �n in sequence. Denote by dX Lebesgue measure on M san (C ), i.e.dX =Yj d [X]jjYj<k dRe[X]jkd Im[X]jk: (6.1)



CHAPTER 6. RANDOM MATRICES 61For each n 2 N de�ne An to be the algebra Mn(C ) 
 Tp<1 Lp(
) of n by n matriceswith entries in Tp<1 Lp(
). We equip An with the normalised trace 1n E tr. De�ne Asanto be M san (C ) 
Tp<1Lp(
), the self-adjoint part of An.If Xn is an element of Asan we refer to Xn as a random Hermitian matrix; thisde�nition of random matrices is taken from [51]. By construction the entries of Xn arerandom variables having �nite moments of all orders. The random matrix Xn induces aRadon probability measure �Xn on M san (C ), the law of Xn, given by�Xn(S) = P(f! 2 
 : Xn(!) 2 Sg) (6.2)for S a Borel subset of M san (C ).This chapter considers ensembles of random matrices, that is sequences (Xn)n�1where Xn lies in Asan for each n. In particular we shall consider ensembles (Xn)n�1 inwhich each Xn has distribution invariant under unitary conjugation; that is to say�Xn(fUSU� : S 2 Sg) = �Xn(S) (6.3)for all unitary U in Un and Borel subsets S of M san (C ). The law of Xn is said to beunitarily invariant. The importance and physical motivation for unitary invariance isdetailed in [6] and [39].We have the following invariance property.Proposition 6.2.1 Lebesgue measure dX is a unitarily invariant measure on M san (C ).Proof See section A.17 of [39]. �Consider the map 
 : Un � �n !M san (C ) given by
(U; �1; : : : ; �n) = U�(�1; : : : ; �n)U�: (6.4)Proposition 6.2.2 The map 
 is continuous, surjective and almost surely injective,with the only violations of injectivity occurring on the boundary of �n.



CHAPTER 6. RANDOM MATRICES 62Proof This follows from the spectral theorem for Hermitian operators on C n . �Denote by 
�(dX) the pullback measure on Un � �n de�ned by the formulaZ
(S) dX = ZS 
�(dX) (6.5)for S all Borel subsets of Un � �n.Proposition 6.2.3 The measure 
�(dX) is absolutely continuous with respect to thenatural product measure d� d�1 : : : d�n on Un � �n, according to the formula
�(dX) = d� d� (6.6)where d� denotes the measured� = C�1n Yj<k(�j � �k)2 d�1 : : : d�n (6.7)on �n, where Cn is a normalising constant.Proof The argument in chapter 3 of [39] gives us
�(dX) = p(U) d� d� (6.8)for some probability density function p on Un. The left invariance of d� and the unitaryinvariance of dX now tell us that p(UV ) = p(V ) for all U and V in Un ; this implies p isidentically equal to 1. We deduce the required formula. �The values of the constants Cn are known.Proposition 6.2.4 The value of Cn isCn = �n(n�1)=2Qnj=1 j! : (6.9)



CHAPTER 6. RANDOM MATRICES 63Proof See appendix 2 of [2]. The method is due to Mehta; see section 5.2 of [39]. �We seek representations of those laws of random Hermitian matrices which are absolutelycontinuous with respect to Lebesgue measure on M san (C ).Let 'n(X) dX be a Radon probability measure on M san (C ) which is absolutely con-tinuous with respect to Lebesgue measure dX. Here 'n : M san (C ) ! R is an integrablefunction. We have a pullback probability measure 
�('n(X) dX) on Un � �n via theformula 
�('n(X) dX) = 
�('n)(U; �1; : : : ; �n)
�(dX) (6.10)where 
�('n) denotes the composition 'n � 
 and X = U�(�1; : : : ; �n)U�.We observe a condition for unitary invariance.Proposition 6.2.5 The measure 'n(X) dX is unitarily invariant if and only if'n(UXU�) = 'n(X) (6.11)for all X in M san (C ) and U in Un; equivalently, 'n(X) dX is unitarily invariant if andonly if 
�('n)(U; �1; : : : ; �n) = 
�('n)(I; �1; : : : ; �n) (6.12)for all U 2 Un and (�1; : : : ; �n) 2 �n.Proof The representation (6.10), together with the left invariance of d� and the unitaryinvariance of dX, inform us that
�('n)(UV; �1; : : : ; �n) = 
�('n)(V; �1; : : : ; �n) (6.13)for all U and V in Un and (�1; : : : ; �n) 2 �n. This gives the required conclusions. �



CHAPTER 6. RANDOM MATRICES 64In such circumstances we say the function 'n is itself unitarily invariant; we may (witha slight abuse of notation) regard 
�('n) as a function from �n to R.It is often di�cult working on the simplex �n. The following proposition allows usto work with the space Un � Rn rather than Un � �n. Consider the map� : Rn ! �n (6.14)which takes (�1; : : : ; �n) 2 Rn to its decreasing rearrangement in �n.Proposition 6.2.6 The map � is continuous, surjective and almost surely n! to 1, withthe only points for which it is not n! to 1 occurring on the preimage of the boundary of�n. If � is any probability measure on Un��n there is a pullback measure ��(�) of totalmass n!; it follows that 1n!��(�) is a probability measure on Un � Rn .Proof This is immediate from the de�nitions. �Thus, given any Radon probability measure 'n(X) dX on M san (C ), there is a pullbackprobability measure on Un � Rn given by1n!��(
�('n(X) dX)) = 1n!��(
�('n))(U; �1; : : : ; �n) d� d� (6.15)where ��(
�('n)) denotes the composition 'n � 
 � � and X = U�(�1; : : : ; �n)U�.Let us summarise what we know for a random n by n Hermitian matrix Xn withunitarily invariant law �Xn given by 'n(X) dX. We see that (abusing notation slightly)the composition ��(
�('n)) may be viewed as a positive integrable function Rn ! R.If F :M san (C ) ! C is a locally integrable function which is unitarily invariant, soF (UXU�) = F (X) (6.16)for all X in M san (C ) and U in Un, we see that (again abusing notation slightly) thecomposition ��(
�(F )) may be viewed as a locally integrable function Rn ! C . Weobserve the formulaE F (Xn) = 1n! ZRn ��(
�(F ))(�1; : : : ; �n)��(
�('n))(�1; : : : ; �n) d�: (6.17)



CHAPTER 6. RANDOM MATRICES 65In practice the most common use of this formula occurs when F is of the form tr f ,where f is a function from M san (C ) to itself.Note that, as 'n is unitarily invariant,��(
�('n))(�1; : : : ; �n) = 'n(�(�1; : : : ; �n)) (6.18)and is a positive symmetric function of (�1; : : : ; �n) 2 Rn lying in L1(Rn). Similarly, asF is unitarily invariant we see ��(
�(F )) is a symmetric function of (�1; : : : ; �n) 2 Rnlying in L1loc(Rn).For example if F (X) = kXk, which is a unitarily invariant function, we observe that
�(F )(�1; : : : ; �n) = max(j�1j; j�nj) and ��(
�(F ))(�1; : : : ; �n) = max1�j�n j�j j.6.3 The level spacing distributionsGiven a random Hermitian n by n matrix Xn with unitarily invariant law 'n(X) dX,de�ne the n-tuple (�1(Xn); : : : ; �n(Xn)) to be the ordered eigenvalues of Xn, where�1(Xn) � � � � � �n(Xn). Note this is an element of �n. We have the following proposi-tion, whose proof is immediate.Proposition 6.3.1 De�ne a probability density function �n on Rn via the formula�n(�1; : : : ; �n) = 1n!Cn Yj<k(�j � �k)2��(
�('n))(�1; : : : ; �n): (6.19)Then P((�1(Xn); : : : ; �n(Xn)) 2 S) = Z��1(S) �n(�1; : : : ; �n) d�1 : : : d�n (6.20)for all Borel subsets S of �n. �We refer to the density �n as the joint density of the eigenvalues of Xn.We may de�ne, for r = 1; : : : ; n� 1, a probability density function �rn on Rr by theformula�rn(�1; : : : ; �r) = 1n!Cn ZRn�r Yj<k(�j � �k)2��(
�('n))(�1; : : : ; �n) d�r+1 : : : d�n: (6.21)



CHAPTER 6. RANDOM MATRICES 66For completeness set �nn = �n. The family of probability density functions �1n; : : : ; �nn isknown as the family of level spacing distributions; �1n is particularly important and maybe viewed as the probability density of a randomly selected eigenvalue.Note that, if f is a bounded continuous function from R to C then, via functionalcalculus, for any n we may extend f to a map from M san (C ) to Mn(C ). It thereforemakes sense to consider, for Xn an n by n random matrix,1n E tr f(Xn) = 1n! ZRn0@ 1n nXj=1 f(�n)1A��(
�('n))(�1; : : : ; �n) d� (6.22)= ZR f(t)�1n(t) dt; (6.23)which is a useful result.In studying random matrices it is common to seek ensembles (Xn)n�1 such that(�1n)n�1 tends weakly to a limiting probability density as n tends to in�nity. This limit,when it exists, is referred to as the integrated density of states (IDS) by physicists; see[6] for example.6.4 The empirical distribution of the eigenvaluesWe next de�ne an important class of random measures. WriteM(R) for the vector spaceof all Radon measures on R. By the Riesz representation theorem this may be viewedas C0(R)� , where C0(R) is the space of continuous functions from R to C which vanishat in�nity; we equip M(R) with the dual norm. Denote by M1(R) the closed subset ofM(R) comprising all Radon probability measures on R. Let (Xn)n�1 be an ensemble ofrandom Hermitian matrices de�ned on the probability space (
;F ;P). De�ne, for ! 2 
and each n, �n(!) = 1n nXj=1 ��j(Xn(!)): (6.24)It is clear that, for each n, �n is a function from 
 to M1(R); it is a random probabilitymeasure on R. We refer to �n as the empirical distribution of the eigenvalues of Xn.



CHAPTER 6. RANDOM MATRICES 67Note that, for f 2 C0(R), ZR f(t)�n(dt) = 1n nXj=1 f(�j(Xn)) (6.25)= 1n tr f(Xn); (6.26)for this reason �n is often described as the spectral multiplicity measure of Xn. Wesee that, viewing �n as a map 
 ! C0(R)� , �n is a weak-� measurable random vector.Furthermore, viewing �n as an operator from C0(R) to L2(
),k�nkB(C0(R);L2(
)) = supf2C0(R):kfk�1 E ����ZR f(t)�n(dt)����2!1=2 � 1 (6.27)and so �n lies in L2w�(
;C0(R)�). It follows that the weak-� expectation E �n exists. Forf 2 C0(R), ZR f(t) (E �n) (dt) = E ZR f(t)�n(dt) (6.28)= 1n E tr f(Xn) (6.29)= ZR f(t)�1n(t) dt; (6.30)which shows us that (E �n) (dt) = �1n(t) dt (6.31)for each n.Note that by a corollary to Grothendieck's inequality, detailed in theorem 3.5 of [11](the result was originally proved in [20]), B(C0(R); L2 (
)) equals �2(C0(R); L2 (
)) withk�kop � �2(�) � �CGk�kop (6.32)for all elements � of B(C0(R); L2 (
)); here �CG denotes Grothendieck's constant in C .Consequently the spaces L2w�(
;C0(R)�) and L2w�(
;C0(R)� ; �2) coincide; it followsthat �n lies in L2w�(
;C0(R)� ; �2) for each n.Viewing �n as an operator once more, an identical argument to (6.27) shows that �nlies in the space B(Cb(R); L2(
)) for each n. Here Cb(R) denotes the bounded continuousfunctions from R to C .



CHAPTER 6. RANDOM MATRICES 68This chapter will consider circumstances under which k�n� E �nkB(Cb(R);L2(
)) tendsto zero as n tends to in�nity, and furthermore �1n = E �n tends weakly to some limit �1(the integrated density of states) as n tends to in�nity; it will then follow that �n ! �1in the Banach space B(Cb(R); L2(
)) as n tends to in�nity. This will imply �n ! �1 inthe Banach space B(C0(R); L2(
)) �= L2w�(
;M(R)) as n tends to in�nity.Lemma 6.4.1 For f 2 Cb(R) and all n,E ����ZR f(t)(�n � E �n)(dt)����2= 1n ZR jf(�1)j2�1n(�1) d�1 +ZZR2 f(�1)f(�2) ��1� 1n� �2n(�1; �2)� �1n(�1)�1n(�2)� d�1 d�2: (6.33)Proof A calculation showsE ����ZR f(t)(�n � E �n)(dt)����2= E ������ 1n nXj=1 f(�j)� 1n E nXj=1 f(�j)������2 (6.34)= 1n2 E nXj=1 jf(�j)j2 + 1n2 E Xj 6=k f(�j)f(�k)�1n2 0@E nXj=1 f(�j)1A E nXk=1 f(�k)! (6.35)= 1n ZR jf(�1)j2�1n(�1) d�1 +�1� 1n�ZZR2 f(�1)f(�2)�2n(�1; �2) d�1 d�2 ��ZR f(�1)�1n(�1) d�1��ZR f(�2)�1n(�2) d�2� (6.36)= 1n ZR jf(�1)j2�1n(�1) d�1 +ZZR2 f(�1)f(�2) ��1� 1n� �2n(�1; �2)� �1n(�1)�1n(�2)� d�1 d�2 (6.37)as required. �



CHAPTER 6. RANDOM MATRICES 69To obtain more e�ective bounds on the sequence (�n�E �n)n�1 we need to make furtherhypotheses on the laws of the (Xn)n�1.6.5 Matrices generated by weightsSpeci�c ensembles (Xn)n�1 of random Hermitian matrices with unitarily invariant lawsmay be generated according to the following procedure.Let w : R ! [0;1) be an integrable function which has �nite moments of all ordersand induces a probability measure w(x) dx on R. Such a function is known as a weightfunction or a probability density function. Write suppw for the support of w. We mayde�ne a function v : suppw! R viaw(x) = 8><>: e�v(x) x 2 suppw;0 otherwise: (6.38)The function v is often referred to as the potential.Consider as before an ensemble of random Hermitian matrices (Xn)n�1 where, foreach n, Xn has unitarily invariant law given by 'n(X) dX. We know that ��(
�('n))is a non-negative symmetric function on Rn . This section will consider the special caseunder which, for each n, 'n is generated from w via the formula��(
�('n))(�1; : : : ; �n) = K�1n nYj=1w(�j) (6.39)where Kn is a normalising constant; we know this to be �nite since w has �nite momentsof all orders. Note that, because w has �nite moments of all orders, each element of theensemble (Xn)n�1 lies in Asan . Some ensembles of this type, and the physical motivationfor studying them, are discussed in [45].We may also de�ne 'n(X) dX via functional calculus as follows:'n(X) dX = 8><>: K�1n e�tr v(X) dX �(X) � suppw;0 otherwise; (6.40)where �(X) denotes the spectrum of X.



CHAPTER 6. RANDOM MATRICES 70Note that the entries of the random matrices generated in this way are not in generalindependent. The most important case where the entries are independent occurs withGaussian random matrices, i.e. ensembles with v(x) a convex quadratic polynomial andsuppw the entire real line. There is an extensive theory of Gaussian random matrices andrandom matrices with independent (or weakly independent) entries. See, for example,[22] or [39].Now, let w be a weight function and let P0; P1; : : : be the sequence of orthonormalpolynomials associated to it; see [48] for background details of this subject. Let (Xn)n�1be the ensemble of random matrices generated from the weight function w in the aboveway. Then the following result holds.Lemma 6.5.1 For each n and r the level spacing distributions �rn are given by theformula �rn(�1; : : : ; �r) = (n� r)!n! det24n�1Xj=0 Pj(�s)Pj(�t)35rs;t=1 rYj=1w(�j): (6.41)In particular, for the case r = 1,�1n(�1) = 1n 0@n�1Xj=0 Pj(�1)21Aw(�1); (6.42)and for the case r = 2,�2n(�1; �2)= nn� 1 0@�1n(�1)�1n(�2)� 1n2 0@n�1Xj=0 Pj(�1)Pj(�2)1A2w(�1)w(�2)1A : (6.43)Proof These are quoted without proof in [6], (2.28){(2.30) and proved in [39], sections5.2, 6.1 and A.13. �The following result was proved, under a di�erent framework and using di�erent notation,by Boutet de Monvel, Pastur and Shcherbina in section 2 of [6]. Our proof di�ers fromtheirs; in particular it avoids use of the Stieltjes transform.



CHAPTER 6. RANDOM MATRICES 71Theorem 6.5.2 For f 2 Cb(R) and all n,E ����ZR f(t)(�n � E �n)(dt)����2 � 1n ZR jf(t)j2(E �n)(dt); (6.44)and thus k�n � E �nkB(Cb(R);L2(
)) � 1pn; (6.45)implying that (�n � E �n)n�1 converges to zero in B(Cb(R); L2(
)).Proof We have, by Lemma 6.4.1 and Lemma 6.5.1,E ����ZR f(t)(�n � E �n)(dt)����2= 1n ZR jf(�1)j2�1n(�1) d�1 �1n2 ZR2 f(�1)f(�2)0@n�1Xj=0 Pj(�1)Pj(�2)1A2 w(�1)w(�2) d�1 d�2 (6.46)= 1n ZR jf(�1)j2�1n(�1) d�1 �1n2 n�1Xj;k=0 ����ZR f(�1)Pj(�1)Pk(�1)w(�1) d�1����2 (6.47)� 1n ZR jf(�1)j2�1n(�1) d�1 (6.48)as required. �The next section examines the case in which suppw is a compact interval; we will showthat, provided w satis�es certain smoothness conditions, �1n tends weakly to an arcsinedistribution as n tends to in�nity. It follows that the sequence (�n)n�1 converges in theBanach space B(Cb(R); L2(
)) to an arcsine distribution.Scholium One may, using the same weight function w, de�ne a slightly di�erent en-semble of random Hermitian matrices (Yn)n�1. The matrix Yn has unitarily invariantlaw  n(Y ) dY where��(
�( n))(�1; : : : ; �n) = ~K�1n 0@ nYj=1w(�j)1An (6.49)



CHAPTER 6. RANDOM MATRICES 72for ~Kn a normalising constant; we know this to be �nite since w has �nite moments ofall orders. Consequently each Yn lies in Asan .We may also, as before, de�ne  n(Y ) dY via functional calculus as follows: n(Y ) dY = 8><>: ~K�1n e�n tr v(Y ) dY �(Y ) � suppw;0 otherwise; (6.50)where �(Y ) denotes the spectrum of Y .Ensembles of this type have been studied extensively, notably in [6] where the physicalmotivation for studying such ensembles is discussed. In this paper Boutet de Monvel,Pastur and Shcherbina show that, provided the potential v satis�es a certain growthcondition, the density �1n tends weakly to an absolutely continuous limit �1, a formulafor which is given as a function of w. A result identical in statement to Theorem 6.5.2,namely that k�n � E �nkB(Cb(R);L2(
)) = O� 1pn� (6.51)as n tends to in�nity, is stated and proved. It is deduced that the sequence (�n)n�1converges to �1 in the Banach space B(Cb(R); L2 (
)). Note that Boutet de Monvel,Pastur and Shcherbina express their results in a di�erent form, involving the Stieltjestransform, and that our Theorem 6.5.2 provides an alternative proof to their result(6.51).When one applies Boutet de Monvel, Pastur and Shcherbina's theorem to Gaussianrandom matrices (suppw = R and v a convex quadratic polynomial) we obtain thefamous semicircle law of Wigner. The limit distribution is a semicircle distribution; see[22] or sections 4.2, 5.4 and A.8 of [39] for more information. Note, though, that in theGaussian case we actually obtain almost sure convergence of the empirical distributions,not just convergence in B(Cb(R); L2(
)); this follows from the fact that, in the Gaussiancase, k�n � E �nkB(Cb(R);L2(
)) = O� 1n� (6.52)as n tends to in�nity, not just O � 1pn�.



CHAPTER 6. RANDOM MATRICES 736.6 Matrices generated by compactly supported weightsWe now assume suppw = [�1; 1] and w is twice di�erentiable with only �nitely manyzeros on (�1; 1), all of �nite order. Such ensembles were discussed recently in [45].Then we have the following result due to Szeg�o.Lemma 6.6.1 For all t 2 (�1; 1),(1� t2)1=4w(t)1=2Pn(t) = � 2��1=2 cos(n cos�1 t+ 
(t)) + "n(t) (6.53)where 
 depends on w but not n and "n(t) tends to zero uniformly in t as n tends toin�nity.Proof See theorem 12.1.6 of [48]. �In fact the function 
 is given by
(cos �) = H logfw(cos �)j sin �jg (6.54)where H denotes the Hilbert transform. See section 10.2 of [48] for details.We now use this lemma, together with Lemma 6.5.1, to obtain an analogous resultfor the density �1n.Lemma 6.6.2 For all t 2 (�1; 1),(1� t2)1=2�1n(t) = 1� + cos((n� 1) cos�1 t+ 2
(t)) sin(n cos�1 t)n�(1� t2)1=2 + �n(t) (6.55)where �n(t) tends to zero uniformly in t as n tends to in�nity.Proof Applying Lemma 6.5.1 and Lemma 6.6.1, and writing � for cos�1 t, we have(1� t2)1=2�1n(t) = 1n(1� t2)1=20@n�1Xj=0 Pj(t)21Aw(t) (6.56)= 2n� n�1Xj=0 cos2(j� + 
(t)) + 1n n�1Xj=0 "j(t)2 (6.57)= 1� + 1n� n�1Xj=0 cos 2(j� + 
(t)) + 1n n�1Xj=0 "j(t)2: (6.58)



CHAPTER 6. RANDOM MATRICES 74Of the three summands on the right hand side, the third clearly tends to zero uniformlyin t as n tends to in�nity; denote this by �n(t). Considering the second, we have1n� n�1Xj=0 cos 2(j� + 
(t)) = 1n�<�e2i
(t) 1� e2in�1� e2i� � (6.59)= 1n�<�ei((n�1)�+2
(t)) sinn�sin � � (6.60)= cos((n� 1)� + 2
(t)) sinn�n� sin � (6.61)which gives the desired-for expression. �These lemmas yield the following result, which is stated without proof by Pastur at theend of his paper [41] and attributed to a remark by M. Sodin.Theorem 6.6.3 The density �1n tends weakly to the standard arcsine density as n tendsto in�nity.Proof Applying Lemma 6.6.2 we require thatZ 1�1 ����cos((n� 1) cos�1 t+ 2
(t)) sin(n cos�1 t)n�(1� t2) ���� dt (6.62)tend to zero as n tends to in�nity. Making the substitution t = cos � gives1n Z �0 ����cos((n� 1)� + 2
(cos �)) sinn�sin � ���� d��� 1n �Z �0 cos2((n� 1)� + 2
(cos �))d�� �1=2 Z �0 �sinn�sin � �2 d�� !1=2 (6.63)by the Cauchy-Schwarz inequality. The left hand integral is clearly less than or equal to1 since j cos �j � 1 for all �. For the right hand integral we note the integrand is a Fej�erkernel and recall from Fourier analysis (see, for example, page 35 of [14]) thatZ �0 �sinn�sin � �2 d�� = n: (6.64)We conclude that the overall product is less than or equal to 1pn . We are �nished. �



CHAPTER 6. RANDOM MATRICES 75We deduce that the sequence (�n)n�1 of empirical distributions of the eigenvalues ofthe ensemble (Xn)n�1 converges in the Banach space B(Cb(R); L2(
)) to the standardarcsine distribution.



Chapter 7
Some analytic function theory
This chapter studies Bergman spaces of analytic functions and various notions of cotype,characterised in terms of analytic functions, for Banach spaces.The books [18] and [31] provide an introduction to analytic function theory, whilemore speci�c information on Bergman spaces may be found in the papers [1] and [23].Background details on the various forms of cotype considered may be found in [54].7.1 A result on Horowitz productsWe start with de�nitions. We have the unit discD = fz 2 C j jzj < 1g; (7.1)the pseudohyperbolic metric for the disc�(z; w) = ���� w � z1� wz ���� ; (7.2)where z; w 2 D , and the Blaschke factorBa(z) = ajaj a� z1� az (7.3)for z 2 D .Recall that a sequence (aj) � D is said to be H1 interpolating if, given any boundedsequence (zj) � C , there exists a function f 2 H1(D ) satisfying f(aj) = zj for each j.76



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 77Here H1(D ) denotes the Hardy space of bounded analytic functions on D . For moreinformation consult chapter VII of [18].We say a sequence (aj) � D satis�es the Carleson separation condition with constant�, for some � > 0, if for all k, Yj 6=k �(aj ; ak) > �: (7.4)By Carleson's theorem, for which see theorem VII.1.1 of [18] for example, a sequencein D is H1 interpolating if and only if it satis�es the Carleson separation condition forsome �. We call � the Carleson interpolation constant for (aj).If (aj) � D we de�ne its Horowitz product to beP(aj )(z) =Yj Baj (z)(2 �Baj (z)): (7.5)It may easily be shown this product converges locally uniformly to an analytic functionon D , with zeros (aj), if and only ifPj(1�jajj)2 <1. See [25] for details. In particularthe Horowitz product is a well-de�ned analytic function for H1 interpolating sequences.Consider the Bergman space L2a(D ) of analytic functions f : D ! C satisfyingkfk2L2a(D) = ZZD jf(z)j2 dA(z) <1 (7.6)where dA(z) denotes normalised area measure on D .The zeros (aj) of a function f lying in L2a(D ) satisfy Pj(1 � jaj j)2 < 1; thustheir Horowitz product P(aj ) de�nes an analytic function on D with zeros that of f .Furthermore ([23], page 114) P(aj ) is a contractive divisor on L2a(D ) in the sense thatf=P(aj) lies in L2a(D ) and satis�es kf=P(aj )kL2a(D) � kfkL2a(D) .We note that any H1 interpolating sequence (aj) is a Bergman space zero sequenceas the Blaschke product for (aj) is trivially in H1(D ) and thus L2a(D ); for details onthe theory of Blaschke products consult section II.2 of [18] or section IV.A of [31]. TheHorowitz product for (aj) may grow dramatically near the boundary of D , however, andis not necessarily an element of L2a(D ). We have the following result.



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 78Theorem 7.1.1 There exists an H1 interpolating sequence (aj) � D for which thecorresponding Horowitz product P(aj) does not lie in the Bergman space L2a(D ). That isZZD ������Yj Baj (z)(2 �Baj (z))������2 dA(z) =1: (7.7)Before proving this, we will prove the following.Lemma 7.1.2 Suppose we have a sequence (aj) � D satisfying the Carleson separationcondition with constant �. Fix ak and � 2 (0; �2�� ). Then for any z 2 D satisfying�(z; ak) < � (7.8)we have Yj 6=k �(z; aj) > � 11�� log� 1����2�+���: (7.9)In particular if � � �=2 thenYj 6=k �(z; aj) > � 11�� log� 2���2 � > 0 (7.10)which implies the cruder inequalityYj 6=k �(z; aj) > e� 31�� (log( 1� ))2 > 0: (7.11)Proof of Lemma 7.1.2 For any u; v; w 2 D we have the standard result for thepseudohyperbolic metric ([18], lemma I.1.4) that�(u; v) � j�(u;w) � �(v; w)j1� �(u;w)�(v; w) : (7.12)Thus Yj 6=k �(z; aj) � Yj 6=k �(aj ; ak)� �(z; ak)1� �(aj ; ak)�(z; ak) (7.13)= Yj 6=k �1� (1 + �(z; ak))(1 � �(aj ; ak))1� �(aj ; ak)�(z; ak) � (7.14)> Yj 6=k �1��1 + �1� �� (1� �(aj ; ak))� : (7.15)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 79Now on the interval [0;K] for 0 < K < 1,e�x � 1� x � e��� log(1�K)K �x; (7.16)and so as 0 < �1 + �1� �� (1� �(aj ; ak)) < �1 + �1� �� (1� �); (7.17)and the right hand side of this expression is less than 1 precisely when � < �2�� , we see1��1 + �1� �� (1� �(aj ; ak)) � e�"� log(1�( 1+�1�� )(1��))( 1+�1�� )(1��) #� 1+�1�� �(1��(aj ;ak)) (7.18)= e�"� log( ��2�+��1�� )1�� #(1��(aj ;ak)) (7.19)= he�(1��(aj ;ak))i � log( ��2�+��1�� )1�� ! (7.20)� �(aj ; ak) � log( ��2�+��1�� )1�� ! (7.21)= �(aj ; ak) 11�� log� 1����2�+���: (7.22)So Yj 6=k �(z; aj) > 0@Yj 6=k �(aj ; ak)1A 11�� log� 1����2�+��� (7.23)> � 11�� log� 1����2�+���: (7.24)Now, suppose � � �=2. Then as1� �� � 2� + �� = 12� � �1 + 2(1 � �)� � (2� �)� � (7.25)we see that this quantity is increasing as � increases from 0. Thus, for any � � �=2, thisquantity is less than or equal to its value at � = �=2. So1� �� � 2� + �� � 1� �� � 2� + �� �����=�=2 (7.26)= 2� ��2 : (7.27)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 80Thus, as � < 1 and log is increasing,Yj 6=k �(z; aj) > � 11�� log� 2���2 � > 0: (7.28)Now log�2� ��2 � < log� 2�2� (7.29)= log 2 + 2 log�1�� (7.30)< (log 2 + 2) log�1�� (7.31)< 3 log�1�� (7.32)as log �1� � < 1. So, as � < 1,Yj 6=k �(z; aj) > � 31�� log( 1� ) (7.33)= e� 31�� (log( 1� ))2 > 0: (7.34)�It will also be useful later to use the following result.Lemma 7.1.3 There exists a sequence (�j) � D , lying on the positive real axis andsatisfying 0 � �1 < �2 < � � �, which is H1 interpolating in Carleson's sense and yetXj (2� �)2(j�1)(1� �j)2 =1 (7.35)where � is the Carleson interpolation constant for (�j).Proof of Lemma 7.1.3 Consider the sequence�j = 1� �j�1 (7.36)for j = 1; 2; � � �, where 0 < � < 1. We shall �rst show the sequence (7.36) is H1interpolating.



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 81By Carleson's theorem ([18], theroem VII.1.1) a sequence (aj) � D is H1 interpo-lating if and only if �rstly it is separated, in the sense that for all j 6= k,�(aj ; ak) > � (7.37)for some constant � > 0, and secondly the measureXj (1� jajj) �aj (7.38)is a Carleson measure. Now for our sequence (7.36) we have from above that, for j < k,�(1� �j�1; 1� �k�1) = 1� �k�j1 + �k�j � �k�1 (7.39)> 1� �k�j1 + �k�j (7.40)� 1� �1 + � (7.41)as, for �xed j, the quantity on the second-to-last line increases with k. Thus, for any� 2 (0; 1), our sequence is separated with � = (1� �)=(1 + �).We now need to show the measure Pj �j�1�(1��j�1) is Carleson. As our sequencelies along the positive real axis, we see this is Carleson if and only if there is a constantC > 0 such that, for every " > 0, Xj:�j�1�"�j�1 � C": (7.42)But Xj:�j�1�"�j�1 = Xj:j�1+(log "= log�)�j�1 (7.43)= �l log "log�m1� � (7.44)� �� log "log��1� � (7.45)= "1� � ; (7.46)thus, for any � 2 (0; 1), our measure is Carleson with C = 1=(1 � �).



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 82Thus for all � 2 (0; 1) the sequence (7.36) is H1 interpolating. Assume, for �xed �,that (7.36) is H1 interpolating with constant �. For all j < k we have� < �(�j ; �k) (7.47)= �j�1 � �k�11� (1� �j�1)(1� �k�1) (7.48)= 1� �k�j1 + �k�j � �k�1 ; (7.49)which leads, putting k = j + 1, to � < 1� �1 + �� �j (7.50)for each j. As the term on the right hand side decreases and �j tends to zero as jincreases we see � � 1� �1 + �: (7.51)Now Xj (2� �)2(j�1)(1� �j)2 =Xj [(2� �)�]2(j�1); (7.52)which tends to in�nity provided (2� �)� > 1. As(2� �)� � �2��1� �1 + ���� = �(1 + 3�)1 + � ; (7.53)we see the sum (7.35) tends to in�nity if�(1 + 3�)1 + � > 1: (7.54)But this holds if and only if �(1 + 3�) > 1 + �, which in turn is equivalent to �2 > 1=3.As � > 0, we see the sum (7.35) tends to in�nity if � > 1=p3.We have thus shown that, for any � 2 (1=p3; 1), the sequence (7.36) satis�es therequirements of the lemma. �



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 83We may now �nally prove our main result.Proof of Theorem 7.1.1 Let (aj) � D be an H1 interpolating sequence with constant�, so for all k, Yj 6=k �(aj ; ak) > �: (7.55)For any w 2 D and � > 0, letH�(w) = fz 2 C j �(w; z) < �g (7.56)denote the pseudohyperbolic ball of radius � about w. Consider the balls H�=2(aj). Notethat, because of the Carleson separation condition, these balls are disjoint. Fix k. Thenfor any z 2 H�=2(ak),Yj Baj (z)(2 �Baj (z)) = Bak(z) Yj 6=kBaj (z) Yj<k(2�Baj (z)) Yj�k(2�Baj (z)); (7.57)which gives���P(aj )(z)��� = jBak(z)j Yj 6=k ��Baj (z)�� Yj<k ��2�Baj (z)�� Yj�k ��2�Baj (z)�� : (7.58)Now ��2�Baj (z)�� � 1 (7.59)for all j � k and Yj 6=k ��Baj (z)�� =Yj 6=k �(z; aj) > e� 31�� (log( 1� ))2 > 0 (7.60)by Lemma 7.1.2, so���P(aj )(z)��� > e� 31�� (log( 1� ))2 jBak(z)j Yj<k ��2�Baj (z)�� : (7.61)Consider ��2�Baj (z)�� for j < k. Certainly these are all greater than or equal to 1. Butcan we improve on this? Note that2�Baj (z) = 2�Baj (ak) +Baj (ak)�Baj (z) (7.62)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 84and therefore ��2�Baj (z)�� � ��2�Baj (ak)��� ��Baj (z)�Baj (ak)�� : (7.63)Now, the generalised form of Schwarz's lemma ([18], lemma I.1.2) states that analyticfunctions f : D ! D are contractions for the pseudohyperbolic metric, that is�(f(z); f(w)) � �(z; w) (7.64)for all z; w 2 D . Thus, as Blaschke factors are analytic functions D ! D , we have�(Baj (z); Baj (ak)) � �(z; ak) < �=2; (7.65)which implies ��Baj (z)�Baj (ak)�� < (�=2) ���1�Baj (ak)Baj (z)��� � �: (7.66)So ��2�Baj (z)�� > ��2�Baj (ak)��� �: (7.67)Henceforth we will assume the (aj) lie along the positive real axis, with 0 � a1 < a2 < � � �.This implies that Baj (ak) � 0 for all j < k, which in turn implies ��2�Baj (ak)�� � 2 forall j < k. Thus ��2�Baj (z)�� > 2� � (7.68)for all j < k. So ���P(aj )(z)��� > e� 31�� (log( 1� ))2(2� �)k�1 jBak(z)j ; (7.69)and thusZZH�=2(ak) ���P(aj )(z)���2 dA(z) > e� 61�� (log( 1� ))2(2� �)2(k�1) ZZH�=2(ak) jBak(z)j2 dA(z): (7.70)Let us consider this last integral. Putw = z � ak1� akz ; (7.71)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 85then z = w + ak1 + akw; (7.72)which yields, upon calculating the Jacobian,dA(z) = (1� jakj2)2(1 + akw)2(1 + akw)2 dA(w) (7.73)� (1� jakj2)2(1 + jakj jwj)2 dA(w) (7.74)� (1� jakj2)2(1 + jakj)2 dA(w) (7.75)= (1� jakj)2 dA(w) (7.76)where we interpret all inequalities in the sense of positive measures on D . ThusZZH�=2(ak) jBak(z)j2 dA(z) � ZZjwj<�=2 jwj2 (1� jakj)2 dA(w) (7.77)= (1� jakj)2� Z 2��=0Z �=2r=0 r3 dr d� (7.78)= 2(1 � jakj)2 Z �=20 r3 dr (7.79)= 2(1 � jakj)2 (�=2)44 (7.80)= �432(1� jakj)2: (7.81)So ZZH�=2(ak) ���P(aj)(z)���2 dA(z) > �432e� 61�� (log( 1� ))2(2� �)2(k�1)(1� jakj)2 (7.82)and hence, as the H�=2(ak) are disjoint,ZZD ���P(aj )(z)���2 dA(z) > Xk ZZH�=2(ak) ���P(aj )(z)���2 dA(z) (7.83)> �432e� 61�� (log( 1� ))2Xk (2� �)2(k�1)(1� jakj)2: (7.84)Thus our theorem will be proved if we can exhibit an interpolating sequence (aj) withconstant �, lying along the positive real axis, satisfyingXk (2� �)2(k�1)(1� jakj)2 =1: (7.85)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 86We observe that Lemma 7.1.3 provides such a sequence, namely (1��j�1) with � lyingin (1=p3; 1). The proof is complete. �7.2 On analytic Lusin cotypeLet E be a Banach space, let D denote the unit disc in C , let TN denote the in�nitetorus equipped with normalised Haar measure, let 2 � q <1, let Lq(TN ;E) denote theBochner Lq space of functions from TN to E and let Hq(D ;E) denote the Hardy spaceof analytic functions f : D ! E satisfyingkfkq = supr<1 �Z 2�0 kf(rei�)kqE d�2��1=q <1: (7.86)Let ~Hq(D ;E) denote the closure of the E valued polynomials in the space Hq(D ;E).We say E is of analytic Lusin cotype q if there exists C > 0 such that for allf 2 Hq(D ;E), equivalently for all f 2 ~Hq(D ;E),�Z 10 (1� r)q�1 

f 0r

qq dr�1=q � C kfkq (7.87)where fr(ei�) = f(rei�). Note that we may replace the left hand side above with any ofthe following, which are all equivalent up to constants:kGq(f)kq where Gq(f)(z) = �Z 10 (1� r)q�1 

f 0(rz)

qE dr�1=q ; (7.88)which is a variant of the Littlewood-Paley g-function;kSq(f)kq where Sq(f)(z) =  Z�(z)(1� j�j)q�2 

f 0(�)

qE dA(�)!1=q ; (7.89)which is a variant of the Lusin area integral; and0@Xn�0 2�nq 

f 0rn

qq1A1=q : (7.90)Here z 2 T and �(z) = f� 2 D : jarg z � arg �j < 1� j�jg.



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 87We say the space Hq(D ;E) satis�es a radial lower q-estimate if there exists C � 1such that, for all sequences 0 � r0 < r1 < � � � < rN < 1 and f 2 Hq(D ;E),0@Xn�0

frn � frn�1

qq1A1=q � C kfkq ; (7.91)where we set fr�1 = 0. Notice that the property remains the same when we only requirethat f 2 ~Hq(D ;E).We say E is of Hardy (respectively analytic) martingale cotype q if there exists C > 0such that, for all Hardy (respectively analytic) martingales (Mn)n�0 with Mn lying inLq(TN ;E) for each n, 0@Xn�0 kMn �Mn�1kqq1A1=q � C supn�0 kMnkq ; (7.92)where we set M�1 = 0. De�nitions and basic properties of Hardy and analytic mar-tingales are in [54]. In [43] Pisier shows that a Banach space E has Hardy martingalecotype q if and only if Hq(D ;E) satis�es a radial lower q-estimate (theorem 7.8).In [54] Xu shows that, for a Banach space E, E has Hardy martingale cotype q impliesE is of analytic Lusin cotype q (theorem 5.1(i)) and, furthermore, E is of analytic Lusincotype q implies E has analytic martingale cotype q (theorem 5.1(ii)). Xu conjecturesthat analytic martingale cotype and Hardy martingale cotype are identical properties.We see that, if it could be proved that E of analytic Lusin cotype q implies Hq(D ;E)satis�es a radial lower q-estimate, it would follow that Hardy martingale cotype andanalytic Lusin cotype are identical properties.We will prove a somewhat weaker result.Theorem 7.2.1 If E is a Banach space of analytic Lusin cotype q then Hq(D ;E) satis-�es a geometric radial lower q-estimate; that is to say, given any K satisfying 0 < K < 1,the radial lower q-estimate condition (7.91) holds, with constant C depending on K, forall sequences 0 � r0 < r1 < � � � < rN < 1 satisfying1� rn1� rn�1 � K (7.93)for all n.



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 88Proof Let f 2 ~Hq(D ;E) and 0 < K < 1. It su�ces to show there is a �nite C,depending on K but independent of f , such thatXn�1

frn � frn�1

qq � C Z 10 (1� r)q�1 

f 0r

qq dr (7.94)for all sequences 0 � r0 < r1 < � � � < rN < 1 satisfying (7.93). Now, we have

frn � frn�1

qq = Z 2�0 


f(rnei�)� f(rn�1ei�)


qE d�2� (7.95)= Z 2�0 




Z rnrn�1 f 0(rei�) dr




qE d�2� : (7.96)Notice this last step employs the analyticity of f .We now use the result that, if P is any Radon probability measure on [rn�1; rn]and X is any element of Lq([rn�1; rn];P;E) then, by H�older's inequality, kEXkE ��E kXkqE�1=q. Take P to be the probability measure dr1�r hlog� 1�rn�11�rn �i�1 and X to bethe function r 7! (1� r)f 0(rei�). Then




Z rnrn�1 f 0(rei�) dr




qE= 




Z rnrn�1(1� r)f 0(rei�) � dr1� r �log�1� rn�11� rn ���1




qE �log�1� rn�11� rn ��q(7.97)� Z rnrn�1(1� r)q 


f 0(rei�)


qE � dr1� r �log�1� rn�11� rn ��q�1 (7.98)= �log�1� rn�11� rn ��q�1 Z rnrn�1(1� r)q�1 


f 0(rei�)


qE dr: (7.99)Thus we haveXn�1

frn � frn�1

qq� Xn�1"Z 2�0 �log�1� rn�11� rn ��q�1 Z rnrn�1(1� r)q�1 


f 0(rei�)


qE dr d�2�# (7.100)= Xn�1"�log�1� rn�11� rn ��q�1 Z rnrn�1(1� r)q�1 

f 0r

qq dr# (7.101)� supn�1 �log�1� rn�11� rn ��q�1 � Z 10 (1� r)q�1 

f 0r

qq dr: (7.102)



CHAPTER 7. SOME ANALYTIC FUNCTION THEORY 89As q � 2 and log is an increasing function,�log�1� rn�11� rn ��q�1 � �log� 1K��q�1 <1 (7.103)for all n. Thus we may take C = �log � 1K ��q�1; the proof is complete. �



Chapter 8
Unresolved questions
This last chapter will detail some possible avenues for future research.1) On stochastic integration with predictable integrandsLet E be a separable Banach space. Theorem 3.2.2 considered the stochastic integralin E of a deterministic integrand with respect to a Q-Wiener process. Under whatcircumstances may we generalise this, and de�ne an Itô stochastic integralZ ts Tu dBu; (8.1)for (Tu)s�u�t a random family of bounded linear operators on E which is predictable withrespect to the �ltration induced by the Q-Wiener processBu? Under what circumstancesmay we de�ne the integral in the case where Bu is a more general stochastic process inE with independent increments? These questions were considered recently in the paper[7].2) On uniqueness and adaptedness of the Ornstein-Uhlenbeck processWithin the framework of Theorem 4.2.1, under what precise circumstances is the Banachspace valued Ornstein-Uhlenbeck processZt = 1p2� Z 1�1 ei!t(� + i!I)�1 d ~B! (8.2)90



CHAPTER 8. UNRESOLVED QUESTIONS 91unique in distribution? Under what precise circumstances is Zt adapted to the �ltrationinduced by the Q-Wiener process Bt? Corollary 4.2.2 gives a su�cient condition forboth uniqueness and adaptedness.3) On the almost sure convergence of (�n � E �n)n�1Within the framework of Theorem 6.5.2, under what precise circumstances do we havealmost sure convergence of the sequence (�n� E �n)n�1 to zero? This occurs in the caseof Gaussian random matrices; see [22] for more details.4) On the zeros of an orthogonal polynomialWithin the framework of sections 6.5 and 6.6, let w be a weight function on R and let(Pn)n�0 denote the sequence of orthonormal polynomials associated to w. For each n � 1let (�j(Pn))nj=1 denote the set of zeros of Pn, where �1 � � � � � �n. De�ne a probabilitymeasure �n on R for each n � 1 via�n = 1n nXj=1 ��j(Pn): (8.3)The probability measure �n is known as the empirical distribution of the zeros of Pn; itis natural to ask how this behaves as n tends to in�nity.Under certain circumstances the measures (�n)n�1 and the random measures (�n)n�1associated to the ensemble (Xn)n�1 converge to the same limit as n tends to in�nity;this limit is the integrated density of states �1. The measures (�n)n�1 converge weaklywhile the random measures (�n)n�1 converge in B(Cb(R); L2(
)).In [41] Pastur proved this holds in the special case where suppw is the whole of Rand w(x) = expf�jxjrg for some r > 1.This result also holds when the weight function w has compact support; this wasproved by Szeg�o in [48]. In his paper [45] Shirai used Szeg�o's results to calculate thelimiting value of 1n log E det(��Xn)�1, for complex � and compactly supported w, as ntends to in�nity.Under what precise circumstances do (�n)n�1 and (�n)n�1 converge to the same limit



CHAPTER 8. UNRESOLVED QUESTIONS 92as n tends to in�nity?5) On spectral representations and analytic functionsThe Ornstein-Uhlenbeck process (8.2) provides an example of a spectral representationfor a Banach space valued weakly stationary stochastic process. What other Banachspace valued weakly stationary processes may be expressed as a stochastic integral inthis way and under precisely which circumstances may we represent the autocovariancefunction of a Banach space valued weakly stationary process as a spectral integral?In other words, given a weakly stationary process Xt in a Banach space E, underwhat circumstance may we write Xt = Z 1�1 ei!t dU! (8.4)where U! is a spectral stochastic process with independent increments? If Xt has auto-covariance function 	 then under what circumstances may we write	(t) = Z 1�1 ei!t�(d!) (8.5)where � is a measure on R taking values in a space of covariance operators? If we dohave such a measure �, under what circumstances does � factor as ���, where � is ananalytic function on the upper half plane? This problem was considered extensively in[43].When considering such factorisations, should we view our analytic functions as el-ements of vector valued Hardy spaces, as was done in the �nite dimensional case byMasani and Wiener ([37], [38]) and more recently in the general case by Pisier ([43]), orshould we be viewing them as elements of more general spaces, such as vector valuedBergman spaces?Such a factorisation theory is likely to have major applications to the predictiontheory of Banach space valued stochastic processes; such a conjecture was made byPisier at the end of [43].
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