

iPOJO Flow: A Declarative Service Workflow Architecture for Ubiquitous

Cloud Applications

Xipu Zhang · Choonhwa Lee · Sumi Helal

Received: date / Accepted: date

Abstract The growth of innovative services backed up by

various sensors and devices provides an unprecedented potential

for ubiquitous computing applications and systems. However, in

order to benefit from the recent developments, the current

service middleware technology needs a catch-up of being able

to fully support interactions among the services. OSGi is

considered as a viable service framework solution due to its

ability to deal with the dynamism inherent with ubiquitous

cloud environments. iPOJO has also emerged as a service

component model that simplifies the development of OSGi

applications. However, the technology runs short of providing

adequate support to foster declarative service compositions of

realistic interaction topologies. Noticing this deficiency, we

propose an iPOJO component-based service workflow

architecture, named iPOJO Flow, where component services

can easily be composed together to form realistic, complicated

applications. Along with the architectural design, the paper also

introduces a new DSL to specify service workflow topologies in

a declarative way. The effectiveness of our proposed approach

is validated through a prototype demonstration, comparative

design analysis, and performance experiments.

Keywords Service composition · iPOJO · smart environment ·

cloud applications

Xipu Zhang · Choonhwa Lee ()

Department of Computer Science, Hanyang University, Seoul, Korea

E-mail: {tidexi,lee}@hanyang.ac.kr

Sumi Helal

School of Computing and Communications, Lancaster University, U.K.

E-mail: s.helal@lancaster.ac.uk

1 Introduction

In recent years, service-oriented pervasive computing

systems have been explored in diverse domains such as smart

home networks, medical information systems, and business

network systems(Botta et al. 2015; Deen 2015; Yousfi et al.

2015). According to SOA (Service-Oriented Architecture)

paradigm, services perform certain functionalities representing

heterogeneous devices and sensors in pervasive computing

environments(Puthal et al. 2015). Since the devices or sensors

could come and go at any time, service frameworks for such

environments are to be designed to cope with the dynamism

and promote flexibility in the usage of services. OSGi is a

prominent service execution platform that can deal with the

availability and modularity of dynamic services(Pauls et al.

2011). A bundle in OSGi is a deployable unit, which provides

modularization and encapsulation for service components. It

promotes service dynamism in OSGi environments in that a

bundle can be added or removed at runtime without a need to

restart the whole framework(Chen and Cao 2010; Rellermeyer

and Bagchi 2012; Zhang et al. 2014).

On top of OSGi service framework, iPOJO component

model provides a basic means for a service to look for and

make interactions with another with desired functionality,

serving as a meeting place for rendezvousing services. It is

obvious that more realistic functionalities can be enabled by

combining service instances with rather simplistic

functionalities together. However, iPOJO framework runs

short of supporting more complicated interaction patterns

beyond linear chaining interaction style. This lack of advanced

composition support is a serious drawback to elevate itself as a

dominant service platform for the upcoming cloud computing

era(Armbrust et al. 2010). Workflow technology might be

leveraged to fill this gap, by which an execution order of

Noname manuscript No.
(will be inserted by the editor)

participant services is specified in terms of control and data

flow, forming a directed graph. WS-BPEL, used to integrate

multiple constituent Web Services into a composite

application, stands out among other workflow

technologies(OASIS Web Services Business Process

Execution Language (WSBPEL) et al. 2007). There have been

research efforts to employ the BPEL technology for OSGi

domains, whose examples include transforming OSGi services

into Web Services or wrapping a BPEL engine into a

bundle(Anke and Sell 2007; Á lamo et al. 2010). However,

they do not aim at enabling declarative service compositions,

which is a primary contribution of our approach.

In this article, we present a novel service composition

framework called iPOJO Flow that supports a directed-

acyclic-graph style composition of iPOJO component services.

Based on a declarative workflow definition language, our

framework can model and instantiate a topology of versatile

service interconnections beyond the linear interactions of the

current technology.

The remainder of this paper is organized as follows. Section

2 first motivates our research by discussing the shortcomings

of iPOJO component-based service compositions of a sample

scenario. Then, it presents our architectural design of a

workflow-based service composition framework. Section 4

evaluates the proposed service composition framework

through a workflow pattern coverage analysis study and use-

case scenario demonstration using a prototype implementation.

Section 5 discusses previous research efforts with regards to

service composition and workflow technologies, clarifying the

differences of our approach and the status quo. Finally,

Section 6 concludes the paper.

2 iPOJO-Based Service Composition

In order to motivate our approach to a declarative service

composition framework for ubiquitous cloud applications, we

firstly consider a sample composition scenario for smart home

which involves a set of component services representing

various sensors and devices at home.

Bob’s house is instrumented with various sensors and

actuators, and its smart home application acts as a hub to

coordinate their operations and controls. Bob sets out for

work at 7 A.M. every morning and comes back in the evening.

The home application is tasked with keeping the home

condition favorable to the resident, while he is at home. For

instance, if the indoor temperature is lower than 22 degrees,

the windows are closed and the heater is turned on. If it is too

hot for Bob, then the windows are opened to let the cool air in

and the heater is stopped. All these events are pushed to Bob’s

smart phone, which might be logged for later uses.

In this motivational scenario, the smart home application is

an orchestrator to facilitate interactions among various sensors

and actuators. In order to keep the temperature comfortable,

the home automation system would need the following

services.

 Thermometer service monitors the current indoor

temperature and returns measured values.

 HeaterController service starts and stops heaters at

home.

 WindowController service controls the operation of

windows.

 OwnerNotifier service informs the resident of

what’s happening at home by sending messages to

his mobile.

Diagrammed in Fig. 1 is a sample composite application

that tries to keep comfortable settings for the resident. The

pivotal point of the scenario is the orchestrating ability that

governs the execution of individual services representing

sensors and devices at home. The first step to realize the

scenario would be to get hold of an adequate hosting and

execution platform where services live to invoke one another.

OSGi is widely accepted as an ideal fit to the foundation of

cloud service interactions.

On top of the OSGi framework, several component models

were proposed, including Declarative Service, Blueprint

Container Service, and iPOJO(Escoffier et al. 2007). They aim

at simplifying component developments by automating service

publication and discovery and inter-service dependency

management. Especially, iPOJO has recently gained much

popularity in some domains owing to its unique features and

better performance in comparison to Declarative Service and

Blueprint Container Service(Escoffier et al. 2013; Abras et al.

2014). Benefits of iPOJO component model derive from its

design philosophy of separation of concerns; component code

focuses only on the implementation of business logic other

than non-functional aspects of the component such as service

publishing, discovery, and service object creation. These tasks

are delegated to iPOJO component container or

handlers(Escoffier and Hall 2007).

 iPOJO comes with a DSL, named ADL (Architecture

 Description Language) that allows one to define a service-

Fig. 1 Service composition scenario for smart home

measureTemperature

turnOnHeater closeWindow turnOffHeater openWindow

informUser

cold hot

<ipojo>

<!-- Declares a composition -->

<composite name="smartHomeApp">

 <!-- Instantiates services -->

 <subservice action="instantiate"

 specification="home.service.Thermometer"/>

 <subservice action="instantiate"

 specification="home.service.Heater"/>

<subservice action="instantiate"

 specification="home.service.Window"/>

 <subservice action="instantiate"

 specification="home.service.OwnerNotifier"/>

 <!-- Instantiates an instance of the composer -->

 <instance component="home.composer"/>

 <provides action="export"

 specification="home.service.MyComfortableHome"/>

</composite>

<!-- Instantiates an instance of the composition -->

<instance component="smartHomeApp"/>

</ipojo>

based composite application. However, the composition

topology of the DSL is limited to consumer-producer link

patterns. iPOJO ADL does not include assembling constructs

that can be used to describe data passing and control flow

among constituent services. As a result, it has a difficulty in

declaratively supporting more realistic topologies of composed

applications like a directed-acyclic-graph style composition as

seen in Fig. 1.

Fig. 2 shows the internal structure of an iPOJO component

for the above smart home scenario. The component consists of

three parts: POJO (Plain Old Java Object), component

container, and handlers. The POJO contains application logic

code, while the container is responsible for connecting the

POJO with the outside world by plugging in a set of handlers

which handle several tasks like instantiating the component

itself, solving dependencies, and publishing new services. A

corresponding ADL definition in Fig. 3 describes the

structural composition and dependencies of the iPOJO

component for the smart home. A composition is defined by a

<composite> element which contains <subservice> and

<instance> elements for services and the component itself.

Also, a <provides> element is used to offer the composition as

a new service.

It is important to know that this structural composition

information must be complemented by some code that

expresses logical relationships among sub-services, i.e.,

service call graphs. The container in a component has to

include some code to glue constituent services together to

enable inter-service collaborations. In other words, wirings of

participating component services must be programmed in a

hard-coded way. Sample code in Fig. 4 makes hardwired

connections in order to realize the smart home composition

scenario presented in Fig 1. The component uses @Requires

annotation to import desired services through dependency

injection mechanism. Also, developers should write Java code

to coordinate sub-service executions. A problem with this

approach is that it would be difficult to keep up with changes

constantly taking place in the environment. The

interconnections of application components may have to be re-

programmed or repaired, when a service is newly introduced

or removed. Considering the degree of dynamism that our

target home automation system is expected to meet, changes at

code level can hardly be considered as an acceptable solution.

With iPOJO ADL that stops short of providing support for

control flow over services, application developers are left with

no other options than the manual weaving of relationships

among component services, specifically using Java code to

control a calling sequence of sub-services and determine their

invocation conditions. It is far from being a satisfactory

solution to our declarative service composition problem.

Therefore, we propose to extend the iPOJO component model

to enable declarative service compositions based on workflow

patterns.

 Fig. 2 Structure of iPOJO component

Fig. 3 Composite service description in ADL

@Component(immediate=true)

@Instantiate

 public class Composer

{

 @Requries

 private Thermometer thermo;

 @Requries

 private Heater heater;

 @Requries

 private Window window;

 @Requries

 private OwnerNotifier inform;

public void start()

{

 ...

String temp=thermo.readTemperature();

if(Double.parseDouble(temp) < 22){

 heater.turnOn();

 window.close();

}

else {

 ...

}

 ...

}

}
Fig. 4 Sample hardcoding of service composition

Business

Logic

Container

Handler

Handler

Thermometer

Heater

Window

OwnerNotifier

Composition

P
ro

v
id

er
 S

er
v

ic
e

H
a

n
d

le
r

D
en

p
en

d
en

cy
H

a
n

d
ler

3 iPOJO Flow Composition Architecture

To enable declarative service compositions in OSGi

environments, we have designed a workflow-based

composition middleware architecture, named iPOJO Flow, on

top of the iPOJO component model. As illustrated in Fig. 5,

iPOJO Flow framework architecture consists of three layers:

physical, platform, and application layer. Physical layer serves

as an interface to the physical world, collecting data from the

home-instrumented sensors and passing commands to the

actuators. Platform layer is the core of our architectural design,

which is based on iPOJO component model. The centerpiece

of this layer is the workflow engine that performs service

compositions according to a given workflow description.

Application layer at the top contains applications composed by

using services from the platform layer. This top layer also

includes iCDL (iPOJO Composition Description Language)

files to describe an application composition and topology.

iCDL is a DSL designed for our iPOJO Flow architecture.

Our work focuses mainly on the platform layer, extending

the existing iPOJO to enable workflow-based declarative

service compositions. Our research efforts are made up of

three key parts: (1) creating iCDL, a new XML-based DSL, to

describe workflow-based compositions, (2) architecting an

iPOJO-based workflow engine to take care of service

composition processes, and (3) extending iPOJO handler

architecture to instantiate service workflow definitions in the

new composition language.

Fig. 6 depicts the steps of service composition process

performed at the platform layer. A composition is started by

the workflow engine on top of OSGi service framework,

consisting of PiCDL (Parsed iPOJO Composition Language)

Handler, Workflow Composer, and Workflow Engine. It all

starts with Workflow Composer that application developers

use to define control and data flow over a set of services. Then,

iCDL Analyzer service invoked by PiCDL Handler parses the

description file and passes the result on to Workflow Engine

through Workflow Composer. Workflow Engine executes the

actual composition, instantiating a directed graph of iPOJO

components as described in the declarative workflow

definition, and publishes a newly created composite service

with OSGi service registry.

The engine is made up of the following three components:

PiCDL Handler, Workflow Composer, and Workflow Engine.

PiCDL Handler is an iPOJO handler that we extended. The

primary function of this handler is to parse a service

composition description into a Java object at runtime by

invoking iCDL Analyser based on SAX. Tags in the

composition description are converted into a hierarchical

structure which is used by Workflow Engine at a later stage.

Workflow Composer is used to plug in PiCDL Handler into

the framework. PiCDL Handler makes use of the dependency

injection mechanism of iPOJO model to pass parsed

descriptions to Workflow Composer. Workflow Engine is a

central entity that performs an actual build-up of service

workflows and handles the execution of the instantiated

workflow. It also publishes the resultant composite service to

the framework.

In order to keep composed workflows available all the time,

our architecture also includes Compensation Handler that

monitors the health of workflows and their component

services. On detection of failures in component services, the

handler triggers the repair of damaged workflows, so that the

faulty component can be replaced with a healthy one.

 Table 1 Elements and attributes used in iCDL

Type Element Name Attribute Description

SE

partnerService remoteAcess Includes specified service

service

serviceType

Describes individual service form

name

variables Includes intermediate variable

variable name Describes auto intermediate variable

subprocess seq Defines logical structure

iCDL id Indicates root element

process name Includes the entire composition structure

CE

switch Models multiple branches operation

case

Cobject

Models a single branch Coperation

Cvalue

while Used to support loop operation

if

Iobject

Defines conditional operation Ioperation

Ivalue

AE invokeOperation
service

Invokes a method of the service
method

Fig. 5 iPOJO Flow service composition architecture

Application Layer
iCDL FilesApplications

iPOJO Service Composition Description Language

Platform Layer

OSGi Framework

iPOJO

Service Registry

Workflow Engine

Workflow

Composer

PiCDL

Handler

Workflow

Engine

iCDL Analyser

1. Install and pass iCDL file

2. Return the parsed file

3. Pass the result

4. Invoke required services

5. Export composited service

Physical Layer Devices Access Modules

Network Nodes Actuators Sensors Appliances

Compensation

Handler

Monitor

In order to enable workflow-based service compositions, we

have introduced a service composition language named iCDL

(iPOJO Composition Description Language). Elements and

attributes of the DSL are summarized in Table 1. Three types

of elements are defined, including SE (Structure Element), AE

(Action Element), and CE (Control Element). First, an SE

element describes the basic structure of workflow

compositions. All component services indicated by <service>

tag are contained in <partnerServices> element. <variable> tag

represents an intermediate variable and <subprocess> element

includes various control flow tags. An AE element is used to

invoke services. <invokeOperation> tag has service and

method attributes for individual services. Lastly, a CE element

is used to model various control flow of workflow executions,

which includes <if>, <switch>, <case>, and <while>.

A typical iCDL file is composed up of three sections:

services definition, intermediate values declaration, and

logical structure description. Services definition part lists up

services that take part in the composition by using

<parternerServices> and <service> elements. The second part

features <variables> and <variable> elements to define what

intermediate values are used in the workflow. The last logical

structure part focuses on expressing control flow by using

various control elements in <subprocess> element. Fig. 7

displays an iCDL definition for the sample smart home

scenario in Section 2. For this scenario, there are four services

brought up by the engine as shown in <partnerService>

element. Then, a <variable> element indicates that one

variable temperature is used to hold intermediate data items

used in the workflow. Finally, the <subprocess> element

defines flow control constructs (i.e., conditional branches)

such as <switch> element and <if> element.

The composition process executed by the workflow engine

consists of two main phases as shown in Fig. 8. At the first

step, Workflow Engine obtains a service composition

description from Workflow Composer. It also imports

component services indicated by <service> tags in the iCDL

file. The engine then stores imported services and

intermediate variable values in HashMaps structure. Resulted

from the precedent workflow node invocation, intermediate

variable values might be used for flow control decisions for

the following step or as parameters for the subsequent node.

The second step takes care of the workflow execution. Each

sub-element in <subprocess> element corresponds to a

Fig. 6 Sequence diagram of service composition process

<? xml version="1.0" encoding="UTF-8">

< iCDL xmlns: xsi=http://www.w3.org/2001/XMLSchema-instance>

<process name="smartHomeApp" accessLevel="public">

 <partnerService remoteAccess="true">

 <service name="Thermometer" serviceType="readThermometer"

 form="entity"/>

 <service name="Heater" serviceType="controlHeater" form="entity"/>

 <service name="Window" serviceType="controlWindow" form="entity"/>

 <service name="UserNotifier" serviceType="informUser" form="entity"/>

 </partnerServices>

 <variables>

 <variable name="temperature"/>

 </variables>

 <subprocess seq="true">

<invokeOperation service="ThermometerMonitoring"

 method="readTemperature" outputVariable="temperature"/>

 <if Iobject="temperature" Ioperation="lessThan" Ivalue="22">

 <invokeOperation service="Heater" method="turnOn"/>

 <invokeOperation service="Window"method="close"/>

 </if>

 <if Iobject="temperature" Ioperation="moreThan" Ivalue="22">

 <invokeOperation service="Heater" method="turnOff"/>

 <invokeOperation service="Window" method="open"/>

 </if>

 <invokeOperation service="UserNotifier" method="inform"/>

</subprocess>

</process>

</iCDL>

Fig. 7 iCDL description of smart home application

Workflow

Composer

Composition Service

Description in XML PiCDL Handler
Workflow Engine

Service Component
Service Registry

require composition

description file

return composition

description file

pass XML file and plug in

PiCDL Handler

parse composition

description file

return the parsed file

export the getMetadata()

and transmit the result

compositing services

register the composite service

to Service Registry

particular control element such as <switch> or <if>.

Workflow Engine uses Java reflection mechanism to call

operations corresponding to control flow elements in the

iCDL file.

Since our iPOJO Flow architecture is built upon OSGi

framework and iPOJO component model, it primarily targets

the small and medium-sized ubiquitous computing

environments like home/office networks. However, we’d like

to add that the coverage of the workflow system may expand

further than that to include cloud services hosted in a remote

network. R-OSGi (Remote Services for OSGi) provides a way

to access remote services from other OSGi domains (Cheng et

al. 2012). It provides a technical base for our iPOJO Flow to

discover and make use of distributed services. Moreover,

OSGi framework can serve as an effective foundation to

construct cloud computing services and systems (Zhang et al.

2013; Houacine et al. 2013; Neto et al. 2015). Therefore, our

iPOJO Flow can support workflow descriptions and

compositions involving cloud services from remote domains.

4 Framework Validation and Evaluation

We have prototyped the architecture of iPOJO Flow service

composition framework based on Eclipse Equinox that

provides a certified implementation of the OSGi Core

specification and Apache Felix iPOJO implementation. Our

proof-of concept prototype has been demonstrated by using

the smart home scenario presented in Section 2.

 In order to help to define workflow descriptions, we have

also developed a workflow designer tool for iPOJO Flow,

which is part of Workflow Composer. Application developers

can easily specify service compositions using the tool, as

shown in Fig. 9, building blocks of the smart home application

are laid down and linked together to form a service workflow.

After the necessary configuration of the workflow nodes, a

XML-based iCDL definition file is generated to be fed into

the iPOJO Flow engine in charge of materializing the

workflow.

Validation efforts of our workflow-based service

composition framework include a comparative workflow

pattern coverage study and the performance evaluation of our

approach against iPOJO ADL and BPEL.

4.1 Workflow Pattern Evaluation

Our iCDL language design was inspired by WS-BPEL

(Web Services Business Process Execution Language). It is an

XML-based workflow language that enables process-oriented

service composition. As the standard language for Web

Service composition, its workflow definition is centered

around the notion of business processes used as the glue

between interacting Web Services. The language defines a set

of primitives that are used to invoke remote services,

orchestrate process execution, and manage events and

exceptions. We compare our iCDL language and BPEL with

regards to workflow pattern coverage. In the literature,

workflow patterns are defined as a means of categorizing

recurring problems and solutions in modeling business

process(Yang et al. 2014). Workflow pattern coverage should

indicate how effectively complex composition scenarios can

be modeled by the workflow language(Gupta et al. 2015).

Fig. 8 Composition steps by Workflow Engine

Fig. 9 Screenshot of iPOJO Flow designer

Start

Parsed file

List<element>

ServiceMap

Initialization

InterValueMap

Initialization

Traversing

<subproess>element

Has sub-element

Executing current

element

Y

End

N

ServiceMap

Key

Service Name A

Value

Service A

Service Name B Service B

InterValueMap

Key

ValueName A

Value

NULL

ValueName B NULL

Step 1

Step 2

Iteration Operation

Traversing <subprocess> element

 Table 2 compares the workflow pattern coverage of iCDL

and BPEL. A pattern is said to be supportive (marked as “+”

in the table), if the workflow language fully satisfies the

evaluation criteria of the pattern. Otherwise, the pattern is

unsupportive (marked as "-"in the table.) Our iPOJO Flow

framework provides the same level of supports for basic

control-control patterns, advanced branching and

synchronization patterns, and structural patterns. But it does

not support cancellation patterns. Therefore, it can be argued

that our iCDL language provides the same coverage as

BPEL for major workflow patterns.

Table 2 iPOJO Flow workflow pattern comparison

Workflow Pattern BPEL iCDL Note

Basic Control-Flow Patterns

Sequence + + Supported by <subprocess> seq attr

Parallel Split + + Supported by <subprocess> seq attr

Synchronization + + Supported by <subprocess> seq attr

Exclusive Choice + + Supported by <switch> element

Simple Merge + + Supported by <switch> element

Advanced Branching and Synchronization Patterns

Multi-Choice + + Supported by <switch><case>

seq attribute

S-Sync-Merge + + Supported by <switch><case>

 seq attribute

Structural Patterns

Implicit Termination + + Supported by <subprocess>

 seq attribute

Mi-No-Synchronization + + Supported by <invokeOperation>

Included in <while> element

Mi-dt - - Not supported

Mi-rt - - Not supported

State-based Patterns

Deferred Choice + - Not supported

Cancellation Patterns

Cancel Activity + - Not supported

Cancel Case + - Not supported

New Control-Flow Patterns

Structured Loop + + Supported by <while> element

Transient Trigger - - Not supported

Recursion - - Not supported

4.2 Performance Experiments

In order to evaluate the performance of our iPOJO Flow

framework for workflow-based service composition, we have

used the smart home scenario in Section 2. The composition

workflow involves sequences and branch patterns. Our

prototype implementation is compared against the original

iPOJO component model implementation and BPEL engine

ODE (http://ode.apache.org). Performance results are

measured in terms of memory usage and workflow

materialization time. Our experiment uses a machine with

Intel Core i5-4200 CPU with memory of 4GB running at

2.8GHz. Eclipse Equinox implementation of the base OSGi

framework was used along with Apache Tomcat 8.0.

We ran the smart home composition scenario 10 times to

obtain an average using our iPOJO Flow, iPOJO component

model, and WS-BPEL language. Performance results from

each case are presented as iCDL, ADL, and BPEL case,

respectively. Fig. 10 compares memory usage from the three

cases. The iPOJO model shows the memory usage that varies

from 4.43MB to 4.77MB. Memory utilization in our iCDL

case is more stable and a little lower, whose average is

measured at 4.60MB. Also, we can see that the BPEL case

exhibits higher usage with some level of fluctuations.

Another set of experiments aims to compare workflow

instantiation time for the three cases. A composition time

indicates how fast composition engines can materialize and

execute a workflow. Again, we repeat the smart home scenario

10 times using iPOJO Flow framework, iPOJO model, and

BPEL engine. As plotted in Fig. 11, iCDL and ADL

approaches excel themselves by showing the fast composition

speed of less than 2.6ms. But BPEL case suffers from

composition time ranging from 538ms to 129ms.

Fig. 10 Memory usage evaluation

Fig. 11 Composition time comparison

We then measure service availability which indicates the

robustness of our iPOJO-based workflow system to

unpredictable changes and failures in the environments.

Participant component services in the environment are likely

to come and go anytime without any notice. As presented in

Section 3, our iPOJO Flow architecture is designed to deal

with such dynamism. The service compensation mechanism

incorporated in iPOJO Flow system monitors the health of

instantiated workflows and triggers recovery actions on

detection of component service failures. A workflow can be

repaired by replacing a failed service with an equivalent

instance, if there exists an alternative in the environment.

We intentionally injected failures into the component

services in the scenario given in Fig. 1. Then, a mean time

between service component failures and workflow repairs is

measured. This experiment is repeated for a different number

of failures. Table 3 tabulates recovery times when four

participating services get down for the smart home scenario in

Section 2. The results show that the average workflow repair

time in the case of four failures is about 10.7 ms.

Fig. 12 compares the workflow recovery times for a varying

number of failed component services. The average is 1.30 ms

for one failed service, 5.10 ms for two component service

failures, 8.30 ms for three failures, and 10.70 ms for four

failed services. With the increase of failed services, the

workflow recovery time grows accordingly, as depicted in the

graph. From the experiments, we can see that our iPOJO Flow

architecture is capable of quickly adapting to changing

situation to maintain high availability of composed workflows.

Table 3 Failure recovery time

Failure Detection Workflow Repair
Elapsed

Time (ms)

1519042709435 1519042709451 16

1519042861676 1519042861685 9

1519042960035 1519042960049 14

1519043054406 1519043054415 9

1519043124828 1519043124840 12

1519107039417 1519107039427 10

1519107404741 1519107404749 8

1519107531043 1519107531051 8

1519107624602 1519107624612 10

1519107694451 1519107694462 11

5 Related Work

Service composition allows us to combine component services

of primitive functionalities to form a composite, value-added

service. Basically, it aggregates and reuses existing services to

build up an application to handle more complicated tasks

(Moghaddam and Davis 2014). After having been explored in

the last decades, the technology is being spotlighted again for

heterogeneous cloud computing environments(Baker et al.

2012, 2013, 2017). Previous research efforts for service

composition generally aimed at providing schemes to innovate

a new service through the re-use of existing services for

cost/time reduction and improved efficiency (Vakili and

Navimipour 2017). Among the research topics of particular

interest to us is workflow-based service compositions like

WS-PBEL where a complex business process can be defined

in terms of component service invocations and their

interactions. Especially, applications in large-scale distributed

environments can benefit from employing workflow

technologies to cope with the diversity and heterogeneity

inherent to such environments(Li and Liu 2012; Viriyasitavat

et al. 2012; Xu et al. 2012).

The current OSGi specification runs short of fully

supporting complicated composition topologies like

workflow-based orchestrations. Several research efforts were

made to overcome such limitation by tapping WS-BPEL

technology for complicated orchestration capacity. For

instance, an OWL-S/OSGi framework was proposed to

support BPEL-style services compositions on top of OSGi

platforms(Díaz Redondo et al. 2007). According to the

proposal, service matchmaking is made possible based on

semantic descriptions of OSGi services. OSGi services can be

packaged and offered to the outside world as Web Services, so

that they can take part in a BPEL workflow(Anke and Sell

2007). These OSGi-backed Web Services can be combined

into a business process described in BPEL, and its

materialized workflow is executed by a BPEL engine. On the

contrary, a BPEL service can be brought to the OSGi domain

to become part of a workflow(Á lamo et al. 2010). Another

noteworthy is a BPEL-based service composition framework

that is made capable of cross-breeding SOAP, RESTful, and

OSGi services by employing adapter patterns(Liu et al. 2013).

For adapting OSGi services into BPEL equivalents, the

research extended WSDL description for OSGi services

including service types, service names, and filters.

OSGi’s potential as distributed service platforms has

actively been explored over the past years. Distributed OSGi

Fig. 12 Workflow availablity measurement

extends the original OSGi framework, so that services can be

discovered and invoked across neighboring platforms(Chen

and Cao 2010; Roelofsen et al. 2010; Zhang et al. 2014).With

the support of distributed OSGi services, building a flexible

and adaptive pervasive cloud infrastructure has been a focus

by several recent researches. One research group proposed a

component migration scheme to develop a pervasive cloud

infrastructure, called OSGi-PC, which supports flexible

migrations among various cloud nodes (Zhang et al. 2013).

Similarly, a R-OSGi based cloud architecture was proposed to

facilitate inter-framework service exchanges and invocations

(Cheng et al. 2012).s In addition, an OSGi-based mobile cloud

service model, named MCC-OSGi, was presented with a focus

on lightweight mobile cloud services (Houacine et al. 2013).

The architecture identified different service models depending

on varying roles played by mobile platform or the cloud. This

trend of technological developments towards OSGi framework

as cloud service platforms and the ensuing proliferation of

OSGi services is our main motivation to pursue solid

technological solutions for declarative service workflow

composition framework for OSGi environments.

Lastly, besides its basic abstraction of services, the OSGi

specification has introduced declarative service supports such

as Blueprint Container Service and Declarative Service(The

OSGi Alliance 2014). iPOJO component model is another

such effort. They all intend to ease the complexity of building

a composite application and managing its dependencies based

on a composition description. A number of advanced

platforms have emerged with the advent of iPOJO to facilitate

the development of dynamic pervasive applications based on

OSGi frameworks in distributed environments. For instance,

the SmartComponent Framework is introduced to build sensor

clouds with the purpose to manipulate, access, and visualize

information distrusted sensors (Neto et al. 2015). Also, two

iPOJO-based middleware, named Cilia and iCasa, is proposed

to help construct pervasive health and smart manufacturing

applications which require a high degree of flexibility at

runtime (Lalanda et al. 2017; Lalanda et al. 2015). However,

their emphasis is not on service composition support to enable

iPOJO component-based pervasive applications. Specifically,

Cilia essentially focuses on device integrations but not

services. iCasa is mostly concerned about context-aware

service composition instead of workflow-based orchestrations.

In general, these existing works lack proper support for

declarative service composition of diversified topologies,

which had led us to develop iPOJO Flow service composition

framework.

Our proposed workflow architecture effectively enables

lightweight and rapid service compositions for iPOJO

component environments with support for major workflow

patterns. To the best of our knowledge, we are the first one

who have come up with an iPOJO component-based workflow

system, and such iPOJO workflow support has not been

reported in the literature. Some recent research focuses on

leveraging iPOJO component model to build applications in

ubiquitous cloud environments (Neto et al. 2015; Lalanda et al.

2017; Lalanda et al. 2015). But they do not consider workflow

support for iPOJO compoents. Through experimental

performance evaluations in terms of composition time, CPU

utilization, and service availability, we have validated that our

iPOJO Flow architecture achieves better performance than

other existing approaches. However, we acknowledge that

there exists a need of further performance experiments

comparing our architecture with others from the perspective of

response time, latency, and cost per customer. Such efforts

should be able to help us understand the strength and

weakness of our approach to a deeper extent.

6 Conclusion

This paper proposes our iPOJO Flow architecture that is

designed to enable workflow-based service compositions for

ubiquitous cloud applications. The novel service composition

framework extends the iPOJO component model, so that

component services can interact with one another in a much

more diverse composition topologies beyond conventional

producer-consumer patterns. The paper also presents our

design of iCDL language to describe a workflow and its

participating services. Our proposal has been prototyped to

demonstrate the effectiveness of its architectural design in

promoting service composition and usage. We have also

evaluated our approach in comparison with WS-BPEL, which

is the most prominent workflow technology today. Especially,

a comparison has been made with regards to the workflow

pattern coverage of their workflow definition languages. A

subsequent performance study reveals that our composition

framework is far more streamlined with lesser composing

time and memory usage. Hence, a well-suited match for

small-sized environments like OSGi platforms. In conclusion,

these evaluation results confirm that our iPOJO Flow

architecture design has achieved its primary goal that is a

lightweight workflow engine targeting OSGi services without

negatively affecting its ability to model diverse composition

topologies and scenarios for cloud computing era.

Acknowledgements This research was supported by Basic

Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science

and ICT (No. 2017R1A2B4010395).

References

Abras S, Calmant T, Ploix S, et al (2014) Developing dynamic

heterogeneous environments in smart building using iPOPO.

In: Smart grids and green IT systems (SMARTGREENS),

2014 3rd International conference on, pp 1-7

Á lamo JMR, Yang HI, Wong J, Chang CK (2010) Automatic

service composition with heterogeneous service-oriented

architectures. In: Smart homes and health telematics

(ICOST), 2010 8th International conference, pp 9–16

Anke J, Sell C (2007) Seamless Integration of Distributed OSGi

Bundles into Enterprise Processes using BPEL. In:

Communication in distributed systems (KiVS), 2007

ITGGI conference on, pp 1–6

Armbrust M, Stoica I, Zaharia M, et al (2010) A view of cloud

computing. Communications of the ACM 53(4):50-58.

doi:10.1145/1721654.1721672

 Baker T, Asim M, Tawfik H, et al (2017) An energy-aware

service composition algorithm for multiple cloud-based IoT

applications. J Netw Comput Appl 89:96–108. doi:

10.1016/j.jnca.2017.03.008

Baker T, Rana OF, Calinescu R, et al (2013) Towards

autonomic cloud services engineering via intention

workflow model. In: Grid economics and business models

(GECON), 2013 10th International conference, pp 212–227

 Baker T, Taleb-Bendiab A, Randles M, Hussien A (2012)

Understanding elasticity of cloud services compositions. In:

Utility and cloud computing (UCC), 2012 5th International

conference, pp 231–232

 Botta A, de Donato W, Persico V, Pescapé A (2015)

 Integration of cloud computing and Internet of Things: A

 survey. Futur Gener Comput Syst 56:684–700. doi:

 10.1016/j.future.2015.09.021

Chen H, Cao C (2010) Research and application of distributed

OSGi for cloud computing. In: Computational intelligence

and software engineering (CISE), 2010 International

conference on, pp 1-5

Cheng HC, Lee WT, Wei XW, Sun TW (2012) A novel service

oriented architecture combined with cloud computing based

on R-OSGi. Lecture Notes in Electrical Engineering 182

291–296. doi:10.1007/978-94-007-5086-9_38

Deen MJ (2015) Information and communications technologies

for elderly ubiquitous healthcare in a smart home. Pers

Ubiquitous Comput 19(3-4):573–599. doi: 10.1007/s00779-

015-0856-x

Díaz Redondo RP, Fernández Vilas A, Ramos Cabrer M, et al

(2007) Enhancing residential gateways: OSGi service

composition. IEEE Trans Consum Electron 53(1):87–95.

doi: 10.1109/TCE.2007.339507

Escoffier C, Bourret P, Lalanda P (2013) Describing dynamism

in service dependencies: Industrial experience and

feedbacks. In: Services computing (SCC), 2013 IEEE

International conference on, pp 328–335

Escoffier C, Hall RS (2007) Dynamically adaptable

applications with iPOJO service components. In: Software

composition (SC), 2007 6th International conference on, pp

113–128

Escoffier C, Hall RS, Lalanda P (2007) IPOJO: An extensible

service-oriented component framework. In: Services

computing (SCC), 2007 IEEE International conference on,

pp 474–481

Gupta IK, Kumar J, Rai P (2015) Optimization to Quality-of-

service-driven web service composition using modified

genetic algorithm. In: Communication and Control (IC4),

2015 International conference on, pp 1–6

Houacine F, Bouzefrane S, Li L, Huang D (2013) MCC-OSGi:

An OSGi-based mobile cloud service model. In:

Autonomous Decentralized Systems (ISADS), 2013 IEEE

Eleventh International Symposium on. pp 1–8

Lalanda P, Chollet S, Aygalinc C, Gerbert-Gaillard E (2015)

Service-based architecture and frameworks for pervasive

health applications. In: Emerging Technologies and Factory

Automation (ETFA) IEEE 20th International Conference

on.pp 1-8

Lalanda P, Morand D, Chollet S (2017) Autonomic mediation

middleware for smart manufacturing. IEEE Internet

Comput 21(1): 32-29.doi: 10.1109/MIC.2017.18

Li L, Liu J (2012) An efficient and flexible web services-based

multidisciplinary design optimisation framework for

complex engineering systems. Enterp Inf Syst 6(3):345–

371. doi: 10.1080/17517575.2011.651627

Liu J, Wang D, Chen Y, Lv Y (2013) Anything is service:

Using LIR-OSGi and R2-OSGi to construct e service

network. J Softw 8(1):236–242. doi: 10.4304/jsw.8.1.236-

242

Moghaddam M. b, Davis JG. (2014) Service selection in web

service composition: A comparative review of existing

approaches. In: Web services foundations. Springer, New

York

Neto L, Reis J, Guimarães D, Gonçalves G (2015) Sensor

cloud: SmartComponent framework for reconfigurable

diagnostics in intelligent manufacturing environments. In:

Industrial Informatics(INDIN), 2015 IEEE International

Conference on, pp 1706–1711

OASIS(2007) Web Services Business Process Execution

Language Version 2.0

Pauls K, McCulloch S, Hall RS, Savage D (2011) OSGi in

Action. Manning Publications Co, Greenwich

Puthal D, Sahoo BPS, Mishra S, Swain S (2015) Cloud

computing features, issues, and challenges: A big picture.

In: Computational Intelligence and Networks (CINE), 2015

1st International Conference on, pp 116–123

Rellermeyer JS, Bagchi S (2012) Dependability as a cloud

service - A modular approach. In: Dependable systems and

networks workshops (DSN-W), 2012 IEEE/IFIP 42nd

International conference on, pp 1–6

Roelofsen R, Bosschaert D, Ahlers V, et al (2010) Think large,

act small: An approach to web services for embedded

systems based on the OSGi framework. In: Exploring

services science (IESS), 2010 Internationl conference, pp

239–253

The OSGi Alliance (2014) OSGi Core Release 6 Specification.

Vakili A, Navimipour NJ (2017) Comprehensive and

systematic review of the service composition mechanisms

in the cloud environments. J Netw Comput Appl 81:24–

36, doi: 10.1016/j.jnca.2017.01.005

Viriyasitavat W, Xu L Da, Martin A (2012) SWSpec: The

requirements specification language in service workflow

environments. IEEE Trans Ind Informatics 8(3):631–638.

doi: 10.1109/TII.2011.2182519

Xu L Da, Viriyasitavat W, Ruchikachorn P, Martin A (2012)

Using propositional logic for requirements verification of

service workflow. IEEE Trans Ind Informatics 8(3):639–

646 . doi: 10.1109/TII.2012.2187908

Yang P, Xie X, Ray I, Lu S (2014) Satisfiability analysis of

workflows with control-flow patterns and authorization

constraints. IEEE Trans Serv Comput 7(2):237–251. doi:

10.1109/TSC.2013.31

Yousfi A, de Freitas A, Dey A, Saidi R (2015) The use of

ubiquitous computing for business process improvement.

IEEE Transactions on Services Computing 9(4):1–1,

doi:10.1109/TSC.2015.2406694

Zhang W, Chen L, Lu Q, et al (2013) Towards an OSGi based

pervasive cloud infrastructure. In: Green Computing and

Communicationsand IEEE Internet of Thingsand IEEE

Cyber, Physical and Social Computing, (GreenCom-

iThings-CPSCom), 2013 IEEE International Conference on

2013, pp 418–425

Zhang WS, Chen LC, Liu X, et al (2014) An OSGi-based

flexible and adaptive pervasive cloud infrastructure. Sci

China Inf Sci 57:1–11. doi: 10.1007/s11432-014-5070-3

