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Abstract 37 

Grassland degradation is a worldwide problem that often leads to substantial loss of soil organic 38 

matter (SOM). To estimate the potential for carbon (C) accumulation in degraded grassland soils, 39 

we first need to understand how SOM content influences the transformation of plant C and its 40 

stabilization within the soil matrix. We conducted a greenhouse experiment using C3 soils with 41 

six levels of SOM content; we planted the C4 grass Cleistogenes squarrosa or added its litter to 42 

the soils to investigate how SOM content regulates the storage of new soil C derived from litter 43 

and roots, the decomposition of extant soil C, and the formation of soil aggregates. We found 44 

that with the increase in SOM content, microbial biomass carbon (MBC) and the mineralization 45 

of litter C increased. Both the litter addition and planted treatments increased the amount of new 46 

C inputs to soil. However, the mineralization of extant soil C was significantly accelerated by the 47 

presence of living roots but was not affected by litter addition. Accordingly, the soil C content 48 

was significantly higher in the litter addition treatments but was not affected by the planted 49 

treatments by the end of the experiment. The soil macroaggregate fraction increased with SOM 50 

content and was positively related to MBC. Our experiment suggests that as SOM content 51 

increases, plant growth and soil microbial activity increase, which allows microbes to process 52 

more plant-derived C and promote new soil C formation. Although long-term field experiments 53 

are needed to test the robustness of our findings, our greenhouse experiment suggests that the 54 

interactions between SOM content and plant C inputs should be considered when evaluating soil 55 

C turnover in degraded grasslands. 56 

Keywords: soil organic matter content, litter decomposition, soil carbon transformation, soil 57 

aggregate, grasslands, microbial biomass 58 
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1 Introduction 60 

     Soil organic matter content is a key indicator of soil health, which determines plant 61 

productivity and microbial activity (Magdoff and Weil 2004). Grasslands cover 40.5% of the 62 

world's land area (Gibson 2009) and many of them are subjected to disturbance from 63 

environmental and land use changes, such as over-grazing (Reid and others 2004) and 64 

conversion from grassland to cropland (Wright and Wimberly 2013). These disturbances result 65 

in large losses of soil organic matter (SOM) and can cause desertification in many grassland 66 

ecosystems (Lal 2003; Wang and others 2011; McSherry and Ritchie 2013). Degraded 67 

grasslands are often subjected to extensive erosion, which selectively removes lighter organic 68 

matter and finer particles such as clay and silt and leaving heavier sand particles (Li and others 69 

2005; Zhou and others 2008). Soil fertility, soil water-holding capacity, and therefore plant 70 

productivity, decrease with the severity of soil degradation (Lal 2001). Although there is much 71 

debate on the potential of grasslands to act as a sink for carbon (C), it is commonly agreed that 72 

better management of degraded grasslands could reduce soil C loss and enhance the C 73 

sequestration capacity of grasslands (Smith 2014). However, this requires a better understanding 74 

of the feedbacks between extant SOM content, plant productivity, microbial activity, and 75 

aggregate formation, which all contribute to the storage and stabilization of C in grassland soils. 76 

Soils with greater SOM content are often more fertile and have higher water-holding capacity, 77 

which supports higher plant productivity (Saxton and Rawls 2006; Six and Paustian 2014). In 78 

turn, C inputs from plants, including aboveground litter and root litter and root exudates, play a 79 

key role in regulating the soil C balance (Kuzyakov and Domanski 2000; Santos and others 80 

2016). Root inputs are considered as particularly important for soil C storage in grassland 81 

ecosystems, whereas aboveground litter contributes less to the formation of SOM (Rasse and 82 
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others 2005; Bird and Torn 2006; Prescott 2010; Schmidt and others 2011). Recent research 83 

suggests that microbes can incorporate labile C into soil more efficiently than recalcitrant C 84 

(Cotrufo and others 2013). Consequently, a decline in labile C sources, such as aboveground leaf 85 

litter and root exudates, could have a much greater impact on stable SOM formation than 86 

previously thought (Hatton and others 2015; Haddix and others 2016). 87 

Soil organic matter accumulation is affected not only by C inputs from plants but also by 88 

microbial activity, which regulates the transformation of plant C to SOM (Cotrufo and others 89 

2013). Soil organic matter is the most important energy and nutrient source for soil microbes 90 

(Fontaine and others 2011) and changes in SOM content can alter microbial community 91 

composition and C use efficiency (CUE; Manzoni and others 2012; Sinsabaugh and others 2016). 92 

Losses of SOM associated with soil degradation could therefore reduce the size and activity of 93 

the microbial population (Pascual and others 2000; Bastida and others 2006) and alter the 94 

capacity of soil microbial communities to decompose and transform plant-derived C into stable 95 

microbial products. 96 

Finally, the capacity of soil to sequester C also depends on the stability of SOM (Jastrow and 97 

others 2007). In this context, soil aggregate formation is one of the key processes for increasing 98 

the residence time of SOM (Six and others 2002b) because C associated with soil 99 

microaggregates is physically protected from microbial attack by occlusion within 100 

macroaggregates, which slows its decomposition (Denef and others 2007; Six and Paustian 101 

2014). The soil macroaggregate fraction often increases with SOM content (Blanco-Canqui and 102 

Lal 2004; Bronick and Lal 2005) and polysaccharides derived from aboveground litter and fine 103 

roots can improve soil aggregation by acting as binding agents (Six and others 2002b). Hence, 104 

SOM content could influence the mean residence time of soil C directly by promoting 105 
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macroaggregate formation and indirectly by altering plant aboveground litter inputs and root 106 

production. 107 

Despite the potential importance of feedbacks between extant SOM content and additional 108 

soil C sequestration, few experimental studies have investigated how SOM loss due to soil 109 

degradation affects the stabilization of plant-derived C inputs and therefore the future C 110 

sequestration potential of the soil (Tan and others 2014; Castellano and others 2015). Importantly, 111 

feedbacks between inputs and storage of new C and the mineralization and release of extant C all 112 

contribute to net changes in soil C (Lange and others 2015). Hence, measurements of total soil C 113 

change or CO2 efflux alone cannot elucidate the mechanisms underlying SOM storage. For 114 

example, increased inputs of plant-derived C can stimulate the release of older stored soil C via 115 

'priming effects', with no net change in soil C content (Kuzyakov and others 2000). Although 116 

isotope studies have advanced our knowledge of SOM turnover under new C inputs (e.g., Cheng 117 

2009; Blagodatskaya and others 2014), we have yet to determine how the extant SOM content 118 

influences the various processes involved in the storage of additional soil C. 119 

     In this study, we created a SOM gradient to simulate different levels of soil degradation in 120 

grasslands. We planted C4 grass and added C4 grass leaf litter into C3 soils to simulate root and 121 

aboveground litter inputs, respectively. We used the natural difference in the 
13

C isotope value122 

between the C4 plants and C3 soil to track new soil C formation and the decomposition of extant 123 

C in soils with different SOM contents. We hypothesized that greater extant SOM results in 124 

greater C sequestration of new C inputs because 1) higher SOM content supports greater 125 

microbial biomass, which enhances the mineralization of litter-derived C and results in increased 126 

formation of new soil C derived from aboveground litter; 2) higher SOM content supports 127 

greater root biomass, thereby increasing root-derived new soil C; and 3) higher SOM content 128 

Page 11 of 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 

improves soil aggregation, resulting in greater physical protection of soil C. However, as 129 

increased new C inputs from plants could also stimulate the decomposition of extant SOM via 130 

priming effects (Kuzyakov and others 2000), we also tested an alternative hypothesis: 4) 131 

increased root C inputs with greater extant SOM content will promote the mineralization and 132 

release of stored soil C, resulting in little or no increase in C sequestration. 133 

2 Materials and Methods 134 

2.1 Soil, leaf litter, seed sampling and pretreatments 135 

     Mineral soil (0-30 cm depth) was taken from the Duolun Restoration Ecology Research 136 

Station (42°2′N, 116°17′E), Inner Mongolia, China, in October 2012. The site was an overgrazed 137 

steppe, but was fenced to limit access by cattle in 2000. The soil is sandy and classified as a 138 

Haplic Calcisol according to the FAO soil classification. Bulk density is 1.31 Mg m
-3

, mean soil139 

pH is 7.7, and the concentrations of organic carbon (C) and nitrogen (N) are 1.40 ±0.02% (n=3) 140 

and 0.14 ±0.00% (n=3), respectively. The soil was homogenized, passed through a 2-mm mesh 141 

sieve to remove coarse fragments, and visible plant residues were removed using tweezers. The 142 

soil was divided into two parts: one part was air-dried and the other part was combusted in a 143 

muffle furnace at 550°C for three hours to remove the native SOC (German and others 2011). 144 

Six experimental levels of SOM were obtained by mixing the air-dried and combusted soil 145 

according to different mass percentages as follows: 100% combusted soil (S0), 80% combusted 146 

plus 20% air-dried soil (S20), 60% combusted plus 40% air-dried soil (S40), 40% combusted 147 

plus 60% air-dried soil (S60), 20% combusted plus 80% air-dried soil (S80), and 100% air-dried 148 

soil (S100). Hence, the six soil treatments (hereafter “soil types”) represent a gradient of 149 

increasing SOM content (hereafter “SOM levels”; Table 1). 150 
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The combustion treatment not only removes SOM, but can also alter soil properties, such as 151 

texture, nutrient content, mineralogy, and water holding capacity (Tan and others 1986; Certini 152 

2005). We therefore analyzed these soil physiochemical properties for each SOM level. Soil 153 

texture, was measured using a particle size analyser (Malvern Masterizer 2000, Malvern, 154 

Worcestershire, UK) after removal of organic matter and carbonates. Soil samples were digested 155 

in a microwave oven (MA-1870, Haier, Qingdao, China), and the concentrations of mineral 156 

elements, including calcium (Ca), potassium (K), magnesium (Mg), sodium (Na) and phosphorus 157 

(P), were determined by an ICP-ES (ICP; Thermo Scientific, West Palm Beach, USA). Soil 158 

mineralogy was identified by X-ray diffraction spectroscopy (Ultima IV; Rigaku Corporation, 159 

Tokyo, Japan). Water holding capacity (WHC) was determined by the methods described in 160 

Hanson and others (2002). Briefly, air-dried soil samples (20 g) were placed in a funnel lined 161 

with pre-weighed filter paper, water was added to the soil until saturation, the soil was allowed to 162 

drain for 3 h, and then the soil and filter paper were weighed. We calculated WHC from the 163 

difference between the dry and drained net weights of the soil samples. We also analyzed soil C 164 

concentration by a CHNOS elemental analyzer (Vario EL III; Elementar Analysensysteme 165 

GmbH, Hanau, Germany) to assess the efficiency of the combustion treatment for removing 166 

SOM.  167 

Leaf litter and seeds of Cleistogenes squarrosa were collected from the Duolun steppe in 168 

September 2012. C. squarrosa is a C4 grass that is widely distributed in the Inner Mongolian 169 

temperate steppe; its leaf litter has a C concentration of 44.0 ±0.01% and a δ
13

C of -14.1 ±0.1‰ 170 

and its root material has a δ
13

C of -15.7 ±1.2‰, which are distinguished from the δ
13 C of extant 171 

soil C (δ
13

C of -23.8 ±0.02‰) and allowed us to use such a discrepancy in δ
13

C value to partition 172 

Page 13 of 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

litter- or root-derived C from the extant soil C. Leaf litter was oven-dried at 40°C and chopped 173 

into 2.5 cm segments. The seeds were air-dried and stored in a dry place until February 2013. 174 

2.2 Greenhouse experiment design 175 

     We conducted a greenhouse experiment using plastic pots (100 mm height, 120 mm upper 176 

diameter, and 100 mm lower diameter). The air temperature of the greenhouse was maintained at 177 

20–30°C and air humidity was kept at 50–60%. We filled 12 pots, each with 746 g of air-dried 178 

soil from one of the six soil types, and randomly assigned the pots of each soil type to four 179 

treatments: 1) “planted” with C. squarrosa seeds; 2) “litter addition” with C. squarrosa leaf litter 180 

mixed into the soil; 3) planted plus litter addition; and 4) controls without plants or litter inputs. 181 

Hence, the experiment comprised three replicate pots of four treatments for each of the six soil 182 

types, making a total of 72 pots. For the planted treatment, the C. squarrosa seeds were 183 

immersed in warm water (40-60 °C) for 4 hours to improve seed germination and then 20-25 184 

seeds were planted per pot on February 5, 2013. After germination, 12-13 seedlings were kept in 185 

the pots, mimicking the natural plant density at the study site (957 ±325 plants m
-2

), and the 186 

remaining seedlings were removed. For the litter addition treatments, we used 1.07 g of litter per 187 

100 g of soil, which was the ratio of litter to soil described for the incubation experiments by 188 

Cheng and others (2012). Thus, we mixed 8 g of C. squarrosa leaf litter (C = 43.9%, N = 1.2%, 189 

C:N = 36.6) into 746 g of soil in each pot. It should be noted that the litter addition rate in this 190 

study was approximately two-fold greater per unit area than litter inputs observed in the field. All 191 

pots were watered with 150 ml of distilled water every week to avoid plant water stress. 192 

2.3 Variable measurements at the end of the experiment 193 
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     The greenhouse experiment lasted for 191 days when the plants started to senesce. At the end 194 

of the experiment, the aboveground biomass in the planted pots was harvested, oven-dried at 195 

55°C for 48 h, and then weighed to determine the aboveground biomass. Plant roots were 196 

separated from the soil with tweezers, cleaned with deionized water in a 53 µm sieve, oven-dried 197 

at 55°C for 48 h, and weighed to determine the belowground biomass. For the litter addition 198 

treatments, the remaining litter was manually separated from the soil with tweezers and the large 199 

soil particles attached to the litter were removed. The retrieved litter was then air-dried and 200 

weighed to estimate remaining mass and to measure the C concentration. The soil from each pot 201 

was separated into two subsamples: one was air-dried for aggregate partitioning, total C 202 

concentration, and soil 
13

C isotope measurements; the other subsample was sieved through a 2-203 

mm mesh sieve and stored at 4°C for approximately 10 hours for analysis of microbial biomass 204 

carbon (MBC). 205 

To determine the soil aggregate size fractions, all samples were pre-sieved through 8 mm 206 

sieves prior to wet-sieving to remove coarse organic matter and to homogenize the soil samples. 207 

Water-stable aggregates (WSA) from each sample were separated into four size classes (>2000, 208 

250-2000, 53-250 and <53 µm diameter) using a wet-sieving apparatus with sieve “nests” of 209 

corresponding mesh sizes (Six and others 1998, 2000). The four buckets were filled with distilled 210 

water so that the water level was below the top sieve. A 50-g air-dried soil sample was placed on 211 

the top sieve of each nest, submerged in water for 10 minutes and then the apparatus was shaken 212 

vertically (4 cm) 30 times per minute for 10 minutes. The soil retained in the three largest sieves 213 

was transferred to an aluminium tube, oven-dried at 60℃ to limit drying effects on soil organic 214 

C, and then weighed. To separate the <53 µm  soil fraction from the distilled water, the buckets 215 

were left undisturbed for 4 h, allowing the <53 µm soil fraction to settle at the bottom of the 216 

Page 15 of 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 

buckets; the soil was transferred to aluminium cups, oven-dried and weighed. Here, 217 

macroaggregates are defined as the sum of the 250-2000 µm and >2000 µm aggregate fractions, 218 

and microaggregates are defined as the sum of <53 µm and 53-250 µm aggregate fractions, given 219 

in mass percentages. 220 

Microbial biomass carbon (MBC) was determined on a 15-g subsample of fresh soil from 221 

each pot using the chloroform fumigation-extraction method (Vance and others 1987). Soil C 222 

was extracted from 7.5-g subsamples of fumigated and unfumigated soils in 75 ml 0.5-M K2SO4 223 

solution and was analyzed using a TOC analyzer (High TOC, Elementar Analysensysteme, 224 

Hanau, Germany). Microbial biomass carbon was calculated from the difference in extractable C 225 

concentrations between the fumigated and the unfumigated samples, using a conversion factor of 226 

0.45. 227 

     To determine total soil C concentration, samples were air-dried and sieved through a 2-mm 228 

mesh sieve to remove coarse organic matter. The soil was then ground using a ball mill (Retsch 229 

MM400, Haan, Germany) and total C was analyzed by a CHNOS elemental analyzer (Vario EL 230 

III; Elementar Analysensysteme GmbH, Hanau, Germany). To determine the C isotope ratio 231 

(δ
13

C, ‰) of the soil, litter and leaf and root samples harvested from live plants, all plant 232 

materials were oven-dried at 55ºC for 48 h and soil samples were air-dried and sieved (2-mm 233 

mesh). All samples were then ground using a ball mill (Retsch MM400, Haan, Germany) and the 234 

δ
13

C (±0.1‰) was analyzed using Combustion Module-Cavity Ring Down Spectroscopy (CM-235 

Automate-CRDS, Picarro, Inc, USA). 236 

2.4 Calculations of soil C turnover 237 

New C inputs 238 
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     We defined C from rhizosphere deposition or plant litter as “new C” and organic C in the soil 239 

at the start of the experiment as “extant C.” As it is very difficult to measure rhizosphere 240 

deposition, root biomass was used to estimate the quantity of new C inputs from roots (Nguyen 241 

2003). The amount of the mineralized litter C was estimated by multiplying the decomposed 242 

litter mass by the relative proportion of C in the litter. The decomposition constant k (y
-1

) was243 

calculated as 244 

k = ㏑(L0/Lt)/t, (1),245 

where L0 is the litter mass at the beginning of the experiment (8 g dry weight), Lt is the remaining 246 

mass of litter at the end of the experiment, and t is the duration of the experiment in years (0.52). 247 

New C stored in soil 248 

     Here, we defined new C stored in soil as the C derived from roots or litter during the 249 

experiment. The amount of new C was calculated from the distinct δ
13

C values of plant inputs250 

and soil C using the following equation to partition the different sources of C (Cheng 1996): 251 

Cn = Ct

δ��δ�

δ��δ�
   (2), 252 

where Cn is the amount of new soil C derived from litter or root inputs, Ct is the total soil C pool 253 

at the end of the experiment, δt is the δ
13

C value of the total soil C pool (Ct) at the end of the254 

experiment, δs is the δ
13

C value of the initial soil, and δp is the δ
13

C value of C. squarrosa litter or255 

root material. 256 

     Litter C storage efficiency was calculated as the ratio of litter-derived new soil C to 257 

mineralized litter C (Stewart and others 2007), where high values of litter C storage efficiency 258 

indicate that more litter-derived C is stored in the soil instead of being released as CO2.  259 

Net changes in soil C and mineralized extant soil C 260 
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     The net change in the soil C pool was calculated for each treatment and soil type from the 261 

differences between the initial and final soil C concentrations. For the control treatment without 262 

plants or litter inputs in each SOM level, the amount of extant soil C mineralized during the 263 

experiment was calculated from the difference between the initial soil C concentration and the 264 

final soil C concentration; for the treatments with plant C inputs, the mineralized extant soil C 265 

was calculated as the difference between new C stored in the soil and the net change in soil C.  266 

2.5 Statistical analysis 267 

     Three-way factorial analyses of variance (ANOVA) were used to examine the effects of SOM 268 

level, plant presence, litter addition, and their interactions on the soil aggregate fractions, MBC, 269 

soil C concentration, mineralization of extant soil C, and net change in soil C. Two-way factorial 270 

ANOVAs were used to examine the effects of the SOM level, litter addition and their 271 

interactions on root biomass, as well as the effects of the SOM level and plant presence on litter 272 

decomposition. When the effects of SOM were significant, the means at given SOM levels were 273 

calculated by averaging across the planted and litter addition treatments, and Tukey’s post-hoc 274 

tests were conducted to compare these means across the SOM levels.    275 

     Linear regression was used to explore the relationships between MBC, litter decomposition 276 

rates, macro-aggregate and micro-aggregate fractions, and the mineralization of old soil C vs. 277 

new C stored in soil. The differences among the slopes of the linear regressions were tested using 278 

the R package smatr (Warton and others 2012). All statistical analyses were performed using R 279 

version 3.1.0 (R Core Team 2014) and the results are reported as significant at P < 0.05. 280 

3 Results 281 
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3.1 Initial soil properties under different SOM levels 282 

The concentrations of mineral elements in soils, including Ca, K, Mg, Na and P, were 283 

similar among SOM levels (Table S1), but total soil C, total soil N and the soil C:N ratio 284 

increased with SOM level (Table 1). Regarding soil mineralogy, the mass percentages of 285 

hydromica, amphibole, kaolinite and chlorite were also similar among SOM levels (Table S2), 286 

whereas the mass percentage of quartz increased and feldspar decreased with SOM levels (Table 287 

2). Soil texture differed with SOM level, whereby the mass percentage of silt and clay increased 288 

and sand decreased with SOM level (Table 2). In addition, the water-holding capacity of the soil 289 

increased with SOM level (Table 2). 290 

3.2 Effects of SOM levels on C inputs and MBC 291 

Our experimental SOM levels influenced litter decomposition and root biomass, whereby 292 

the proportion of mineralized litter C increased with initial SOM level (Fig. 1a) and root biomass 293 

differed among treatments (Fig. 1b). Although there was no clear relationship between root 294 

biomass and SOM levels (Fig. 1b), the root: shoot ratio decreased with increasing SOM level 295 

(Fig. 1c). Soils with higher initial SOM levels also had higher MBC (P<0.01; Fig. 2; Table S3) 296 

but MBC in the planted treatments did not differ from the unplanted treatments at any SOM level 297 

except for S80, where higher MBC in the planted treatment resulted in a significant SOM level × 298 

plant interaction (P<0.01; Fig. 2; Table S3). Litter addition did not influence MBC at low SOM 299 

levels, but MBC increased significantly with litter addition at S80 and S100, resulting in a 300 

significant SOM × litter interaction (P<0.01; Fig. 2; Table S3).  301 

3.3 Effects of SOM levels on soil aggregate fractions 302 
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      The mass percentage and absolute mass of >2000 µm aggregate fraction increased with 303 

increasing initial SOM levels in all treatments (P<0.01, Fig 3a, Fig. S1a). In the planted 304 

treatments, the >2000 µm aggregate fraction was higher than unplanted treatments at S40, S80 305 

and S100, but not at other SOM levels (SOM × plant interaction: P<0.01; Table S3; Fig. 3a), 306 

whereas in the litter addition treatments, the >2000 µm soil aggregate fraction was significantly 307 

higher (P<0.01) than in treatments without litter.  308 

By contrast, the mass percentage and absolute mass of 250-2000 µm aggregate fraction were 309 

unaffected by initial SOM level (P=0.98; Table S3; Fig. 3b, Fig. S1b) or litter addition (P=0.63; 310 

Table S3; Fig. 3b) and was lower in the planted compared to the unplanted treatments (P=0.04; 311 

Table S3; Fig. 3b). The mass percentage and absolute mass of 53-250 µm and <53 µm soil 312 

aggregate fractions decreased with initial SOM levels (P<0.01; Table S3; Fig. 3c-d, Fig. S1c-d) 313 

and the 53-250 µm fraction was also significantly lower in litter addition treatments (P=0.02; 314 

Table S3; Fig. 3a, c), but there was no effect of the planted treatments on either fraction, and no 315 

effect of litter addition treatments on the <53 µm fraction (P=0.84; P=0.24; Table S3; Fig. 3d). 316 

3.4 Relationship between MBC and litter decomposition rate or soil aggregates 317 

The litter decomposition rate (k) was positively related to MBC in the litter addition 318 

treatments both with and without plants (R
2
=0.56, P<0.01, n=17 and R

2
=0.64, P<0.01, n=17,319 

respectively; Fig. 4a). The macroaggregate fraction was positively related to MBC in the planted 320 

(R
2
=0.39, P=0.01, n=18), litter addition (R

2
=0.33, P=0.04, n=17) and planted plus litter addition321 

treatments (R
2
=0.69, P<0.01, n=18; Fig. 4b). The slopes did not differ among treatments for any322 

of these relationships (Fig 4a-b). 323 

3.5 Effects of SOM levels on soil C turnover 324 
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      Litter addition increased the amount of new C stored in the soil, with the largest increase at 325 

S80 (SOM × litter interaction: P<0.01; Table S3; Fig. 5a). The planted plus litter addition 326 

treatment resulted in a greater increase in the amount of new C stored in the soil than the planted- 327 

only treatment, resulting in a significant plant × litter interaction (P<0.01; Table S3; Fig. 5a). 328 

     The mineralization of extant soil C differed significantly among the SOM levels (P<0.01) but 329 

there was no clear pattern with increasing SOM level. However, the planted treatments 330 

significantly stimulated the mineralization of extant soil C compared to the unplanted treatments 331 

(P<0.01, Table S3, Fig. 5b), whereas litter addition had no such effect (P=0.53; Table S3; Fig. 332 

5b). The mineralization of extant soil C was positively correlated with new C stored in soil for 333 

the planted (R
2
=0.66, P<0.01, n=13), litter addition (R

2
=0.27, P=0.05, n=15), and planted plus334 

litter addition treatments (R
2
=0.71, P<0.01, n=15, Fig. 5c); the slopes of the regression lines did335 

not differ from 1 or among treatments for any of these relationships. 336 

     By the end of the experiment, the soil C content was significantly higher in the litter addition 337 

treatments (P<0.01) but was not affected by the initial SOM levels (P=0.81) or the planted 338 

treatments (P=0.33; Table S3; Fig. 5d). Calculations of the litter C storage efficiency for the litter 339 

addition treatments at S20 to S100 revealed that the storage of litter-derived C was lowest at S20 340 

(Fig. 6). 341 

4 Discussion 342 

Soil organic matter content greatly affects the quality and quantity of plant C inputs to the 343 

soil by regulating plant productivity. The C from decomposing plant litter is either released as 344 

CO2 to the atmosphere, leached through the soil as dissolved organic C, or incorporated into the 345 

soil as organic matter (Bird and others 2008; Mambelli and others 2011). Understanding how 346 
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SOM levels affect the turnover and storage of plant and soil C is critical for the restoration of 347 

degraded grasslands. However, the contribution of plant C to SOM formation is currently poorly 348 

quantified (Cotrufo and others 2013). We aimed to address this by tracking the fate of plant C in 349 

soils with different levels of SOM. We created a wide SOM gradient (with soil C concentrations 350 

ranging from 0.02% to 1.40%) by mixing air-dried and combusted soils. The combustion 351 

treatment removed soil organic matter but also altered the soil mineralogy and texture (Table 2); 352 

we therefore discuss our findings with due consideration to changes in other soil properties as a 353 

result of such methodological artifacts.  354 

4.1 The role of litter inputs in SOC storage and turnover 355 

Litter decomposition by soil microbes is a critical step for litter-derived C entering the soil 356 

matrix (Cotrufo and others 2013). The positive correlation between MBC and SOM levels 357 

observed in our study (Fig. 2) could be because soils with higher SOM levels not only provide 358 

more C substrates but also have higher N concentration to support greater microbial biomass 359 

(Manzoni and others 2012), and higher water-holding capacity to maintain a suitable 360 

environment for microbes (Sylvia and others 2005). Higher microbial biomass and the favorable 361 

moisture and nutrient conditions suggest that microbes could be more active at higher SOM 362 

levels, which would lead to faster decomposition of plant litter. Indeed, we found that there was 363 

a positive correlation between MBC and litter decomposition rate (Fig. 4a), and more litter C 364 

was mineralized at higher SOM levels (Fig. 1a). Our study suggests that, during a given period, 365 

less litter-derived C would be incorporated into the soil when litter decomposition rates and 366 

MBC are low (Fig. 1a; Fig. 2; Fig. 5a). This supports emerging evidence for a “microbial filter” 367 

whereby labile C from litter is efficiently integrated into the mineral soil matrix through 368 

microbial activity, resulting in the formation of stable soil organic C (Cotrufo and others 2013). 369 
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Our study demonstrated that the capacity of the soil to incorporate litter-derived C varied 370 

among SOM levels. The lowest SOM levels also had the lowest C storage efficiencies but the 371 

intermediate SOM levels had the highest C storage efficiencies (Fig. 6). Given that the 372 

physicochemical protection for new C inputs can be saturated (Six and others 2002a; Castellano 373 

and others 2015), the ability of soils to sequester additional C could become progressively 374 

limited as the SOM content increases. In addition to SOM levels, soil mineralogy and surface 375 

properties greatly determine the ability of soil to sequester new organic C. Soils with greater 376 

surface area have more capacity to adsorb OM on surfaces, and the stronger attraction between 377 

SOM and soil minerals at higher charge density increases SOM stability by forming organo-378 

mineral complexes (Feng and others 2014; Wiesmeier and others 2015). Our combustion 379 

treatment could have affected C storage efficiency because it altered soil mineralogy (Table S2) 380 

and significantly decreased the concentration of both silt and clay (Table 2). Although the effect 381 

of altered soil mineralogy remains to be explored, the decline in silt and clay is likely to affect 382 

the occlusion and adsorption of litter-derived new C within the mineral matrix (Dungait and 383 

others 2012; Wiesmeier and others 2015), which would explain why litter C storage efficiency 384 

was particularly low at the lowest SOM level in our study (Fig. 6). 385 

Priming effects, the mineralization and release of stored soil C by fresh organic C inputs 386 

(Kuzyakov and others 2000), have also been given as an explanation for the lack of increased 387 

soil C storage in litter-addition studies (Lajtha and others 2014; Bowden and others 2014). 388 

Multiple lines of evidence indicate that higher inputs of plant litter can cause priming effects, 389 

offsetting soil C accumulation (Fontaine and others 2004; Sayer and others 2011). However, the 390 

role of priming effects in natural ecosystems is questionable, because soil C priming is rarely 391 

investigated in situ (Sayer and others 2011; Xu and others 2013). In our study, the losses of 392 
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extant soil C were not significant under litter addition alone, but increased significantly when 393 

plants were present (Table S3; Fig. 5b). Although aboveground leaf litter and root deposition are 394 

both critical sources of labile C input to soil (Cotrufo and others 2013), our findings suggest that 395 

root deposition may induce stronger priming effects than litter.  396 

4.2 The role of root C inputs in SOC turnover 397 

Root-derived C, including C from root litter and root exudates, is considered to be the main 398 

source of soil C in grassland ecosystems (Kuzyakov and Domanski 2000; Rasse and others 2005; 399 

Schmidt and others 2011). At low SOM contents, the soil is extremely infertile and plants tend to 400 

invest more C into root production to access nutrients (Dakora and Phillips 2002); in our 401 

experiments, this was indicated by the decrease in the root-to-shoot ratio with increasing SOM 402 

level (Fig. 1c). The rhizosphere priming effect is closely related to the amount of root C inputs 403 

(Cheng 2009) and isotope methods are usually necessary to distinguish between increased soil 404 

CO2 efflux derived from roots and primed soil C (“real positive priming effect”; Kuzyakov and 405 

others 2000). We were able to use the changes in the 
13

C values of soil C to calculate the406 

mineralization of extant soil C induced by new root C inputs in the planted treatment and show 407 

that root C inputs produced a “real positive priming effect” (Table S3; Fig. 5b). For the planted 408 

treatment without litter addition, the regression line for the mineralization of extant soil C vs. 409 

new C stored in soil closely followed the 1:1 line (Fig. 5c), suggesting that the storage of new C 410 

was offset by the release of extant soil C as CO2, resulting in no net change in the soil C content. 411 

Although our experiment was too short to fully evaluate the effects of root litter on soil C storage, 412 

the results indicate that root C deposition during the growing season made a limited contribution 413 

to soil C storage because new C inputs from roots replaced the extant C that was mineralized and 414 

released by priming. Such differences in soil C turnover without a net change in soil C stocks 415 
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would not be detected with soil C content measurements (Kuzyakov and Blagodatskaya 2015), 416 

but the replacement of extant soil C with newer and possibly more labile C could affect the 417 

overall stability of the soil C pool (Sayer and others 2011). Long-term field investigations are 418 

needed to better understand how leaf litter and root processes affect the mineralization of extant 419 

soil C via priming effects. 420 

We also observed interactive effects of litter addition and plant roots on the accumulation of 421 

new C in the soil. There was a non-additive effect of plants and litter addition on the storage of 422 

new C, whereby the amount of new soil C in pots with the combined planted + litter addition 423 

treatment was less than the sum of new C in the pots with either treatment alone (plant × litter: 424 

Table S3; Fig. 5a). As root biomass was lower when litter was added to the pots (Fig. 1b), we 425 

propose that reduced root deposition could account for the smaller relative amount of new C in 426 

the combined planted + litter addition treatment. 427 

4.3 The responses of soil aggregate fractions and their roles in soil C stabilization 428 

The mean residence time of soil C is important for soil C sequestration capacity. Apart from 429 

organo-mineral complexes (Feng and others 2014), the formation of microaggregates within 430 

macroaggregates is an essential mechanism in the physical protection of soil C (Denef and others 431 

2007). In our study, the macroaggregate fraction was positively related to MBC in the planted, 432 

litter addition, and planted + litter addition treatments (Fig. 4b), and both also increased with 433 

SOM levels (Fig. 3a). These findings suggest that soils with high SOM content support 434 

aggregate-binding agents, such as fine roots and microbial hyphae (Tisdall and Oades 1982), and 435 

therefore feedbacks between the extant SOM, new organic C inputs and macroaggregate 436 

formation are central to the storage and stabilization of soil C. We also found that the 437 

microaggregate fraction declined with increasing SOM levels. This is probably because a large 438 
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proportion of microaggregates were occluded within macroaggregates and the macroaggregate 439 

fraction increased with the SOM level (Fig 3a, c, d).  440 

Overall, our study indicated that the influence of SOM on the formation of soil 441 

macroaggregates could create a positive feedback for SOC accumulation, because more SOM 442 

associated with microaggregates is occluded within macroaggregates, which enhances the 443 

stability of SOC (Fig. S1). However, it is also possible that the higher proportion of 444 

microaggregates under low SOM levels is an artifact of the combustion treatment, whereby 445 

macroaggregates were destroyed by heating, releasing the occluded microaggregates. Finally, the 446 

soil structure was destroyed by sieving soils before filling the pots at the start of the experiment 447 

and the soil structure developed during our experimental period may not be representative of 448 

undisturbed soils in the field. Nonetheless, our study indicates potential mechanisms and 449 

feedbacks between extant SOM levels and the stabilization of new C inputs, which can be tested 450 

in field studies.  451 

5 Conclusions 452 

Soil organic matter content is one of the most important indices of soil health but 453 

anthropogenic disturbance and climate changes can affect the accumulation and stability of SOM. 454 

Our study highlights the important role of initial SOM content for regulating soil C formation 455 

and stability through direct and indirect effects on the turnover of aboveground litter, root C 456 

inputs, and microbial processes. The initial SOM content affected not only plant litter and root C 457 

inputs but also the capacity of the soil to incorporate litter- and root-derived C. Feedbacks 458 

between SOM, plant litter and plant root inputs are complex, but we show that they interact to 459 

influence the accumulation of new C and the mineralization of extant C in the soil. In addition, 460 
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initial SOM content also influenced the formation of soil aggregates and therefore further 461 

enhanced the stability of soil organic C. These results merit further investigation to help us better 462 

understand how C is stored and stabilized in the soil. Caution is needed when extrapolating our 463 

findings to natural ecosystems because the use of combusted soil and the method of mixing litter 464 

into soils potentially introduced methodological artifacts. Furthermore, our single-species, short-465 

term greenhouse experiment may not represent the complex processes in the field. Nevertheless, 466 

our results open up several new lines of scientific enquiry, which need to be tested under field 467 

conditions. When evaluating the potential of soil C sequestration under future global changes, 468 

field and model studies need to consider how initial SOM content could affect the fate of plant-469 

derived C. 470 
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Table 1. Initial soil carbon concentrations (C%), soil nitrogen concentrations (N%), soil C-to-N 625 

ratio (C:N) (means ± SE for n = 3) and soil δ 
13

C values for six experimental levels of soil 626 

organic matter (SOM) content: S0: 100% combusted soil; S20: 80% combusted soil plus 20% 627 

native soil; S40: 60% combusted soil plus 40% native soil; S60: 40% combusted soil plus 60% 628 

native soil; S80: 20% combusted soil plus 80% native soil; S100: 100% native soil. Different 629 

lowercase letters indicate significant differences among SOM levels at P < 0.05, where NS 630 

indicates “non-significant.” 631 

C (%) N (%) C:N δ 
13

C (‰)

S0 0.02±0.00
a
 0.02±0.00

a
 1.30±0.12

a
-- 

S20 0.25±0.05
b
 0.04±0.00

b
 5.98±0.27

b
-24.0 

S40 0.58±0.01
c
 0.07±0.00

c
 7.96±0.16

c
-23.8 

S60 0.87±0.02
d
 0.10±0.00

d
 9.00±0.25

d
-23.8 

S80 1.15±0.01
e
 0.12±0.00

e
 9.38±0.57

d
-24.0 

S100 1.40±0.02
f

0.14±0.00
f
 9.81±0.07

d
-23.8 

P values <0.01 <0.01 <0.01 NS 

632 

633 

634 

635 

636 

637 

638 
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Table 2. Initial soil mineralogy given as mass percentages, including soil particle size 639 

distributions (sand, silt and clay contents) and water holding capacity (WHC); values shown are 640 

means ± SE for n = 3 for each of six experimental soil organic matter (SOM) levels: S0: 100% 641 

combusted soil; S20: 80% combusted soil plus 20% native soil; S40: 60% combusted soil plus 642 

40% native soil; S60: 40% combusted soil plus 60% native soil; S80: 20% combusted soil plus 643 

80% native soil; S100: 100% native soil. Different lowercase letters indicate significant 644 

differences among SOM levels at P < 0.05. 645 

Quartz (%) Feldspar (%) Sand (%) Silt (%) Clay (%) WHC (%) 

S0 24.00±2.08
a
 67.67±1.45

a
 78.43±0.82

a
 20.72±0.82

a
 0.85±0.01

a
 29.66±0.50

a
 

S20 25.93±0.57
a
 64.85±0.46

ab
 71.99±0.17

b
 26.46±0.16

b
 1.54±0.02

b
 31.26±0.55

a
 

S40 26.62±0.30
ab

 63.71±0.56
bc

 66.57±0.13
c
 31.22±0.14

c
 2.21±0.01

c
 30.86±0.51

ab
 

S60 28.93±0.28
bc

 61.00±0.81
cd

 60.26±0.12
d
 36.76±0.15

d
 2.98±0.03

d
 32.49±0.50

bc
 

S80 30.91±0.11
cd

 59.16±0.34
d
 54.02±0.28

e
 42.36±0.27

e
 3.61±0.00

e
 33.88±0.30

c
 

S100 32.33±0.33
d
 56.67±1.20

e
 48.09±0.56

f
 47.62±0.59

f
 4.30±0.10

f
 36.13±0.68

d
 

P values <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

646 

647 
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Figure legends 648 

Figure 1. Final values of a) mineralized litter carbon (C), b) root biomass C inputs and c) root-649 

to-shoot ratios in soils with different experimental soil organic matter (SOM) levels after 191 650 

days in a greenhouse study; S is SOM level where S0 is 100% combusted soil; S20 is 80% 651 

combusted soil plus 20% native soil; S40 is 60% combusted soil plus 40% native soil; S60 is 40% 652 

combusted soil plus 60% native soil; S80 is 20% combusted soil plus 80% native soil; S100 is 653 

100% native soil. SOM: soil organic matter level. Different lowercase letters indicate significant 654 

differences among SOM levels across all treatments (P < 0.05). 655 

Figure 2. Microbial biomass carbon (MBC) in soils with different experimental soil organic 656 

matter (SOM) levels after 191 days in a greenhouse study. The abbreviations follow the legend 657 

in Figure 1. Different lowercase letters indicate significant differences among SOM levels across 658 

all treatments (P < 0.05).  659 

Figure 3. Mass percentages of soil aggregate fractions in soils with different experimental soil 660 

organic matter (SOM) levels and carbon inputs; a) >2000 µm, b) 250-2000 µm, c) 53-250 µm, d) 661 

<53 µm aggregate fraction. Abbreviations follow the legend in Figure 1. Different lowercase 662 

letters indicate significant differences among SOM levels across all treatments (P < 0.05). 663 

Figure 4. The relationship between microbial biomass carbon and a) the litter decomposition 664 

rate and b) the macroaggregate fraction under different experimental treatments. The 665 

macroaggregate fraction is the sum of the >2000 µm and 250-2000 µm aggregate fractions (in 666 

mass percentage). The abbreviations follow the legends in Figures 1 and 2. 667 

Figure 5. Changes in carbon (C) pools in soils with different experimental soil organic matter 668 

(SOM) levels and C inputs: a) new C stored in soil, b) mineralization of extant soil C, c) the 669 

relationship between new C stored in soil and mineralization of extant soil C, and d) net soil C 670 
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change; abbreviations follow the legend in Figure 1. Different lowercase letters indicate 671 

significant differences among SOM levels across all treatments (P < 0.05).  672 

Figure 6. Litter carbon (C) storage efficiency (the ratio of litter-derived new soil C to 673 

mineralized litter C) in soils with different experimental initial soil organic matter (SOM) levels; 674 

abbreviations follow the legend in Figure 1. Different lowercase letters indicate significant 675 

differences among the means for SOM levels (P < 0.05). 676 
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