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Abstract
This paper investigates the effects of an unknown speech sam-
ple’s segmental content (the specific vowels and consonants
it contains) on its chances of being successfully classified by
an automatic accent recognition system. While there has been
some work to investigate this effect in automatic speaker recog-
nition [1], it has not been explored in relation to automatic ac-
cent recognition. This is a task where we would hypothesise that
segmental content has a particularly large effect on the likeli-
hood of a successful classification, especially for shorter speech
samples. By focussing on one particular text-dependent auto-
matic accent recognition system, the Y-ACCDIST system [2],
[3], we uncover the phonemes that appear to contribute more
or less to successful classifications using a corpus of Northern
English accents. We also relate these findings to the sociopho-
netic literature on these specific spoken varieties to attempt to
account for the patterns that we see and to consider other factors
that might contribute to a sample’s successful classification.

1. Introduction
Rather than aiming to improve recognition performance, this
paper focusses on the properties of the unknown sample and its
resulting chances of undergoing a successful analysis by a given
methodology. Possible properties we might be interested in are
the sample’s recording quality or its duration. However, this pa-
per is primarily concerned with the segmental composition of
an unknown speech sample (i.e. the specific vowel and conso-
nant phonemes, and their frequencies, that are contained within
it). The segmental composition is likely to have an effect on
text-dependent systems that rely on segmental features to form
models and perform recognition. This work investigates this as-
pect of an unknown speech sample in the context of automatic
accent recognition. Segmental content effects have been con-
sidered in past research in relation to automatic speaker recog-
nition performance, rather than accent recognition [1], [4]. We
therefore transfer these ideas to automatic accent recognition.

It is also expected that the outcome of an analysis depends
on the individual speakers themselves (i.e. some speakers are
more suited to the classification task than others). The variable
of individual speaker identity is also accounted for, both in the
statistical analysis and in the discussion of results.

This line of research could ultimately lead us to discover
which speech samples may or may not be suitable for a given
methodology, which could be of particular value to more sensi-
tive causes, such as security or forensic applications.

2. Previous Research
This section first reviews past work on developing automatic
accent recognition systems, with reference to their performance.

We then move on to talk about past studies that have considered
segmental effects on system performance.

2.1. Automatic Accent Recognition

Automatic accent recognition research has largely followed au-
tomatic speaker recognition research by adopting the same tech-
niques and applying them to a different problem. For exam-
ple, [5] looked at automatic accent classification using a GMM-
UBM (Gaussian Mixture Model Universal Background Model)
system on different dialects of Mandarin Chinese. At the time
of writing in 2010, [6] referred to the GMM-UBM system ar-
chitecture as the “de facto reference method in speaker recogni-
tion”. Having trained separate GMM-UBM accent recognition
systems for male and female Mandarin Chinese speakers, [5]
observed error rates of 15.5% and 11.7%, respectively. Fol-
lowing the more recent trends in automatic speaker recognition,
there has been other research on developing and testing i-vector-
based systems for accent recognition tasks [7], [8], [9], [10].
[10] reported a recognition rate of 76.76% accuracy on a task
classifying speakers into one of 14 accent categories collected
from locations across the breadth of the British Isles using an
i-vector-based system.

The systems discussed so far are text-independent systems,
which refers to the system property of not requiring an accom-
panying transcription of the speech sample to classify that sam-
ple. There has also been some work on text-dependent accent
recognition systems, where a transcription is required for clas-
sification. The system presented in this paper is text-dependent,
and this is based on the ACCDIST metric (Accent Characteri-
zation by Comparison of Distances in the Inter-segment Simi-
larity Table metric) [11], [12]. The ACCDIST metric provides
a means to represent the realisational differences in speakers’
pronunciation systems. For example, it aims to capture whether
a speaker’s production of the vowels in the words FOOT and
STRUT are different (typical of a Standard Southern British En-
glish speaker) or very similar (typical of a Northern English
English speaker). More specific details of how an ACCDIST-
based system works are given below in Section 3.2. [13]
demonstrated the performance of an ACCDIST-based system in
their work and observed a recognition rate of 95.18% accuracy
on a 14-way accent recognition task using this modelling ap-
proach. Their ACCDIST-based system outperformed a GMM-
UBM system, which achieved 61.13%, on the same accent
recognition task. This striking performance difference is per-
haps expected in a comparison between text-independent (with
no prior knowledge of the segmental contents of the speech
samples) and text-dependent systems (with prior knowledge of
the segmental contents of the speech samples).

Despite the performance differences between text-
independent and text-dependent systems, the number of



applications we can use a text-dependent system for is signif-
icantly limited, compared to text-independent systems. The
ACCDIST-based systems presented by [11] and [13] were
particularly limited due to the fact that the spoken content of
the sample we wish to classify must match that of the training
data (i.e. all speakers must be producing the same reading
passage or prompts). The York ACCDIST-based automatic
accent recognition system (the Y-ACCDIST system) was
developed to explore whether we can take advantage of the
ACCDIST-based modelling approach, while also working with
content-mismatched data (i.e. running tasks where the spoken
content of the training data and the unknown speech sample we
wish to classify does not need to match) [2], [3]. This makes
it possible to work with spontaneous speech. While there are
clearly practical limitations to requiring a transcription, [2]
proposed that a system like this could still have a place in
forensic applications, where a transcription of a speech sample
might be available and could help to identify the geographical
origin of unknown speakers in legal investigations.

The work here advances on automatic accent recognition
research by reflecting on the speech samples that these tech-
nologies aim to classify. Presumably some speech samples are
more suitable for an automatic analysis by these systems than
others. This might be down to the quality of the recording con-
ditions or how typical a speaker might be of a given accent vari-
ety. The aspect of a speech sample the present study is targeting
is the segmental content of the speech sample (i.e. the indi-
vidual vowels and consonants a speech sample contains). We
might expect that accent recognition technology in particular
is very sensitive to a speech sample’s segmental composition.
Taking the Y-ACCDIST system, this study steps towards un-
covering the segmental criteria a speech sample should meet
for a reliable accent classification analysis to take place.

2.2. Segmental Effects

From the automatic speaker recognition literature, we can
gather that different speech segments (e.g. vowels, consonants,
particular syllables, etc.) can have different effects on recog-
nition performance. We can linguistically constrain a speaker
recognition system to only use specified speech segments in an
analysis. [14] talks about this selective approach as a ‘condi-
tioning’ process of the models. [15] demonstrate the effects
of conditioning a GMM-UBM speaker recognition system in
this way by enforcing syllable-based constraints. They found
that by only using monosyllabic words in these systems, they
can achieve comparable recognition rates to using all data avail-
able. Identifying a particularly useful segment type could sig-
nificantly reduce the computational cost involved.

[16] similarly conditioned an automatic speaker recogni-
tion system, this time i-vector-based speaker recognition. They
trained and tested individual i-vector-based systems on sin-
gle phonemes and diphones. They indeed found that some
phonemes outperformed others on this task.

The studies so far discussed in this section have concerned
the segments involved in both the training data and the test data.
However, this paper is most concerned with the segments found
in just the test data, and how this affects an already-trained sys-
tem. This has been touched upon in the speaker recognition
research literature. [17] looked at the effects of shorter du-
rations of test utterances on speaker recognition performance.
Within [17]’s study, they show the exponential reduction of the
number of unique phonemes as a speech sample decreases, and
speculate about the link between the phonemic coverage that a

speech sample has and its likelihood of being accurately anal-
ysed. However, they do not run experiments to directly investi-
gate this link.

[1] explored the relationship between the segmental con-
tent of test samples and the outcome of an automatic speaker
recognition analysis. They did not find a significant result to
confirm that the phonetic contents of a speech sample affects its
likelihood of being accurately analysed, but they also acknowl-
edge that this does not mean that there is not an effect at all.
One criticism of their experiments is that they used a corpus
of phonetically balanced read prompts. Controlling data like
this does not allow us to see the effects of the natural distribu-
tion of speech segments that a language offers. It is preferable
to run these kinds of experiments on spontaneous speech, but
of course finding or acquiring enough transcribed spontaneous
speech data can prevent this kind of valid research from taking
place.

The present study asks these questions around test samples’
segmental content of automatic accent recognition technology,
specifically the Y-ACCDIST system. Because the Y-ACCDIST
system so heavily relies on segmental features, we could rea-
sonably expect that the segmental composition of speech sam-
ples will indeed have an effect on the likelihood of running a
successful analysis.

3. Experiments
This section describes the components of the experiments in
this study. First, the data and the Y-ACCDIST system are de-
scribed followed by the method to explore the relationship be-
tween a speech sample’s segmental content and successful clas-
sification. The results are also presented and analysed in this
section before being discussed.

3.1. Data

The corpus used for these experiments is the Language Change
in Northern Englishes corpus [18]. This corpus has been chosen
because it contains a substantial amount of transcribed sponta-
neous speech per speaker. The subset of the corpus used for
these experiments includes an approximate balance of young
male and female speakers from three Northern English cities:
Manchester, Newcastle and York. Within each of these accent
groups, we used 15 speakers. For each speaker, we have 10
minutes of transcribed net speech available to use for these ex-
periments. The data were originally collected for sociolinguistic
research purposes. The speakers were recorded in pairs having
a conversation.

In some previous experiments presented in [19], the Y-
ACCDIST system achieved an accent recognition rate of 83.3%
correct using the full 10 minutes of speech to represent each
speaker on the three-way classification task. This was achieved
by running the system in a leave-one-out cross-validation con-
figuration. 10 minutes of speech per speaker is an unrealistic
quantity to expect from a speaker in real-life applications. This
paper is more concerned with much shorter durations, and so
these 10-minute stretches were segmented to durations around
30 seconds for the purposes of these experiments.



3.2. The Y-ACCDIST System description

This section will first outline how we model the training speak-
ers’ speech samples and then describe the classifcation proce-
dure.

3.2.1. Modelling

To model each speaker, the speech sample and transcription for
the speech sample is used for forced alignment, resulting in es-
timated time boundaries for each phone segment in the sam-
ple. Using these time estimations, the midpoint Mel Frequency
Cepstral Coefficient (MFCC) was extracted for each individual
phone. These are 12-element MFCC vectors with no delta coef-
ficients. We then calculate an average MFCC to represent each
phoneme in the inventory. Using these average phoneme rep-
resentations we can then form the foundations of a matrix to
compute the Euclidean distance between all possible phoneme-
pair combinations that the phoneme inventory allows. The re-
sulting collection of intra-speaker segmental distances are hy-
pothesised to characterise a speaker’s pronunciation system in
that the degree of similarity between phoneme realisations is
expected to reflect the realisational quality of these segments,
and therefore the accent. Figure 1 below illustrates a simplified
Y-ACCDIST matrix, if our phoneme inventory only consisted
of three phonemes, but in reality we used the whole phoneme
inventory (42 phonemes) to construct the Y-ACCDIST matrices
for each speaker.

Figure 1: A simplified illustration of a Y-ACCDIST matrix.

3.2.2. Classification

The classification mechanism is a Support Vector Machine
(SVM) [20]. The training speaker Y-ACCDIST matrices for
each of the accent groups are fed into the SVM. For each ac-
cent group, we form a one-against-the-rest setup, where each
accent group becomes the ‘one’ in turn, while the remaining
accent groups collectively form the ‘rest’. An optimal hyper-
plane that best separates the ‘one’ accent group from the ‘rest’
of the accent groups. When classifying an unknown speaker,
the speech sample is converted into a Y-ACCDIST matrix to
model that speaker’s accent. This matrix is then fed into the
trained SVM. On each rotation, where the training speakers for
each accent form a one-against-the-rest configuration, the mar-
gin the unknown speaker forms with the hyperplane is logged.
The clearest margin it forms among these rotations determines
the accent label the unknown speaker is assigned.

Figure 2: System flow diagram of the Y-ACCDIST system.

3.3. Methodology

Initially, the experiments here are concerned with 30-second
speech samples and which speech segments influence the clas-
sification outcome of these samples. For each speaker’s 10-
minute sample, we can obtain 20 30-second speech samples
per speaker. As we have 45 speakers, we have a total of 900
30-second samples.

When using 30-second samples, rather than 10-minutes per
speaker, we achieve an overall recognition rate of 53.3% correct
[19]. In the experiments in this paper, each of the 900 30-second
speech samples becomes the unknown sample to classify. We
therefore have 20 test samples per speaker. Each time a sample
is classified, the remaining 44 speakers in the dataset are used
to train the system. Whether the sample was correctly classi-
fied or not is logged, as well as the segmental composition of
the sample. To log a sample’s segmental composition, we sim-
ply record the frequency count of each phoneme in the sample.
We can think of each speech sample as a segmental frequency
distribution, as illustrated by Figure 3 below:

Figure 3: The segmental distribution of a randomly selected 30-
second speech sample.

A mixed-effects logistic regression analysis was run on
the outcome results (correct or incorrect classification) and the
phoneme frequency distributions of the samples. The objec-
tive of this analysis is to assess whether there are significantly
greater numbers of particular phonemes in correctly classified



30-second speech samples. Within this model, the frequencies
of individual phonemes were coded as ‘fixed effects’, as well
the true accent group of the speaker. This is because we expect
that some accents are more classifiable than others (as discussed
in [3]). The individual speaker ID was coded as a random effect
in the regression model, as we can expect that some speakers
in our dataset are simply more suitable for an analysis like this
than others. This point is elaborated on below in Section 3.4.3.

This process was then repeated for varying durations of
speech sample to see if we can observe changes in the phonemes
that are identified as having significant effects on the classifica-
tion outcome. This was run for samples shorter than 30 seconds
(20 seconds and 25 seconds), as well as samples longer than 30
seconds (35 and 40 seconds). For the 35-second and 40-second
samples, 900 samples were obviously not available within the
10-minute samples. Therefore, to run the logistic regression on
these durations, 765 and 675 samples were used, respectively.
Lower numbers of trials could have impacted on the overall re-
sults.

3.4. Results and Analysis

This section presents the output of the mixed-effects logistic
regression model. First, we will present the phonemes that were
highlighted as significant by the model, and then we will do the
same for the other durations of sample. We will then present the
effects that the individual speaker is predicted to contribute to
classification.

3.4.1. 30-second speech samples

Table 1 below lists the phonemes that have been uncovered as
significant factors in the classification of 30-second speech sam-
ples by the logistic regression model. These are accompanied
by the relevant coefficients and the p-value that indicates the
phonemes’ statistical significance.

Table 1: The phonemes identified as significant by the mixed-
effects logistic regression model.

Phoneme Coefficient Std. Error p-value
E 0.0698018 0.0291341 0.0166
u 0.0944547 0.0429213 0.0278
@ 0.0369923 0.0150073 0.0137

These results indicate that the more of each of these
phonemes we find in a 30-second speech sample, the more
likely it is that the speech sample will be correctly classified.
The fact that any phonemes were flagged up as significant at all
confirms to us that the segmental content does have an effect on
the likelihood of a speech sample being correctly classified by
Y-ACCDIST. Especially for shorter recordings, we might need
to think about whether they contain the speech segments that
would assist with the analysis. When we consider the specific
phonemes that have been identified as significant in the analy-
sis, we can draw sociolinguistic links with the particular accent
varieties we are distinguishing between.

Beginning with the phoneme which was revealed to be most
significant, /@/ is perhaps expected to be a key distinguisher for
these particular varieties. [21] show that /@/ is a distinguishing
feature of varieties of northeastern English English, of which
Newcastle is one. We might also expect that /@/’s frequency as
a segment contributes to these results, as it provides more data
to strengthen models and representations.

The /u/ vowel can also be explained in this context. GOOSE-
fronting is a phenomenon found in accent varieties across the
UK. GOOSE is the keyword taken from [22] to describe the /u/
phoneme in English. It is typically thought of as a close back
rounded vowel, but the GOOSE-fronting phenomenon describes
its more front realisation for by some speakers. [23] claim that
the GOOSE vowel has fronted significantly for all social groups
in the Manchester area. In contrast, [24] claims that in Tyneside
English, GOOSE-fronting is not evident. Given the difference in
the reported quality of /u/ in these two varieties, it seems to be a
variable which can successfully assign the speakers the correct
accent label in this particular dataset.

The /E/ vowel, however, is not necessarily expected to ap-
pear among features which distinguish between these varieties.
It has not been proposed as a distinctive feature of these ac-
cents by the sociophonetic literature. One possible explanation
for it appearing among the very few significant effects is that
it is as good discriminant, but it has not been sufficiently re-
searched by sociophoneticians. An alternative explanation is
that it is more to do with the inner workings of Y-ACCDIST,
and what it required to express realisational differences between
varieties. In the modelling of speakers’ accents, Y-ACCDIST
calculates distances between pairs of sounds, rather than treat-
ing each phoneme segment individually. While we tend to ex-
press individual segmental realisations in this way, we must re-
member that it is pairs of phonemes which provide the basis
for the expression. To be able to express realisational differ-
ences, a phoneme must be able to create a reflective distance
with another phoneme’s representation, treating it like a refer-
ence point. We could therefore accept that there might be par-
ticularly stable phonemes found among the significant effects
in the results above. This is because an analysis might require
at least one phoneme which provides stability across all the ac-
cent varieties in our corpus for the realisational variation to be
sufficiently expressed.

The three phonemes revealed in the results do not exhaust
the list of phonemes which might be expected to assist in an
accent recognition task between these three accent varieties. It
should be kept in mind, however, that these are the phonemes
which are highlighted when it is 30-second speech samples be-
ing tested. If longer speech samples were used, other phonemes
might emerge as significant components. We can expect that
phoneme frequency plays a part in these results, and a 30-
second stretch of speech might not allow for other expected
phonemes to form strong enough representations, because there
are simply not enough of them. The number of phone tokens
it takes to form a reliable representation of a phoneme’s reali-
sation for a speaker may also be phoneme-dependent (i.e. some
phonemes might require fewer tokens to produce a reliable av-
erage representation than others). One reason for this might be
to do with a phoneme occurring in a greater variety of contexts
than others, and so a wider range of coarticulatory effect might
vary a phoneme’s range of realisations. In these sorts of cases,
we would expect more tokens to form a reliable representation
in the Y-ACCDIST model.

3.4.2. Varying Durations

Below in Table 2 are the results for the different durations of
speech sample, either side of 30 seconds. For the sake of easier
comparison, the 30-second model results that were presented
above in Table 1 have been repeated in this table.



Table 2: The phonemes identified as significant by the mixed-
effects logistic regression model.

Duration Phoneme Coefficient Std. Error p-value
20 secs 3 0.155557 0.050521 0.00208
25 secs n -0.038775 0.019775 0.0499

tS -0.128558 0.064732 0.0470
30 secs E 0.0698018 0.0291341 0.0166

u 0.0944547 0.0429213 0.0278
@ 0.0369923 0.0150073 0.0137

35 secs E 0.055944 0.028402 0.04887
6 0.083376 0.028982 0.00402
I@ 0.177996 0.057549 0.00198
d 0.037795 0.019263 0.04976
f -0.079694 0.031727 0.01201

40 secs E 0.057348 0.028816 0.0466
3 0.079076 0.039434 0.0449
E@ 0.091353 0.040311 0.0234

At a first look, inconsistencies seem to show up across the
different sample durations. Generally speaking, different seg-
ments are flagged as significant for different sample lengths.
We should view these results with caution. a larger dataset that
allows for more samples to be included in the analysis would
help to overcome the volatility. It could also be due to focussing
on such short sample lengths, where the phoneme distributions
might change considerably between different durations. De-
spite that, it appears that among these identified phonemes there
are some patterns and alignments with what we might expect
sociophonetically.

One key observation is that across these durations, it is
mostly vowel segments that have been identified, and these all
have positive coefficients (suggesting that the more of these seg-
ments there are, the more likely one of these speech samples
will be classified correctly). There are also consonants which
have been identified as significant, but with a negative coeffi-
cient. This means that having more of these tokens in a speech
sample is more likely to lead to an incorrect classification. Such
segments are /n/ and /tS/ in the 25-second duration model and /f/
in the 35-second model. It is implied that these segments have
a detrimental effect in the accent recognition task.

Only one segment has been revealed as significant for the
20-second samples, and this is /3:/, or the NURSE vowel wen we
refer to the lexical sets in [22]. We can expect that /3:/ would be
a valuable segment to this accent classification task since [25]
note that /3:/ is fronted in Manchester English, which might sep-
arate Manchester speakers from Newcastle and York speakers.
Interestingly, /3:/ does not appear as significant in the analyses
for other durations, but then reappears for the longest duration,
40 seconds. This could be linked to the point previously made
above with regard to some phonemes requiring more tokens to
form a strong enough representation in the model than others.

Turning our attention to the segments /I@/ and /E@/, we can
assume that similar factors for each of these are at play. Both of
these phonemes have /@/ as a component, and so a similar effect
to the one discussed above in relation to Newcastle speakers’ /@/
are also likely to apply to these phonemes. In contrast [25] note
that the /I@/ and /E@/ phonemes are ‘smoothed’ in Manchester
English, and so are realised more as [I:] and [E:]. It seems that
these expected realisational differences might perhaps be influ-
ential in distinguishing between these particular varieties when
using shorter speech samples.

Although /@/ was identified as significant and was justified

in the context of 30-second samples, it has not emerged as sig-
nificant in other durations. We can perhaps expect /@/’s repre-
sentations to be sensitive to the addition or removal of tokens
in a sample. Even though /@/ is a very frequent segment, it ap-
pears in many different contexts. We can expect that some con-
texts help with indicating the speaker’s accent, whereas others
do not. The tokens of /@/ which seemingly do not contribute to
correctly classifying a speaker’s accent may therefore introduce
‘noise’ to the representation and so would lose distinctive value
as a result. This might explain /@/’s inconsistency as a signifi-
cant effect, despite being a highly frequent phoneme.

3.4.3. The Effect of Speaker Identity

Individual speaker identity was coded as a random effect in
the logistic regression analyses because we can expect that
some speakers are more classifiable than others using the Y-
ACCDIST methodology, and this is not a factor that we can
control. The 30-second model outputted a variance of 0.398 at-
tributed to speaker identity. If the variance were 0, this would
indicate that the specific speaker identity does not contribute to
the outcome of a speech sample’s analysis. The variance out-
putted suggests that speaker identity does indeed contribute to
the outcome to some extent, reinforcing initial expectations. To
take a closer look, we can observe the successfully and unsuc-
cessfully classified 30-second speech samples in Figure 4:

Figure 4: Successful and unsuccessful classifications of the 30-
second trials for each speaker.



This figure allows us to rule out that the successful clas-
sifications are solely down to the specific speaker being clas-
sified. Taking an initial glimpse at the chart shows that there
does not seem to be a huge weighting of correct classification
assigned to specific speakers (i.e. we do not see entire columns
of only correct classifications or only incorrect classifications.
They seem to be much more randomly distributed among the
different speakers. A closer inspection of the correct classifica-
tions does seem to suggest that speaker identity accounts for the
outcome of an analysis to some degree. Focussing on speakers
6 and 17, for example, we see that many more of these speakers’
trials are successfully classified compared with other speakers.
In contrast, speaker 12 seems to be an example of the opposite
situation, where the majority of this speaker’s trials are incor-
rectly classified. These observations seem to reinforce our ex-
pectations that some speakers are more suitable for this kind of
analysis, while others (like speaker 12) seem to be less so. It
also mirrors some of the work we have seen in speaker recog-
nition research. [26] investigated a way of characterising the
“recognizability” of speakers. It could be of interest to further
explore how the segmental distributions of speech samples in-
teracts with speaker recognisability.

We can also observe the variance attributed to individual
speaker identity for the different durations we have been testing.
These variances are presented in Figure 5:

Figure 5: Variance attributed to speaker identity in each mixed-
effects logistic regression model for each speech sample dura-
tion condition.

Given that we only have five duration models here, the con-
clusions we draw can only be very speculative, but there still
seems to be something to consider. It appears that there is a
general increase in the variance in the model assigned to speaker
identity. This suggests that as the duration of the speech sample
increases, specific speaker identity contributes more to the like-
lihood of a successful classification. We could interpret from
these results that as phoneme representations in the models be-
come more stable, individual speaker identity could become
more of a contributing factor in accent recognition performance.

4. Discussion
Using a text-dependent automatic accent recognition system,
which depends on segmental features for its modelling proce-
dure, is obviously expected to be affected by the phonemes

that the unknown sample contains. The results in this study
seem to confirm this, but highlight that there are not necessarily
phonemes that are consistently responsible for the correct clas-
sification of shorter speech samples. This has made us consider
the different factors that could be responsible for the volatility
in the results. Not only is the distinctive power of individual
phonemes among a specific set of accents likely to be a fac-
tor, but also the frequencies of these segments, as well as the
range of phonological contexts that these phonemes occur in.
In light of some of the points made in the analysis above, it
would be of value to observe the effect segmental content in
terms of context-specific segments. For example /l/ is realised
differently in some varieties of English according to what posi-
tion in a syllable it is in.

It would be also of interest to replicate this study on text-
independent systems to observe whether these kinds of systems
seem to be affected by the segmental contents of samples they
aim to classify. Even though text-independent systems do not
make these segmental distinctions so directly, it is expected
that their performance still depends on realisational differences
among speakers. It would be interesting to observe and com-
pare text-independent and text-dependent systems in this way
on the same data.
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