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Abstract—There is an increasing need for everyday communi-
cations to be both secure and resistent to external perturbations.
We have therefore created an experimental implementation of
the coupling-function-based secure communication protocol, in
order to assess its robustness to channel noise. The transmitter
and receiver are implemented on single-board computers, thereby
facilitating communication of the analog electronic signals. The
information signals are encrypted at the transmitter as the time-
variability of nonlinear coupling functions between dynamical
systems. This results in a complicated nonlinear mixing and
scrambling of the information. To replicate the channel noise,
analog white noise is added to the encrypted signals. After digiti-
zation at the receiver, the decryption is performed with dynamical
Bayesian inference to take account of time-varying dynamics
in the presence of noise. The dynamical Bayesian approach
effectively separates the deterministic information signals from
the perturbations of dynamical channel noise. The experimental
realization has demonstrated the feasibility, and established the
performance, of the protocol for secure, reliable, communication
even with high levels of channel noise.

Index Terms—Dynamical Systems, Coupled systems, Coupling
function, Bayesian inference, Communication, Noise, Secure.

I. INTRODUCTION

THE increasing use of communications serves to em-
phasise the continuing need of methods for the secure

and reliable exchange of information [1], [2]. A transmission
must be able to withstand, not only man-made attacks, but
also interruptions arising from the technical infrastructure and
the realization of the communication links themselves. The
technical perturbations often result in increased noise and
interference, which tend to alter and reduce the quality of
communications and information content, which in turn can
affect the information forensic procedures [3]–[7]. Many dif-
ferent types of communications protocol have been designed,
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including the use of logical and mathematical procedures,
signal processing manipulations, dynamical chaotic systems,
and quantum information approaches [8]–[20]. The focus
in the present paper is on a secure communications protocol
based on the coupling functions between dynamical systems.
The protocol itself is introduced in [21]; here, we present a
new experimental realization designed to test its robustness to
noise, as discussed below in Secs. III and IV.

By definition, a coupling function describes in great detail
the physical rule of how the interaction between the systems
occurs and manifests itself [22]. It is described in terms
of the strength and form of the coupling. The functional
form provides a new dimension, prescribing the functional
mechanism(s) of the interaction. The latter specifies the rule
and process through which the input values are translated into
output values. So it prescribes how the input influence from
one of the coupled systems is translated into the output from
the other system. In this way the coupling function can deter-
mine the possibility of qualitative transitions between states of
the systems e.g. routes into and out of synchronization (where
synchronization is defined as adjustment of rhythms due to
weak coupling [23]). Decomposition of a coupling function
can also facilitate a description of the functional contributions
from each separate subsystem within the coupling relationship.
Different methods for coupling function reconstruction from
data have been designed, based on e.g. least squares and kernel
smoothing fits [24], [25], maximum likelihood (multiple-
shooting) methods [26], dynamical Bayesian inference [27],
[28], stochastic modeling [29] and phase resetting [30]. These
methods have been applied widely in chemistry [26], [31]–
[33], in neuroscience [34]–[36], in cardiorespiratory physi-
ology [25], [28], [37], in mechanical interactions [38], and
in social sciences [39], as well as in secure communications
[21], [40]. The study of coupling functions is of universal
significance to interacting dynamical systems and is becoming
a very active and expanding field of research [22].

With these properties, coupling functions allow for the
construction of an effective way of encrypting information
transfer between dynamical systems. In particular, a set of
linearly independent coupling functions between self-sustained
dynamical systems can provide complex nonlinear mixing of
the information, enabling a form of encryption that is very
hard to break unless the exact coupling functions are known.
As well as using coupled dynamical systems in this way,
one can exploit further their dynamical properties to provide
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Fig. 1. Schematic of the realization of the coupling function communications protocol.

multiplexing and simultaneously yielding very noise robust
communications.

The starting point of the enterprise was the time-varying,
decomposable, coupling functions of the human cardiorespi-
ratory interaction [28], [37]. Establishment of the nature of
these biological coupling functions triggered the development
of the communication protocol, which uses the same analysis
methods developed for, and initially used on, the biological
signals. The security of the protocol [21] is assured by use
of multiple, time-varying, coupling functions between two or
more dynamical systems, and the protocol inherently allows
for the multiplexing of information. Of greatest interest in
the present context is that the communication scheme is
also highly noise-robust. The latter property results from the
use of dynamical Bayesian inference for stochastic processes
within the protocol, allowing effective separation between the
deterministic information signals and the dynamical (channel)
noise perturbations.

The previous theoretical and numerical foundations of the
coupling function protocol are complemented here by the de-
velopment of an experimental realization and the performance
of robustness tests involving real analog noise. In the analog
electronic experiments the states of the dynamical systems are
truly continuous; measurement noise and other imperfections
of the electronic components are unavoidable; and so the con-
ditions are close to those of many real applications [41]–[45].
Another aim of the experiment was to demonstrate the use of
low-cost devices of the kind commonly available in general use
(e.g. comparable to smart-phones and sensor network devices)
[19], [20]. So we developed the transmitter and receiver on
two Raspberry PI 2 single-board computers. Incorporating
the analog signals and the appropriate electronic circuits, we
then added analog electronic noise in order to simulate the
reality of communications conditions. The robustness was
then evaluated for different levels of perturbing noise. The
purpose of our new experiment was thus to test the capabilities
and the limitations of the protocol when being applied under
conditions similar to those that may be used in practice.

The paper is organized as follows. First we describe the
main concepts in section II. These include a conceptual
description of the implementation of the coupling function
protocol, the specific dynamical systems in use and the method
of dynamical Bayesian inference employed on the receiver
side. Then in section III we give a detailed description and ex-

planation of the analog electronic scheme and its components,
followed by section IV presenting the signal analysis, taking
account of the signals’ frequency content and establishing
the effect of noise on the information transfer. Concluding
remarks are given in section V. Finally, in the Appendix we
demonstrate the effect of a low-frequency non-Gaussian noise
on the communication protocol.

II. IMPLEMENTATION OF COUPLING FUNCTION SECURE
COMMUNICATION

This section describes the underlying principles of the
method for secure communication, and their implementation.
The protocol involves encryption of multiple information
streams by using thm to scale the nonlinear coupling functions
between dynamical systems; decryption involves dynamical
Bayesian inference of the time-evolving parameters [21].

A. The Coupling Functions Protocol
The experimental communications system is illustrated in

Fig. 1. A number of information carrying signals si, coming
from different devices or channels, are to be transmitted
simultaneously. Each signal serves as a scale parameter in
the nonlinear coupling functions between two self-sustained
systems in the transmitter. One signal from each of these is
then transmitted through the public channel and, on the receiv-
ing side, is used for enslaving and completely synchronizing
two similar coupled systems. Dynamical Bayesian inference
is then applied, so that the model parameters can be inferred,
allowing the information signals si to be decrypted.

The advantage of this encryption scheme is that, although
the number of coupling functions is always finite (depending
on the number of information channels needed), the choice of
forms for the linearly independent coupling functions offers
an unbounded number of possible combinations. The scheme
facilitates multiplexing, and it is also very noise-robust because
the Bayesian framework is by nature stochastic inference.

B. The Dynamical Systems Used
The basis of the encryption and decryption, and the model

that is to be inferred, consists of two noisy M -dimensional
interacting systems that can be described by the stochastic
differential equation:

ẋi = f(xi,xj |c) +
√

Dξi

= g(xi|c1) + q(xi,xj |c2) +
√

Dξi.
(1)
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Fig. 2. The trajectories of the Lorenz systems used on the transmitting side: (a) The trajectories of y1 and y3 from the second autonomous Lorenz system
(Eq. (3)). The plot is as expected, with the trajectories attracted to stable points. (b) The trajectories of x1 and x3 from the first Lorenz system (Eq. (2)).
The graph is similar to the previous case, with a notable difference in the roughness of the trajectories. This is expected, and is a result of the fact that x1
contains the coupling elements. (c) The trajectories of x1 and y1 from both Lorenz systems during data transmission. The coupling Lissajous curve is chaotic
and it is evident that the solution is not contracted to a bounded and predictable trajectory space, but is instead well hidden in the chaotic and convoluted
coupled trajectories and nonlinear dependences between the systems.

Here, c is the parameter vector, f(xi,xj |c) are the base
functions which describe the autonomous dynamics g(xi) and
the coupling functions q(xi,xj), ξi is white Gaussian noise
with autocorrelation < ξ(t)ξ(t′) >= Dδ(t − t′), and D
is the noise diffusion matrix for white Gaussian noise, and
i 6= j = 1, 2. For an analysis of the noise robustness of
the protocol in the face of colored non-Gaussian noise, see
the Appendix where the effect of a low-frequency Ornstein-
Uhlenbeck process is considered. The dynamical systems
used should be self-sustained, but in general need not be
chaotic. However, chaotic systems offer an additional level of
complexity (and hence security) for data encryption because
they appear as random-like and unpredictable, even though
their underlying nature is deterministic [46]. Furthermore, as
discussed bellow, the attractors of chaotic coupled dynamical
systems typically span a relatively large area in the state space,
which is favourable for the Bayesian inference framework used
for the decryption of the signals.

Ever since Lorenz came to appreciate the unusual charac-
teristics of chaos [47] – in that the systems are deterministic
in nature, but provide a random-like appearance – chaotic
dynamical systems have been used widely in engineering, and
in particular for secure communications [10], [11], [48]. The
Lorenz chaotic system has been utilized extensively, partly due
to the nature of its attractor which spans a wide area in the
state space (Fig. 2 (a)), and partly because it is quite stable and
can withstand relatively high perturbations. In our experiment,
a system of two coupled chaotic Lorenz systems was used,
and two binary signals s1(t) and s2(t) therefore need to be
transmitted. The first Lorenz system is given by

ẋ1 = 10x2 − 10x1 + s1(t) cos(y1)x2 + s2(t)x1y2/y3

ẋ2 = 28x1 − x1x3 − x2

ẋ3 = x1x2 − 2.67x3;

(2)

and the second one by

ẏ1 = 10y2 − 10y1

ẏ2 = 28y1 − y1y3 − y2

ẏ3 = y1y2 − 2.67y3.

(3)

In x1 of the first oscillator, two coupling functions are com-
prised of variables from both the first and more importantly
the second system. These two nonlinear coupling functions
are just examples, and other choices of linearly independent
functions can be used instead. The behavior of the systems can
be seen in Fig. 2. The Lissajous curves show the relationships
between two of the states in each system – Fig. 2 (a-b). The
effect of the coupling on the first system shows up as relatively
minor disturbances of its attractor Fig. 2 (b). The relationship
between the mutually coupled states of the two systems during
data transmission is shown in Fig. 2 (c). It demonstrates their
complicated and convoluted inter-trajectories, which is the
main property used for scrambling the information signals.

Only the signals x1 and y2 are then transmitted and noise is
added to them in the process of transmission. On the receiving
side the two chaotic systems are completely synchronized [48]:
the system u, through x1, becomes effectively identical to the
system x:

u1 = x1

u̇2 = 28x1 − x1u3 − u2

u̇3 = x1u2 − 2.67u3,

(4)

and the system w, through y2, becomes effectively identical
to system y:

ẇ1 = 10y2 − 10w1

w2 = y2

ẇ3 = w1y2 − 2.67w3.

(5)

The time-series of the signals from the reconstructed dynam-
ical systems u and w then act as the six inputs for the
dynamical Bayesian inference.

C. Dynamical Bayesian Inference

Dynamical Bayesian inference for decryption of the signals
si from the two reconstructed coupled systems u and w [21],
[28] is performed in state space. The model that is to be
inferred is given by Eq. (1). Note that the chosen coupling
functions q(xi,xj) represent the encryption key. Bearing this
in mind, if given a 2 ×M time-series X = {xn ≡ x(tn)}
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Fig. 3. Detailed scheme of the electronic implementation.

(tn = nh) as input, the main task for the Bayesian dynamical
inference is to reveal the unknown model parameters and the
noise diffusion matrix M = {c,D}, which eventually comes
down to maximization of the posterior conditional probability
pX (M|X ) of observing the parameters M when given the
data X [49]. The relationship of this posterior conditional
probability to the prior density pprior(M) (which encompasses
observation based prior knowledge of the unknown param-
eters), and to the likelihood function `(X|M) (that is the
conditional probability density to observe X given choiceM),
is given by Bayes’ theorem:

pX (M|X ) =
`(X|M) pprior(M)∫
`(X|M) pprior(M)dM

. (6)

Using dense enough sampling h, the problem can be solved
using the Euler midpoint x∗n = (xn+1 + xn)/2 discretisation
of Eq. (1):

xi,n+1 = xi,n + hf(x∗i,n,x
∗
j,n|c) + h

√
Dzn. (7)

Here zn is the stochastic integral of the noise term over time:
zn ≡

∫ tn+1

tn
z(t) dt. The noise zn is statistically independent

and the likelihood is given by a product over n of the
probability at each moment of time of observing xn+1. The
joint probability density of zn is thus used to find the joint
probability density of the process in respect of xn+1 − xn.
The negative log-likelihood function S = − ln `(X|M) is then
expressed as:

S =
N

2
ln |D|+ h

2

N−1∑
n=0

(
ck
∂fk(x·,n)

∂x
+

+ [ẋn − ckfk(x∗·,n)]T (D−1)[ẋn − ckfk(x∗·,n)]
)
,

(8)

where ẋn = (xn+1 − xn)/h, with implicit summation over
the repeated index k.

Given a multivariate normal distribution for the prior prob-
ability of the parameters c, with mean c, covariance matrix
Σprior, and concentration matrix Ξprior ≡ Σ−1prior, the
posterior multivariate probability NX (c|c̄,Ξ) (and thus the
probability density of each parameter set of the model (1))

can be evaluated by applying the following four equations to
each sequential block of data X :

D =
h

N

(
ẋn − ckfk(x∗·,n)

)T (
ẋn − ckfk(x∗·,n)

)
,

ck = (Ξ−1)kw rw,

rw = (Ξprior)kw cw + h fk(x∗·,n) (D−1) ẋn+

− h

2

∂fk(x·,n)

∂x
,

Ξkw = (Ξprior)kw + h fk(x∗·,n) (D−1) fw(x∗·,n).

(9)

Here, summation over n = 1, . . . , N is assumed, the initial
prior is set to be the non-informative flat normal distribution
given by Ξprior = 0 and c̄prior = 0, and summation over
repeated indices k and w is implicit. The stopping rule is that
further iteration of the algorithm would not modify c or Ξ
beyond some predefined very small constant value ε.

The main concept of this approach is based on the fact
that the inference has to follow the time evolution of c
and, at the same time, to separate its dynamical effects from
the unavoidable accompanying noise. For that purpose, the
operations in Eqs. (9) are performed within a single window
of data, where the time-series are separated into sequential
blocks; the evaluation of each next block of data uses the
evaluation results of the previous block, and the process of
information propagation between the n posterior distribution
and the n+1 prior distribution has to allow the time-variability
of the parameters to be followed. A squared symmetric positive
definite matrix Σdiff is created to show how much each param-
eter diffuses normally. Therefore, the next prior probability
of the parameters is the convolution of two current normal
multivariate distributions, Σpost and Σdiff: Σn+1

prior = Σn
post+Σn

diff.
The diffusion matrix is defined as (Σdiff)i,j = ρijσiσj , where
σi is the standard deviation of the diffusion of ci in the current
time window, and ρij is the correlation between the changes
in the parameters ci and cj .

Dynamical Bayesian inference is applied on the receiver
side to the six time series (u1, u2, u3, w1, w2, w3) from the two
reconstructed coupled systems to decrypt the binary signals
s1(t) and s2(t). The base functions for the inference of
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the model within the Bayesian framework are taken as the
functions on the right-hand sides of Eqs. (2) and (3).

Further details of the development, software implementation
and application of the dynamic Bayesian inference approach
can be found in [21], [27], [28], [49], and references therein.

III. ANALOG ELECTRONIC REALIZATION

Having summarised the basis of the theory, we now provide
a detailed explanation of the practical experimental realization
of this algorithm.

The transmitter and receiver were implemented on two
Raspberry PI 2 Model B single-board computers. This was
done in order to test the feasibility and efficiency of the cou-
pling function encryption approach in relation to commercially
available and widely used hardware. The Raspberry Pi is felt
to be a good option because it has similar performance to that
of other common low-cost devices such as smart phones. Fig.
3 shows a schematic circuit diagram, with the two Raspberry
PIs on the far left and right sides. The numerical simulations to
generate the signals in the transmitter and to reconstruct them
in the receiver were performed using a fourth order Runge-
Kutta scheme with a sampling of h = 0.01.

The two random binary signals s1(t) and s2(t) generated in
the transmitter were used as scale parameters in the nonlinear
coupling functions between the systems given by Eqs. (2) and
(3). Signals x1 and y2 were converted into analog signals
with a digital-to-analog convertor, amplified, and transmitted
through wires to the receiver. While both signals were in their
analog form, independent white noises were added to them.
These noise signals were generated in Matlab and sent to the
two independent analog outputs of a computer audio card with
a 100 KHz sampling frequency. Both noise signals were of the
same amplitude, and analysis of their mean, autocorrelation,
and frequency spectra showed that they indeed possessed the
characteristics of experimental white noise. Finally, on the
receiving side, both analog signals were converted back to
digital by an analog-to-digital convertor and then used to
synchronize the chaotic systems in the receiver, as shown
in Eqs. (4) and (5). Both converters were implemented with
‘ADC-DAC Pi’ cards. These cards are based on the Microchip
MCP3202 ADC converter containing 2 analog inputs with 12
bit resolution and a Microchip MCP4822 dual channel 12-bit
DAC with an internal voltage reference. General purpose quad
operational amplifiers TL084N were used, along with standard
resistors and capacitors, as shown in Fig. 3.

The logic of the transmission included a handshake with
direct digital input/output connections between the two Rasp-
berry PIs (indicated by the two lines on the bottom of Fig.
3). This involved the transmitter sending a digital binary
indication that it is ready to transmit, and then the receiver
returning a bit to indicate that it is ready to receive. As speed
of the communication was not the focus in this investigation,
the time window in which the Bayesian inference was applied
was 250 s, i.e. each bit {0 or 1} was transmitted within this
window length.

Fig. 4 shows samples of the three signal time-series captured
by an oscilloscope at an arbitrary time. The bottom signal is

the transmitted analog signal y2(t); the middle signal is the
added analog white noise; while the top signal is y2(t) after
the noise addition. This top trace demonstrates the effect of
the white noise on the generated audio signal(s) i.e. on the
transmitted information.

Fig. 4. Real-time oscilloscope capture of the transmitted signal y2(t)
(bottom), the white noise (middle), and the same signal y2(t) but with added
noise that arrives at the receiver (top).

IV. ANALYSIS

A. Time and Frequency Signal Analysis

During the processes of signal generation, encryption, com-
munication, and decryption, all signals were recorded for
offline analysis. We were thus able to analyze in detail the
effects of noise on the time-series of the transmitted signals:
Figs. 5(a) and (b) show x1(t) and y2(t) respectively, before
and after the noise was added, with the noisy version of
the signal superimposed on top of the original time-series.
Digitized time-series of the analog white noise is shown in
(c).

On the right hand side of the figure the corresponding fast
Fourier transforms (FFTs) of the signals are shown in panels
(d) and (e) and of the noise in (f). It can be seen that the
spectra of the chaotic signals x1(t) and y2(t) are broadened
but without clear harmonics. In contrast, the noise spectrum
contained all frequencies, spread across the entire observed
domain, as expected for a white noise process.

B. Influence of Noise on Information Transfer

The main goal of the experiment was to test the effec-
tiveness and robustness of coupling function encryption for
communication in the presence of noise, and thus to examine
its practical applicability. The second part of the investigation
therefore consisted of systematically increasing the strength of
the noise while, at the same time, following its effect on the
signal-to-noise ratio (SNR). Randomly generated bits {0,1}
were transmitted while gradually increasing the noise level
(decreasing the SNR) in each trial. Fig. 6 shows the deviations
of the binary 1 and binary 0 decrypted signal s1(t) (i.e.
the inferred parameter c1), and signal s2(t) (i.e. the inferred
parameter c2) as functions of the SNR. Thus for each SNR
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Fig. 5. Time-series analysis of the transmitted, the received and the noise signals and their corresponding FFT spectra: (a) Time-series of the received,
reconstructed, signal x1(t) superimposed on its original transmitted version. (b) Time-series of the received signal y2(t) superimposed on its original
transmitted version. (c) The discretized analog white noise time-series. (d) The FFT frequency spectrum of x1(t). (e) The FFT frequency spectrum of y2(t).
(f) The FFT frequency spectrum of the noise signal.

point examined there was one trial of transmission and the
parameters c1 and c2 are plotted as two boxplots (showing
the mean and the distribution) of all the “one” and “zero”
values within that set of secure communication. Hence, for
very small noise (high SNR), the boxplot distributions are
quite compressed around the values corresponding to binary
one and binary zero while, for higher noise levels (low SNR),
the boxplot distributions become much wider. If the two
distributions for each SNR trial start to overlap, than the
observer cannot separate binary one from binary zero, and the
bit-error-rate (BER) will then become nonzero. As can be seen
from Fig. 6, in all of the cases investigated the distributions
are non-overlapping and the BER is zero.

The encryption/decryption was performed down to around
SNR=15 dB for the two simultaneous parameters c1 and c2,
after which the experiment became impossible (most probably
due to experimental limitations and the 12-bit resolution of the
DAC and ADC). The experimental setup increased the SNR
threshold at which a finite BER appeared, cf. the SNR=4 dB
obtained in theory and through numerical simulations [21].
With the encryption/decryption of only the first parameter c1,
effective communication was performed for SNR=14.1 dB.
Thus for this SNR, which is below 15 dB, there was no BER
and reliable communication was possible. This is a relatively
high level of noise (i.e. low SNR) for communications in
practice, where the SNR threshold for finite BER is around 15
dB for wireless transmission and around 40 dB for wireline
communication [50].

In order to establish the effectiveness of the coupling func-

tion protocol, it was compared with a known protocol based on
complete synchronization of chaotic dynamical systems called
the signal masking protocol [10]. The latter is one of the most
used protocols in the class of secure communications with
(chaotic) dynamical systems, so that this test is representative
and relevant to all protocols in this class. Because the protocol
presented in this paper also uses complete synchronization to
transmit the signals, this investigation also tests how coupling
function communication behaves in a noisy communications
environment without dynamical Bayesian inference. In com-
parison, the signal masking protocol, which relies only on
complete synchronization, is less complex than the coupling
function protocol which uses complete synchronization plus
dynamical Bayesian inference for decryption and noise reduc-
tion. This complexity implies a need for higher computational
power and associated lower speed in the case of coupling
function communications. In order to achieve a meaningful
comparison, the same number of random bits were transmitted
within same window length, using the same hardware setup,
systematically applying the same noise levels i.e. SNR. It
was found that a finite BER appeared at around SNR=20 dB,
which is a significantly higher threshold (thus indicating lower
robustness) than the values of SNR=14.1 dB and SNR=15 dB
obtained with the coupling function protocol.

V. CONCLUSION

The communications protocol encrypted the information
through the complex nonlinear mixing provided by the mech-
anisms of interaction defined by coupling functions. Here we
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Fig. 6. Deviations of the decrypted signal from the initial binary states due to noise, presented as compact box plots (in terms of descriptive statistics: median,
quartiles, max, and min) as a function of signal-to-noise ratio (SNR). (a) for the first information signal s1(t) i.e. inferred parameter c1 where the binary
value for {1} is represented by c1 = 2.7, and (b) for the signal s2(t) i.e. inferred parameter c2 with the binary {1} represented by c2 = 1.5.

presented a simple experimental proof of concept, testing the
noise robustness of the protocol under realistic conditions.
Thus, the work has developed the engineering aspects of the
previous theoretical concepts.

The experimental setup was rather simple, as the goal was
to test the coupling function protocol on a device with similar
performance to that of widely-used, low-cost devices such
as those embedded in e.g. smart-phones. Inevitably, and as
expected, there were certain limitations that could be overcome
by use of higher-performance hardware. For example, instead
of the Raspberry PI one could have used different single-board
computers that allow faster and higher-performance processing
(as GPU or FPGA for example), which in turn would allow for
higher bit conversion-rates than the 12-bit resolution used here.
The use of complete synchronization is not easy to maintain
in practice where the transmitter and receiver are sufficiently
widely separated, in which case one should apply one of
the known methods for maintaining data synchronization in
communication networks [51], [52]. In theory, the noise acted
as dynamic perturbation of the dynamical states, but in the
experiments here we also encountered a small amount of
measurement noise, making the inference less precise. Future
calculations of the inference should employ one of the known
procedures for decomposing the measurement noise as well.

The coupling function protocol was shown experimentally
to remain effective even with relatively high noise. All of the
results were consistent with the earlier theoretical findings and
demonstrated that the protocol could with advantage be em-
ployed in current communications applications, in particular
when noise levels are high. Dynamical Bayesian inference for
stochastic processes was shown to be useful in decomposing
the noise from the deterministic information. In the present
case, this was valuable in relation to the coupling function
protocol, but it also promises future applications to noise
reduction in communications using other protocols.

APPENDIX
ANALYSIS OF THE INFLUENCE OF LOW-FREQUENCY

NON-GAUSSIAN NOISE ON THE INFORMATION TRANSFER

The interference that arises in communications networks is
often modeled as a Gaussian random process to which the
central limit theorem is applicable. This can be appropriate
when the noise is caused by different mutually independent
and uncorrelated signals, none of which dominates their total
accumulation. A notable example is the thermal noise in
electronics, which can be modeled as additive white Gaus-
sian noise. However, there are many real-world situations
where dominant sources of interference occur, often as the
result of distance-dependent path-loss attenuation [53]. In such
cases, the central limit theorem cannot give a satisfactory
approximation, because the probability density function of
the interference features a heavier tail than that predicted
by the Gaussian model. Models that have been proposed for
such interference include the Ornstein-Uhlenbeck process [54],
[55], 1/f noise [56], the spatial Poisson process [57], and
Gaussian mixture models.

To examine the robustness of the coupling function commu-
nication protocol to the noises more commonly found in real
systems, an analysis (based on the numerical simulations [21])
was performed where, instead of white noise, low-frequency
Ornstein-Uhlenbeck noise η(t) was added to the sent signals
x1 and y2 from the coupled systems given in (2) and (3). Thus,
during the simulated transmission we have x1 = x1 + η1(t)
and y2 = y2 + η2(t), where η1(t) and η2(t) are Ornstein-
Uhlenbeck noise signals that influence the respective channels.
In general, Ornstein-Uhlenbeck noise can be defined as:

η̇(t) = ξ(t)− 1

γ
η(t), (10)

with autocorrelation 〈η(t)η(t′)〉 = σ2 exp [−(t− t′)/γ].
Here, ξ is white Gaussian noise and γ is the correlation

time of the random Ornstein-Uhlenbeck process. For the
limiting case where γ → 0, the random process converges
to white Gaussian noise. In reality however, the noise often
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Fig. 7. Time-series analyses of the transmitted and received signals, and of the noise signals and their corresponding FFT spectra. (a) Time-series of the
received signal x1(t) superimposed on its original transmitted version with Ornstein-Uhlenbeck noise η1(t) of strength D1 = 20 and correlation time
γ1 = 30 (red trace, and right-hand ordinate axis) is applied. (b) Time-series of the received signal y2(t) superimposed on its original transmitted version
with Ornstein-Uhlenbeck noise η2(t) of strength D2 = 20 and correlation time γ2 = 0.09 (red trace and right-hand ordinate axis) is applied. (c) The FFT
frequency spectrum of η1(t). (d) The FFT frequency spectrum of η2(t). Note that η2(t) has a short correlation time and is thus looks more like white noise
than η1(t), which can seen in both the time evolutions and the frequency spectra.

has a nonzero correlation time that cannot be neglected. The
Ornstein-Uhlenbeck process is one such natural generalization
of Gaussian white noise, and it can be used to represent the
noise that occurs in real-world communication systems [58]. It
is a mean-reverting process, which means that it does tend to
drift towards a long-term mean over time; however, during the
relatively brief time windows in which communication occurs
(both in reality and in the simulation), and for long enough
values of the correlation time, this tendency can be neglected
and the noise can be treated as being distinctively different
from standard Gaussian white noise.

By definition the Ornstein-Uhlenbeck process is Gaussian
in the stationary limit. However, before the stationary limit is
reached, for example for short time periods comparable with
the communication bit time-length, the Ornstein-Uhlenbeck
process can be regarded as being non-Gaussian. The noise
signals generated with (10) were therefore subjected to both
the Kolmogorov-Smirnov and the Anderson-Darling tests in
order to examine the similarity of their distributions to the
standard normal distribution. Both tests showed that, for
the time windows used here, and for the correlation times
γ ≥ 0.09, the generated noises do not come from a Gaussian
distribution.

Numerical simulations with Ornstein-Uhlenbeck noise ap-
plied to the communication channel were run for times of
20,000 seconds, during which 400 data bits were sent and
decrypted over 400 Bayesian windows of 50 seconds each,
while the sampling time was 0.01 seconds. Fig. 7 shows the
time-series of the transmitted and the received signals for

both x1(t) and y2(t). It also gives the time-series and the
corresponding FFT power spectra for the noise. The noise
signal η1(t) applied to x1(t) had a strength of D1 = 20
and a correlation time of γ1 = 30. As can be seen in Figs.
7(a) and (c) respectively, the longer correlation time meant
a more visible drift of the noise within the time domain
and a power spectrum restricted to much lower frequencies,
confirming the nature of the Ornstein-Uhlenbeck process as
a model of a low-pass-filtered white noise. On the other
hand, the noise signal η2(t) applied to y2(t) had the same
strength of D2 = 20, but a much shorter correlation time
of γ2 = 0.09, at the limit previously determined by the
Kolmogorov-Smirnov and Anderson-Darling tests. As shown
in Fig. 7(b) and (d) respectively, this signal is now much
more reminiscent of standard white Gaussian noise, both in
the time domain and in the power spectrum, which now
contains more frequencies. The Ornstein-Uhlenbeck process
was used because it presented a good noise model where a
simple change of the correlation time can effectively transform
the generated noise from a white Gaussian one into a low-
frequency one.

Fig. 8 shows how successful the dynamical Bayesian infer-
ence was in dealing with noise of this nature, using the mean-
square error between the sent and the received values of the de-
crypted bits c1(t) and c2(t): MSE(c) = 1

n

∑n
i=1(cdecrypted−

csent)
2. First, simulations were run where the parameters of

η2(t) were kept at constant values of D2 = γ2 = 1, while
the parameters of η1(t) were being changed in the ranges of
[0; 22] for D1 and of [0; 52] for γ1. The mean-square error
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Fig. 8. The dependance of the mean-square error (MSE) of the transmitted bits on the strength D and correlation time γ of the Ornstein-Uhlenbeck noise
applied to the communication channels. (a) The mean-square error of c2(t) as a function of D1 and γ1 of the noise signal η1(t) applied to x1(t), while the
parameters of the noise applied to y2 remain constant. The mean-square error increases with the strength and correlation time of the noise. (b) The mean-square
error of c1(t) as a function of D1 and γ1, and of D2 and γ2, of the noise signals η1(t) applied to x1(t) and η2(t) applied to y2(t), respectively. Again,
the mean-square error increases with the strengths and the correlation times of the noise signals.

of the decrypted bit c2(t) was then calculated for each of the
simulation scenarios and plotted as a function of D1 and γ1.
In Fig. 8(a), it can be seen that this error increases as either the
noise strength or the correlation time increases. Furthermore,
the projections of the three-dimensional surface on the side
plains show that the error rises more steadily and linearly
with the increase of D1, than it does with the increase of γ1.
Similar plots were obtained for the dependance of the mean-
square error of the bit c1(t) on the change of the parameters
of η1(t), and for the dependance of the mean-square errors of
both c1(t) and c2(t) on the change of the parameters of η2(t).
These plots have been omitted in view of space considerations.

Another situation that was simulated was the simultaneous
increase in the strength and correlation time of both noise
signals η1(t) and η2(t). As can be seen in Fig. 8(b), the
mean-square error of the decrypted bit c1(t) also rises with
the increase of these parameters. Again, the change of the
noise strengths contributes towards a steadier and more linear-
like increase than the change of the correlation times. Similar
results were obtained for the dependence of the mean-square
error of c2(t) on the change of the noise parameters.

In summary, the framework for dynamical Bayesian infer-
ence (itself stochastic by nature) is, by construction, better
capable of dealing with noise in the communication channel
that resembles Gaussian noise (i.e. has a shorter correlation
time), but we find that it also exhibits satisfactory performance
when more realistic forms of noise, such as low-frequency
Ornstein-Uhlenbeck noise, are applied.
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