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Solid-state single-photon emitters are key components for integrated quantum photonic devices.

However, they can suffer from poor extraction efficiencies, caused by the large refractive index

contrast between the bulk material they are embedded in and air: this results in a small fraction

(that can be as low as �0.1%) of the emitted photons reaching free-space collection optics. To

overcome this issue, we present a device that combines a metallic nano-ring, positioned on the sam-

ple surface and centered around the emitter, and an epoxy-based super-solid immersion lens, depos-

ited above the ring devices. We show that the combined broadband lensing effect of the nano-ring

and the super-solid immersion lens significantly increases the extraction of light emitted by single

InAs/GaAs quantum dots into free space: we observe cumulative enhancements that allow us to

estimate photon fluxes on the first collecting lens approaching 1 � 106 counts per second, from a

single quantum dot in bulk. The combined broad-band enhancement in the extraction of light can

be implemented with any kind of classical and quantum solid-state emitter and opens the path to

the realisation of scalable bright devices. The same approach can also be implemented to improve

the absorption of light, for instance, for small-area broadband photo-detectors. Published by AIP
Publishing. https://doi.org/10.1063/1.5023207

Improving the efficiency in the extraction of light from

solid-state emitters into free space is a challenge that often

needs to be overcome when dealing with photonic devices.

Total internal reflection due to the refractive index contrast

between different materials results, in some cases, in even less

than 0.1% of the emitted photons to be collected into free

space. This is a clear drawback if one wants, for instance, to

use light for quantum information processing, where high

fluxes of single photons and minimised losses are required.1

Furthermore, the shape of the emitted light beam and its angu-

lar divergence are important parameters to control in order,

for instance, to optimise the coupling efficiency of light into

optical elements like objectives and single-mode fibers that

can be used for propagating classical or quantum light over

long distances with low loss. To improve the extraction effi-

ciency of light, several photonic devices have been realised:

optical cavities, which have the advantage of Purcell enhance-

ments of the spontaneous emission rate,2 achieving extraction

efficiencies up to 65%, although limited to relatively narrow

bandwidths;3 nanowire geometries that allow guiding and

shaping of the emitted light in a broad-band device, reaching

efficiencies as high as 72%.4 Optical microlenses that provide

broad-band improvements in the brightness of the emitted

light of up to one order of magnitude are also widely used5

and have been deterministically fabricated around specific

emitters6,7 or deposited from the liquid phase.8 We have

recently demonstrated that, by using an all-optical positioning

technique, metallic nano-rings can be fabricated around spe-

cific emitters in order to obtain broad-band increases in the

brightness of the emitted light, reaching enhancement factors

as high as �20.9 Here, we combine such metallic nano-rings

with epoxy-based super-solid immersion lenses (super-SILs)8

to combine the broad-band enhancement effects of the two

devices and obtain bright emission from single InAs/GaAs

quantum dots (QDs). We note that this technique is non-

destructive and that both the ring and the super-SIL can be

removed if required, leaving the properties of the emitters

unchanged. Furthermore, such a combined approach can be

also implemented to improve the absorption of light in small-

scale broadband photo-detectors.

A schematic of the sample under study, containing a sin-

gle layer of low density (�1 per 1000 lm�2) InAs/GaAs QDs,

is shown in Fig. 1(a). We use a photoluminescence imaging

technique, based on a double light-emitting diode (LED) illu-

mination10 of a sample containing one layer of single InAs/

GaAs QDs. A 455 nm-LED is used to excite the QD emission,

and a 940 nm-LED illuminates metallic markers that are

deposited on the sample surface in order to locate single QDs.

An example of a photoluminescence image, collected with an

electron-multiplying charge coupled device (EMCCD), of

metallic alignment marks deposited on the sample surface and

of the emission of single QDs is shown in Fig. 1(b). By means

of aligned electron-beam lithography, metal evaporation, and

chemical lift off, gold nano-rings are then deposited on the

sample surface, centred around specific emitters [see Fig.

1(c)—for more details, see Ref. 9].

To evaluate potential losses due to the presence of the

metal, we have calculated, via finite-difference time-domain

simulations, the total emission of a dipole before and after

the metallic ring is deposited on the sample surface. Thisa)Electronic mail: l.sapienza@soton.ac.uk. URL: www.quantum.soton.ac.uk
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shows that, given the distance between the emitter and the

metallic ring, losses are negligible.

A super-SIL11 is formed by dispensing liquid ultraviolet

(UV)-curable epoxy (with a refractive index of 1.54) onto a

substrate over the region of the sample containing the metal-

lic nanorings [see Figs. 1(d) and 1(e)]. The dispensing envi-

ronment is filled with a liquid phase medium (glycerol),

designed to increase the contact angle between the droplet

edge and the substrate, by modification of the interfacial sur-

face tensions,12 and, subsequently, the lens is solidified by

exposure to UV light.

By carrying out micro-photoluminescence spectroscopy,

we measure the intensity of light emitted by selected QDs at

cryogenic temperatures (�10 K), under non-resonant laser

excitation (with a continuous-wave laser with an emission

wavelength of 780 nm), as a function of pump power. We

report the flux of photons on the first lens as a way to evalu-

ate the emission brightness independently of the specific

setup and detector used. We measure the transmission

(�17.5%) and detection efficiency (�7.3%) of our setup and

use them to extract the photon flux on the collection objec-

tive with a numerical aperture of 0.65. The results of our

measurements are shown in Fig. 2: the intensity of a single

QD emission line is first enhanced by the metallic nano-ring

and then further enhanced by the super-SIL. Such cumulative

enhancements allow us to measure �11 000 counts/s (peak

value) on the CCD and estimate photon fluxes on the first

lens (with NA¼ 0.65) as high as �900 000 counts/s from a

single QD in bulk. By carrying out photoluminescence mea-

surements under pico-second, above-band (780 nm) laser

excitation, we can extract the fraction of emitted single-

photons collected on the first lens. Considering unitary effi-

ciency in the QD emission process and taking into account

that the excitation laser has a fixed repetition rate of 50 MHz,

we calculate an efficiency at a saturation level of �1%. We

would like to stress that this is a lower bound, given that the

emission efficiency of the QD can be lower than one.13 As

shown in Fig. 3, different QDs in bulk show different levels

FIG. 1. (a) Schematic of the sample (vertical section, not to scale). (b) Example of a photoluminescence image, obtained under double LED illumination on an

EMCCD camera (see main text for more details), showing metal alignment markers and the photoluminescence emission from two QDs, highlighted by the

dashed lines (before super-SIL deposition, EMCCD settings: 2 s integration, 100 acquisitions). (c) False colour scanning electron micrograph of a metallic

nano-ring, with critical dimensions shown. (d) Side profile of a super-SIL with critical dimensions shown. (e) Optical micrograph of a super-SIL deposited on

a sample in correspondence to metallic alignment markers and nano-rings. Inset: Zoom-in of a single field showing metallic alignment markers and nano-rings

positioned around selected QDs (highlighted by the arrows).

FIG. 2. Left: Photoluminescence spectra collected at saturation pump power

for the emitter in bulk (blue line), after ring deposition (red line) and after

super-SIL placement (black line). Right: Intensity of the emission lines

shown in panel (a) plotted as a function of laser excitation power density

(lighter dots correspond to the peak intensity measured from the spectra

shown in the left panel, and dashed lines are fits to the data). Note that the

photon fluxes on the first lens are estimated by taking into account the trans-

mission of the setup and the sensitivity of the CCD camera (see main text

for more details).
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of brightness: this is due to the different quantum efficiency

of each emitter as grown. The enhancement factor derived

from the super-SIL depends on the relative position of the

QD with respect to the apex of the lens: therefore, we

observe a range of enhancements that depend on the position

of the emitter. Given the millimeter size of the super-SIL,

the dependence of the light extraction enhancement factor on

the distance of the emitter from the SIL5 is negligible in the

present case. The statistics of the enhancement factors mea-

sured on QDs in bulk and within metallic nano-rings are

shown in Fig. 3. It is worth noting that different QD emission

lines are enhanced by different factors by the metallic nano-

rings, as already discussed in Ref. 9, while the super-SIL

effect is measured to be the same for the different emission

lines of a given QD.

From the analysis of Fig. 1(e), we can estimate the hori-

zontal distance of the ring devices from the super-SIL apex,

as shown in Table I. It is worth underlining that the super-

SIL can create distortions in the top imaging of the grid, thus

introducing errors that are difficult to quantify. Overall, the

ring devices are within 100 lm from the apex, proving that

the super-SIL can be placed with enough accuracy to obtain

the significant enhancement factors shown in Fig. 3. Given

that the QD emission pattern is also modified by the nano-

rings, the variations of the extraction efficiency as a function

of distance from the super-SIL’s apex cannot be easily

simulated.

Overall, we measure enhancement factors as high as�8

by the nano-rings and up to�10 by the super-SIL. We note

that previous work9 has shown enhancements as high as�20

by the nano-rings: therefore, for an ideally located super-SIL

and nano-ring, cumulative enhancement factors as high as

�200 could be potentially achieved. Further enhancements

in the collected intensity can be obtained by introducing a

bottom mirror (like a metallic layer or a distributed Bragg

reflector) that would reflect the fraction of the light that is

currently emitted towards the substrate towards the collec-

tion optics and using emitters closer to the sample surface.14

The combined lensing effect that we have reported,

which derives from the deterministically fabricated metallic

nano-ring and the super-SIL, is wavelength insensitive in a

wide range of infra-red wavelengths, therefore broad-band,

and compatible with any kind of solid-state emitter of classi-

cal or quantum light on any substrate. Furthermore, given

that the emitters are in bulk, detrimental effects affecting, for

instance, the coherence and/or stability of the light emission

(that derive from the proximity to surface states due to the

presence of etched surfaces15 that are needed when fabricat-

ing, for instance, pillar or photonic crystal structures) will be

avoided in the emitters embedded within our devices.

In conclusion, we have shown how epoxy super-SILs

can be implemented to enhance the extraction efficiency

from single QDs and how such an effect can be combined to

metallic nano-rings to realise broad-band devices allowing

increases in the intensity of the light emitted by solid-state

sources. We have implemented such a combined system to

show bright emission from single QDs in bulk, reaching esti-

mated photon fluxes approaching 1 � 106 counts per second,

in a scalable and easy-to-fabricate device: the positioning of

single QDs can be carried out in an automated system,16 the

dimensions of the rings are compatible with photolithogra-

phy and nano-imprint, and the super-SIL deposition requires

only optical microscopy tools.
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FIG. 3. Left panel: Histograms show-

ing the photon flux on the first lens

placed above the QD sample, at satura-

tion pump powers, for the emitters in

bulk (blue), with a nano-ring deposited

on the sample surface (red), and with a

super-SIL and/or nano-ring deposited

on the sample surface (black). Right

panel: Enhancement factors derived

from the nano-rings and super-SILs,

measured on the QDs shown in the left

panel, using the same colour coding.

(Note that for device numbers 4–7, the

black bars represent the cumulative

enhancement factor of the nano-ring

and the super-SIL.)

TABLE I. Horizontal distance between the QD and the super-SIL apex

(error �60.1 lm).

QD

number 1 2 3 4 5 6 7 8 9 10 11 12

Distance

(lm)

78.7 28.5 97.0 70.3 55.0 55.0 42.9 99.2 71.3 90.1 58.0 20.8
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