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ABSTRACT. We investigate the sibilityto suppress interactions between a finite dimensional
system and an infinite dimens%ronment through a fast sequence of unitary kicks on
the finite dimensional system. Thisgmethod, called dynamical decoupling, is known to work

for bounded interactiéns, but physical environments such as bosonic heat baths are usually

modelled with unbounded interactions, whence here we initiate a systematic study of dynamical

decoupling for u

Hamiltonians a cess decoupling criterion for semibounded Hamiltonians. We give

examples for gfinbounded Hamiltonians where decoupling works and the limiting evolution as
Speed can be explicitly computed. We show that decoupling does

well as thefconvergen
not alwa; W(Nnbounded interactions and provide both physically and mathematically
motivatéd examples
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Pub|ishing 1. INTRODUCTION AND OVERVIEW

A powerful strategy to protect a quantum system from decoherence is dynamical decou-
pling [I§]. The application of frequent and instantaneous unitary operations (kicks), which
correspond to strong classical pulses applied to the system, makes it possible to average the
system-environment interactions to zero. Originally dynamical decoupling dates back to pio-
neering work of Haeberlen and Waugh [10, 26], who developed pulse sequences, such as spin-
echo techniques, in order to increase the resolution in nuclear magnetlc esonance. Later, these
schemes were generalized by Viola and Lloyd [24] 22] 23], establishin coretical framework
that allows to suppress generic system-environment interactions. It M%rength is that
it is applicable even if the details of the system-environment coupling a unknown.

Since perfect decoupling only happens in the limit of infinitely ftequent kicks, in practice it is
important to understand the convergence speed. In finite di No estimates are given
in terms of the higher orders of the Magnus expansion or I‘\'])350n series [18] 23]. Here the
existence of and the speed of convergence to the decoupled __ciy ics relies on norm bounds of
the Hamiltonian [16], allowing one to prove that dynamidal decouplimg works arbitrarily well on
a finite time scale.

However, real physical environments, such as th@e electromagnetic field, are (to a good
approximation) infinite dimensional. In particular, thé dé?ription of system-environment in-
teractions through potentially unbounded operat it challenging to decide whether
dynamical decoupling works and, moreover, 8stimatésthe time-scales necessary to efficiently
dynamically decouple the system from the e\%)4 nent. Commutativity and in particular se-
ries expansions are a very delicate matte ma\(’:orm bounds diverge, [20, Sec.VIIL.5]. The
main purpose of this paper is to establish egiteria“and examples for dynamical decoupling of
unbounded Hamiltonians.

From a physical perspective, dynamic }cm&pling has to be faster than the fastest timescale
of the overall dynamics [22], and it\iS«typieally argued that dynamical decoupling only works
for environments yielding non-exponentiakdecay [I8]. It is argued that a ‘Zeno’ region of non-
exponential decay (Fig. |1} deter e time-scale for dynamical decoupling. However, this
is a heuristic argument rather than“a rigorous mathematical conclusion and we will provide
several counterexamples fhbi’)‘w. In fact, it is interesting to note that to decide whether

f

Q

dynamical decoupling finite dimensional environments, the full Hamiltonian must
be provided. That is/the re dynamics does not provide enough information, and for the
same reduced dynamics.t er%}an be dilations (given by system-environment Hamiltonians and
environment initial states ich can be decoupled, whereas others cannot. An example is given
by qubit deph ing,\bvﬁhich the shallow pocket model [2] provides a dilation which can be
decoupled, whereasjits Chieborev-Gregoratti dilation [25] was recently shown to be not amenable
to decoupling hese two dilations can be considered as two extreme cases: the former being
highly nod-Magkovian and the latter very singular with built-in Markovian properties. The true
physical models aré likely to be found in between such extremes, and it is important to find
r decoupling.
based on Trotter’s product formula, we give a sufficient criterion for dynamical
Thm. generalizing [2]. As an example we discuss the shallow pocket model [2],
%ds exponent1al decay but can be decoupled on arbitrary time-scales. Then we provide
eralizations which can be decoupled, but for which the time-scale of decoupling is
%tﬁivial. Here we explicitly provide the corresponding time-scales in order to dynamically
couple the system from the environment and show that the efficiency depends on the initial
bath state. Finally we provide an example showing that Thm. [3.1]is sufficient, but not necessary
for successful decoupling.
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Pub“shlﬂgl Section (4] we discuss lower bounded Hamiltonians, for which more can be said about
convergence of the Trotter limit. Thm. provides a necessary condition for dynamical
decoupling of such Hamiltonians. This is physically relevant as most reasonable interaction
Hamiltonians are unbounded above but bounded below. We provide an abstract example of
a Hamiltonian where dynamical decoupling does not work. Finally, in Section [5| we provide a
generalization of the Friedrichs-Lee model which gives rise to an amplitude damping channel.
We find that this model cannot be dynamically decoupled and provide ?hysical interpretation.

2. PREREQUISITES \W
Consider a quantum mechanical system which is coupled to an e vh@men‘c. e suppose the

system Hilbert space H; ~ C? to be d-dimensional (with d finite) an e environment Hilbert
space H, infinite-dimensional and separable. We write H = Ho® or total Hilbert space
and H for the total Hamiltonian, a self-adjoint operator wit d@ain H) CH.

We assume that the initial state is uncorrelated p = ps ® p., Whitré“ps and p. are non-negative
trace-class operators with tr ps = trp. = 1. Notice that in otder te relate the unitary with the
reduced dynamics, we have to fix some state p. for the“enviromment, and we suppose that a
physically realistic choice can be made here. With LQ: e=ifiywe refer to

(1) ps = Ni(ps) = trag, { D pYU™ (1)}
as the dynamical map on state p, at time ¢. Here trym denetes the partial trace with respect to
the factor He. The typical feature of reduce%mics is that certain expectation values

(Os(t)
of observables Os € B(Hs), the space of (bountded) liniear operators on H, can decay irreversibly.
This is particularly so if the dynamica A; has the semigroup property A¢, o Ay, = A¢j4ty,
for all ¢1,t5 > 0. In such a case, the redueed dynamics ps(t) := A¢(ps) is described by a GKLS

master equation ps(t) = Lps(t) with \eq% r
2

" 1
(2) 'C = s,m z(szsL L i Lips — psL Lz)v

for all system densitity t@s, Where ~vi > 0 and L;, Hs € B(Hs) and Hg moreover self-
adjoint.

Definition 2.1. de lmg/set for Hs is a finite group of unitary operators V' C U(H;) such
that

vxv tr(z)ly,, forallx € B(Hs).
vGV
ultlp of the cardmahty \V\ A decoupling cycle of length N is a cycle (v, va,...,UN)
thdt reaches each element of V the same number of times.

In 1 is wn that such a decoupling set always exists but it is usually not unique.

Obv10 ly, gl n a decoupling cycle, one gets

N
3 N Z VRTUL = Z vav®
k=1 UEV

ynamlcal decoupling on Hs ® H, is now implemented by applying the decoupling operations
v& 14, instantaneously in time steps 7 > 0. To shorten notation, we shall simply write v instead
of ¥ ® 17, when confusion is unlikely. In [I1, I] we discuss a random implementation of these
decoupling operations while here we restrict ourselves to a deterministic implementation since
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i ohiour focus is rather on the unboundedness of H. To be precise, consider a decoupling cycle of

Publishifig "~ o : :
mtaries (vq,vs,...,vy) and apply them to the system periodically, so the total time evolution
unitary after one decoupling cycle will be given by

iTH vk

[YIPRERET e11'H o

Jv1 elTH *

(3) oye ™ uiun_ie vy,

We can now split a given time interval [0,¢] into nN steps and apply the decoupling cycle of
length N there n times. Thus the following definition makes sense:

Definition 2.2. For given Hamiltonian H and decoupling set V', we sayhhgl\g‘/namical decou-
pling works specifically if there is a decoupling cycle (vy,va,...,v a@ therevis a self-adjoint

operator B on H. such that
it * « t * n .
s-lim <e1W”1H”1 : -'e‘W”NHUN> — @it x\
n—oo

~

uniformly for ¢ in compact intervals of R. -
We say that dynamical decoupling works uniformly if there is 3se -adjoint operator B on H,
such that, for every decoupling cycle (v1,va,...,vN)

(4) s-lim (ei niNleUf . einLNU ’(Q’_>n":)eit(lﬂs®3)’
L

n—oo

uniformly for ¢ in compact intervals of R.

The physical interpretation is that, in t
evolves. From the physical point of view
norm convergence (that is uniform rat
thermal state.

It is unclear whether “specifica
whether the existence of one decoupli
cycles work. Intuitively, one mi
homogenisation effect of the limit.

To conclude the prere ish%iwe will frequently use the following convention: if aj, with

en

limitwyhere time steps go to 0, only the environment
M topology is satisfactory. Indeed, one gets

k=1,...,N, are in B( h write

et V be a decoupling set for Hs, and H : D(H) — H be self-adjoint. If the

Theofem 3.1.
sum v(v® 1y )H(v ® 194,)" is essentially self-adjoint on the intersection of the domains,
= ), then dynamical decoupling works uniformly for H.

Progf. Tae theorem follows from a straight-forward generalisation of the Trotter product for-
N.%Ia , Cor.11.1.6] to N factors. More precisely, given a decoupling cycle (vy,...,vy) in V,
efine*the function

N
F(t) == [ éwotii, teRry.
k=1
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PUb|IShI?’;§< n F': R — B(H) is a strongly continuous function with F'(0) = 14. Moreover, we get

F(t)¢ — F(0)¢ _TIpe vsMie—¢

= vHv*E, t—0
t et LS
for all £ € D.
Now, we claim that the closure /
!V\Z“HU =1y, ® B, 5\
veV

with some self-adjoint B on H.. Indeed, since the left-hand sidetig cominuting with all v € V|
the group (Uy)ier generated by it satisfies the relation

1
U, = U™ = 1’;-13 ® = tI"HS(Ut), or alls ¢ R,
|V| 1;/ d .
by Definition [2.1] of decoupling set, and thus must be of t forré

U; = 17.[5 & @
by Stone’s theorem. ‘)
We apply Chernoff’s product formula [13] T{(.Q o this and obtain that

n S
Fior <H\% e s

in the strong operator topology and

condition (ED O
Example 3.2 (Qubit). The fo lowgt%.\;% ruction is a building block that will allow us to
create several examples at incre plexity and transfer results about the Trotter formula
to the context of dynamical decoup he idea is to study the space

H=C2®Hezﬂee7{e,
describing a qubit systém coupled to an environment H.. Suppose our Hamiltonian, expressed
in the decompositiond?{. @& H. of H, is of the form A @ B, i.e.

6) AN a- (o 5)
on D(A) @

the Pauli gfoup:
the Pauli‘matpix

)

r t in compact intervals in R. This verifies

))rith both A, B self-adjoint. The standard decoupling set for C? consists of
ultiples by 1,1, —1, — 1) of the four Pauli matrices 1, X,Y, Z. Now if we take

(o)

A 0 . (B 0
ne(40). e (2 0).

imt action of other Pauli matrices to H produces one of these two matrices, so we can
ce.our situation down to a group with two elements V' = {1, X}. As decoupling cycles
the examples here we consider simply (1, X) although an analogous reasoning holds for any
other cycle in V. Thus though we prove everything only for this specific cycle, one can actually
show that decoupling works uniformly in all of the following examples. g
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F1cUrE 1. Exponential and non-exp n&i&aflﬁ ay of some expectation (O4(t))
and the quadratic ‘Zeno region’. In the case of the shallow pocket model, the
observable shown is p. (t)/p+(0) Wi = tr{|+)a(+|At(pa)}, and the dy-

namics in presence of decoupling pulses with pulse time steps At = 0.5 is shown.
The non-exponential curve is an xintation of the shallow pocket model with

cut-off parameter |z| < 2 ingthe Chy distribution. See Ex. for details.
Example 3.3 (Shallow-pocket x [2, Sec.3]. In the setting of the preceding Ex.
with one qubit, we consider H, = d A = —B = g, the position operator, ¢¢(x) = z&(x),
with D(q) = {¢ € L*(R) : (R)}4n (B):

(6)

£
Thm. applies, aid the modgl can be dynamically decoupled. In fact we get that XHX = —H,
so the Trotter lindit'ig trivial and decoupling works uniformly and perfectly at all time scales.
We can stu 430 reduced dynamics as well. Let us assume the environment initial state is

9 1 1/2
=(—-——— R.
folz) <7T.’I,‘2+4) » L€
f }f is the full line R. The state £ does not belong to the domain D(q), and
ctorized state ¥ ® ¢ does not belong to the domain of H.
al map A; in has the semigroup property and its generator is the dephasing

\1\\\\\\\\\\\\\1’

Lp=—[Z,1Z,pll;

10
7= 4).

giving rise to exponential decay of the coherences. See Fig. O
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Pub”shiﬁg mple 3.4 (¢ @ p example). Again in the setting of Ex. we choose H. = L?(R) and
~ ¢ and B = p, the position and the momentum operator, respectively, in ():

®) H= (g f,)

where ¢ = M, and p = —id/ dz are self-adjoint on their natural domains D(q) = {¢ € L*(R) :
q¢ € L*(R)}, D(p) = H*(R), the first Sobolev space. The sum of the gwo is essentially self-
adjoint on Schwartz space S(R). This can be shown along the lines of Sec.X.6]. According
to Ex. it is sufficient to consider the group V = {1, X}, and

H+XHX" =1c2® (g + p)
which is essentially self-adjoint on C? ® S(R). According to Th dynamical decoupling

works uniformly. )
We can study the reduced dynamics as follows. As environ t initial state let us consider

.
£ = e~ 15 (@ +p%) §Cgﬂﬂ>
with £¢ as in @ Then the dynamical map Ay in@ is ated by the dephasing GKLS

operator plus a time dependent Hamiltonian »‘)

~+

Lip = =2, 4]l =35 [Z,7];

giving rise to exponential decay of the coherenees.
In order to determine the unitary evo\\ er n decoupling cycles and the decoupling

¢

error explicitly, we need some prerequisites. “€onsider the 3-dimensional real Lie algebra g =

E, P ith tati lati

spang{E, P,Q} with commutation rela }37 ~
7Q]:0’ [P7Q]:E7

gt &\
and its representation m by unbgnd\ed\ke -symmetric operators defined by linear continuation

of

E—11, Prip, @Q—igq
where all operators here a % Schwartz space S(R) C L?(R) as common invariant domain.
Notice that the Nelson~Lapla +p?+¢? of this representation 7 of g is essentially self-adjoint
on S(R), cf. 21, Sec. X6} T?as the conditions in Nelson’s criterion [19, Thm. 5] are fulfilled,
and the representdtion 7 nentiates to the Lie group G of g such that

3 ™) = m(exp(X)),

where exp denotes the exponential map of G. This means that the Baker-Campbell-Hausdorff
formula h@lds i1 thesgepresentation 7 as well, namely

4

(exp(Q))r(exp(P)) = m(exp(Q) exp(P)) = w(exp(@ + P + 5[Q, P)

—r(exp(Q + P~ 3 B)) = 03

oo

)

all elborder commutators in g vanish.
ﬁVe apply this now to dynamical decoupling. The time evolution after time ¢ with n decoupling
les of length N = |V| = 2 then reads

i

ﬁ
igh

) Uu(t) = (57 d5515) " —exp (1L 2) wexp (1L g+ p).
8n 2
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PUb”Shihjg restingly the decoupling error—the deviation from Eq. @—is a unitary on the system only,
the convergence is uniform for ¢ in compact intervals in R:

2
|U(#) = 13, @ e B8 = [le™ 207 —14, || — 0,
as n — +oo, with B = (¢ + p). O

Example 3.5 (¢ @ p? example). Again in the setting of Ex. we ?(w choose H, = L*(R)
and A =gq and B =p?, in :

o gy QN

0 p
The operators ¢ = M, and p? = — & /da? are self-adjoint
{€ € L*(R) : ¢¢ € L*(R)}, D(p?) = H?(R), the second So
essentially self-adjoint on the Schwartz space S(R), cf. Sec:
sufficient to consider V' = {1, X'}, and o

H+XHX* =1¢2 @(g +9°) 3
which is essentially self-adjoint on C? @ S(R). Ac@ingjo Thm. dynamical decoupling

works uniformly.
In order to study the decoupling error, let %erga‘ Cauchy distribution in momentum

space
v ‘\

&(p) = %p

thetrpattral domains D(q) =
ace. “The sum of the two is

6]. “According to Ex. it is

, PER,

as environment initial state. Then fo t

becomes
\ 0)[3.
as a function of the decouplin&'ﬁQ th | - ||2 belng the Hilbert Schmldt norm and we

assume that the qubit is initially ared in ps(0) = [+)(+|, where |4+) = (2= 75 \/5) yielding
e(t) = 2(1 = (+lps(t)|+)),

We proceed in analog

state ps(t) at time ¢, the decoupling error

%e previous example, verifying Nelson’s criterion for the Lie
with commutation relations

[E7P% | :/?E, Q]=0, [P,R]=0, [PQ=E, [R,Q]=2P.
We represent g b W skew-symmetric operators
} Ewil, Poip, Qr—iq, Rw—ip

son-Laplacian 1 + p? + ¢® + p* is essentially self-adjoint on S(R), cf. [21]
Athe Lie algebra representation exponentiates to a Lie group representation again,
nd the Baker-Campbell-Hausdorff and the Zassenhaus formula hold. Since

5], 4

Up(t) = e~ 1 2(10(a+p*)+12/(24n%) o~ i (Z61) G (20p)

ince evolution, for finite n, leads to dephasing in Z direction of the qubit, we remark here
t the choice for ps(0) as above describes the worst-case scenario, i.e. the supremum of € over
all\initial states of the qubit. After tracing out the environmental degrees of freedom we obtain

(11) €(t) = 1 — cos(t3/(16n)) e T 7,
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Publi shl‘ﬁfgl( *h vanishes for n — co. We thus have found the explicit form of the decoupling error for the
2 model, which is plotted as a function of ¢t and n in Fig. l 2| for a fixed v = 1. The form

—

20

158

- 10

0
0 20 40 60 80 100

-
n

FI1GURE 2. Decoupling error for the q@@;ﬁﬁ . Sn by as a function

of the total evolution time t and the decoup n for a fixed v = 1.

on the efficiency of dynamical decoupling. 0 and n < oo we can always find an
environment initial state, i.e. some vy > 0; t decouphng becomes arbitrarily bad.
Example 3.6 (¢> © p? example). Wi = L2 yand A = ¢% and B = p?, in (5)):

(12) \\ ! p
S\

of the decoupling error also shows the g\nﬁdenc of the initial state of the environment

¢? and p? are self-adjoint on their domains D(¢?) = {¢ € L*(R),¢*¢ € L*(R)}, D(p?) =
H?(R), the second Sobolev
space S(R), cf. [21), Sec.X¢

The unitary evolution a
tation [6], and reads r n/> t

ace. Thessum of the two is essentially self-adjoint on the Schwartz
. applies, and the model can be dynamically decoupled.
n decoupling steps can be obtained using a symplectic represen-

t exXp 1tf )(1®(q2+p2)+%X®(QP+pQ)))7

where
t _ arctan ﬂ
&k o o

=1+t2/6 + O(t*) for t — 0.

In thl case the decoupling error (on the system) is not unitary, and the convergence is non-

nterestingly, the original Hamiltonian has an absolutely continuous spectrum on the

)Qéiti al line, while the limit is the Harmonic oscillator, which has a purely point spectrum;
i6 nray be regarded as a consequence of “averaging” between p? and ¢°.

un

O
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mple 3.7 (Spin-boson model). Consider again Hs = C? and H. = L?(R) as in the preceding
Publishiffgope 3.1 v . ‘

0
H:wc1®afa+%Z®1+Z((X—iY)®a+(X+iy)®aT).

Here a = %(q +ip) and af = %(q —1ip) (the formal adjoint of a) are the harmonic oscillator

denotes the closure of the above sum on C? ® S(R) where it is essentially self-adjoint (again
along the lines of |21}, Sec.X.6]), so that H is self—adjom‘c This way thi &e\a;:cion part of the
Hamiltonian is not block-diagonal, in contrast to Ex.[3.2] This mod c@be deceupled using the
full Pauli group V' because the sum .y vHv* is essentlally self;a, on the Schwartz space
S(R) which is contained in the domain intersection. This examp an be easily generalized to
a finite number of bosonic modes. O

ladder operators on the common invariant domain S(R); we, wg and Q{te real constants, and

One could argue whether the conditions of Thm. [3.]] also ne essary. This is not the case, as
shown in the following slightly artificial example by Cher ff ﬂ?il] ater we will give a necessary
condition for semibounded Hamiltonians.

Example 3.8 (Non-overlapping domains). We a, m;De setting Ex. E In (5), let He =
idhris self-adjoint on D(p) = Hl(R) the

L?(R) and consider A = p, the momentum opegator
first Sobolev space. Let B be the multlphcau%ﬁtE
By(z) = f() L*(R), f € L*(R)},

where f € L _(R)\ L. (R) is locall
example, we can take

inte ble ut is not locally square-integrable. For

|xfrn|_1/2,

e rationals. One can prove that [3, Prop. 5.1]

elnB) — —1C’e1tpelC’

D(C) = {y € L*(R), Fy € L*(R)},

-/ ") dy.

ution after n decoupling cycles (1, X) converges

n . .
n(t) = s-lim (e 2nH is XHX) = 1Hs & exp (iteilcpelc‘),

n—-+o00

1ical decoupling works uniformly.
that if ¢ € C(R) is continuous, and thus locally bounded, then fi ¢ L? (R). There-
QB) does not contain any nonzero continuous function, and thus

\ D(A) ND(B) = {0},

siice H'(R) € C(R). Thus the Trotter formula for unitary groups can converge when the
operator sum is not essentially self-adjoint, and even in the extreme case of a trivial domain
intersection. Dynamical decoupling works even though D = (1, oy, vD(H)={0}.

Notic


http://dx.doi.org/10.1063/1.5016495

AI P | This manyscript,was acgented hy, 1, Magh, Phys, Click here fq see the version of record. | "

Publishing O

4. A NECESSARY CONDITION FOR DYNAMICAL DECOUPLING OF NON-NEGATIVE
HAMILTONIANS

In Thm. [3.1] we have established a sufficient condition for dynamical decoupling to work
uniformly. However, Ex. showed that it is not at all necessary, so let us now turn to our
promised necessary condition, under the additional assumption of a n(?/negative Hamiltonian:

Theorem 4.1. Let V be a decoupling set for Hs, and suppose t Nm-negative. If
dynamical decoupling works uniformly then for all v,w € V, the fofm domain ihtersections

vD(H'?) nwD(HY?) c H

must be dense. ‘)
. . . H .
Before starting the proof, let us quickly recall something-aboutdform domains. Every densely

defined operator A on H gives rise to a bilinear form D x B — C with some form domain D C H,

in general not unique. In the case A is non-negativesthisorm fomain is defined as D(AY/2).

Notice that D(AY?) > D(A), so the form domai\((;m the bilinear form of) a non-negative
or

operator is always dense. Given two non-negativé_op , which might have trivial domain
intersection and therefore no sum but whose form
m

£

t
mdins intersect densely, it is possible to
define a sum of the two forms; this new bilinear ferm cotresponds to a new self-adjoint operator
which is generally called the form sum of the o 1
to form domains we refer the reader to

itial operators. For a proper introduction

or [13], Sec.10.3].

Proof. Suppose that dynamical decou
are dense. Choose v1,v9 € V such

'hgavlvor but not all of the form domain intersections
ese two elements,

Ho = ) N vsD(H2) £ 1.

Choose ¢ € Hg with [|£]| = 1. E M two elements v1,v2 to a palindromic cycle of length
N =2[V]in V, say (v1,v2, .50, Vjv|; V[ - - - V2,v1). We can then define the following continuous
functions

fnzﬁ_}Ha

which are analytiéA)n fofevery n € N; here C; = {z € C : R(z) > 0} denotes the open
complex right half-plane. ce we assumed dynamical decoupling to work uniformly, we know
from (ED that n?ﬁnver s on the boundary and there is a selfadjoint B on H,. such that

fn(_lt) N eit(1H5®B) 57

z * z

* n
,n(z) = e_nZNle’UT e e_mvlleU\V\ e_ﬁ”\V\H”\w e e_niNUIHUf ) 5

éor y for ¢ in compact intervals in R. Moreover, [3, Thm. 7.2] shows that, since

as n — 00,

vHv* s flen-negafive for every v € V, B is non-negative as well and

(15 N ) falz) = J(z) = 0P € oo,

u iformlﬁfor 2z in compact subsets of C,; and f is continuous on C, and analytic on C. It is
ob s that

1P F0) =€ #0.

e now claim that

(17) fu(t) =0
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f i — 00, uniformly for ¢ in compact intervals in (0, 00). To this end we make use of the proof
Publishiff ) ; .
. Following the notation there, let us write

Ft/ _ e*tleUI eftngvS eftngvik eftle'vf te [O OO)
This is precisely the quantity defined in [14] (3.6)]. Moreover, let us define
Gy = e~ NUHY o mN VI TRV o R Yy e [0, 00).

Then it follows that 0 < Gy < F/ yn <1, forall i e [0,00), and /

O;Gt_l—(l—Gt) (1+(1-Gy) 3\

We are interested in the limit of G” »&- We have
0§G§7n§(1+(1—G )7 < (142 ‘;\\
Using the fact that x — —5 is operator-monotone on and"the fact that 0 <Gt <
t/N<1 s01<1+2n(1- t/N)<1+2n1_Gt get
(1+2n(1-Gy)) ' <1+ K*}

Then it follows from [14] (3.11)]
G €I1° = (€ Gane) < {6, (1+ n<1 - /“» ') 50, n- oo,
uniformly for ¢ in compact intervals in (0, oo) ofes our claim in (17)), namely f,(t) — 0,

uniformly for ¢ in compact intervals of ( O,

On the other hand, (15) shows that fn t as n — oo, which means that f(¢) = 0, for

€ (0,00). By the 1dent1ty theorem for h?tlc nctlons we get that f(z) =0, for all z € C,
and since f is continuous on C+, have f(0) = 0 as well. This is in contradiction
with ( . Thus dynamical decoup n t work umformly if the form domain intersections
are not dense. O

The preceding theorem pr0v1des necessary condition for dynamical decoupling to work
uniformly, namely that t fmv)d:)mam intersections vD(H/2) NwD(H'?) are dense in H, for

every two v,w € V. ieve that it should be possible to strengthen this as follows, though

in order to prove thls € wou uire a generalisation of [14] to Trotter products of arbitrarily
many semlgroups r an nly two, which is currently an open problem.
Conjecture 4 b a decouphng set for Hg, and suppose that H is non-negative. If
dynamical decdu ng ks uniformly then the total form domain intersection

() vD(H?) CcH

veV
must be.den

In t e case here V' consists of two elements, the conjecture reduces to Thm. [4.1] and we can
I elevance of the condition in the following example.

E mplé4.3 (Non-overlapping form domains). Assume that in ((5)) both A, B > 0 but vanishing
iﬁné% ain intersection, D(A'/2) N D(BY?) = {0}. Then applying the decoupling operations
s in Ex. 3.2 leads to

D(H'?) N D(wH?v*) = (D(A'?) @ D(B'/?)) n (D(AY?) @ D(B'/?)) = {0}.

According to the criterion in Thm. this system cannot be decoupled from the environment.
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Publishi é\ow in order to find such operators, let us modify Ex. see also [3, Ex.5.6] or [13|
f 0.3.21]. Namely, consider H, = L?(R), and A = p? the negative second derivative op-

erator —% on R and B the multiplication with a certain positive measurable function f yet
to be determined. The domain of A is the second Sobolev space, D(A) = H2(R), and the form
domain is the first Sobolev space, D(AY/?) = H'(R). Instead for B we find

D(B) = {¢ € L*(R) : f¢ € L*(R)} /

and
D(B'?) = {¢ € X(R) : /7€ € L(R)) 3\

Now we take f in such a way that it is nowhere locally integrablesE.g.

o0

Fa) = (3 e —ral ™2 =
n=1

where (ry,)nen is a complete enumeration of the set of ratienal nhmbers.
With this choice, one can prove that A and B afe densel fined self-adjoint operators on
L?(R) but with trivial form domain intersection: ")
L

D(A'?)N B%Q {0},
which concludes our example. \ O

_—

Remark 4.4 (Some variations). In or \t?allo for a wider selection of models which can be
ax the condition of dynamical decoupling in @ a

dynamically decoupled, we might to
bit. One way forward would be to sa t as we fix ¢ and let n — oo, we no longer require
r

for the whole sequence but ins ﬂ\fggs bsequence only. In other words, we could say that
dynamical decoupling works if, for ‘any [0,00), there is a subsequence (ng)ren such that

-4

N
(18) -lim H ei "kNUJHU; )nk eit(IHS®B) ]
y. =
Interestingly eno , it lox/s from [I5] using the argument in [13, Prop.11.7.4] that for any

system with deco pw and H > 0, the condition of dense total form domain intersection
in Conj. 4.2]1 s%ient order for to hold for almost all ¢ (though not for all ¢ and not

uniformly i ct intervals). Other variations may be derived in a similar manner from the
ideas and esul}s collected in Bl Sec.1].

We end. thi ‘eo(ion with a difficult open problem:

Probl 4.5) Let V be a decoupling set for Hs, and suppose that H is non-negative. Is it true
tifat dynamieal decoupling works (uniformly) if and only if the total form domain intersection

() vD(H?) cH
\ ~ veV

is‘dense?

Notice that an affirmative answer would prove Conj.
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Publishing 5. GENERALIZED FRIEDRICHS-LEE MODEL

Lhe aim here is to provide a physically realistic model where dynamical decoupling does not
work. The environment is described by the standard Friedrichs-Lee model [7, [17), 8], which we
briefly recall here; to some extent we also follow the lines in [25 Sec.4.2.2-3]. In this section,
the Hamiltonian will no longer be non-negative, so Thm. becomes irrelevant here.

The Hilbert space is H, = C @ L?*(R). It will be convenient to use a matrix notation and
write the vectors 1) = x @ & € H, in the form /

(19 v = (¢y): 5\

where w € R, # € C, and ¢ € L?(R). Then, given a function L*R), the Friedrichs-Lee
Hamiltonian has a block matrix form defined by [7]

(0 (= _ £)
20) e = (0 2 () = o Sew)
on the domain D(H,) = C @ D(q), where D(q) = {{£L> {56 L?(R)} is the domain of the

position operator, (¢§)(w) = w&(w).

This Hamiltonian is the restriction to the vactum one’—‘&r‘uicle sector of the quantum-field
Hamiltonian e
(21) Hy = / dwwaa ﬁ@wa; + g(@)aw)
R R

on the symmetric Fock space Fs(L?(R)) whése a, and a, are the bosonic annihilation and
creation operators [20]. Indeed, F,<1 = 2(R) = H, and, by noting that |vac) = (1,0) and

a*(§)|vac) = (0,€), the restriction df (21)) %0 H. gives (20). This model, introduced by Lee [17]
as a solvable quantum-field model for the renormalisation problem, describes the decay
of an unstable vacuum into th ticle sector, due to an interaction term with coupling
function g. When the coupling becomes flat, on physical ground one expects that the decay will
be purely exponential.

While it is tempting s _simply put ¢ = constant in Eq. , this does not result in a self-
adjoint Hamiltonian ead, one can show that, given a uniformly bounded sequence of

positive coupling funétions (g, )yen C L2(R) N L>®(R), with

/\E gn(w) = 1/27
pointwise as che exists a self-adjoint operator H, which is the limit
£

H,, — H,
in the stro Ient sense, and thus [4]
ﬁ

ng=Leso
s eltHan _y oty o0,

strongly, foreach t € R.
explicitly write the unitary time evolution under the limit Hamiltonian H,. It is
t to consider the Fourier transform on the second component of , which leads us

> o itH, (m) B e_t/zx—ie_t/Qfges/Qé“(s)ds
3 3 E(t+ ) —ixpro (Ve )20 —xg() [T e )2 e5/2¢(s)ds |
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Publishﬁfl)g : > 0. Here xq is the characteristic function of set Q@ C R, i.e., xo(t) = 1 if t € Q and
= otherwise. In particular, the vacuum state |vac) = (1,0) will exponentially decay into a

This implies that the spectrum of H, is the whole real line. The coupling between a single
qubit and the singular Friedrichs-Lee model H, provides a reasonably ?ﬁistic model of a quan-
tum system in interaction with a Markovian environment. It is the dilation of the amplitude
damping Lindbladian discussed in [2, Sec. 3|, and it exhibits exp tial decay. The single
qubit is our system H, = C? introduced in Ex. This way théstotal Hilbert space is then
H = Hs ® He. We can write this out as H = C @ L?(R) @ C @ B2(R)“This way the free time

evolution Uy, for ¢ > 0, of the coupled total system can be de a
1 e t/2 T, — ie t/2 fg es/2 b e~
=
ST N &1
Z2 €2
&2

Eo(t+) — iX[—t,O](') e (t+)/2 T _c::70] : tJ)ef(tJr.)/? e5/2 £(s) ds

From this time evolution, one could now compute r‘@iltomiam, following the lines of [25]
Sec.4.2.2], and show that the conditions in Thm. aLe ulfilled. But since we want to show
that decoupling does not work for this model d differently and compute the evolution

explicitly.
Consider as initial state the vector (1, ,i.e.,
L1
S
)
\ 2

we get the free time evolution f&'\tﬁ'\m@ to t as

o t/2
0

1
— 0 .
/ — X[ ()e )/
This shows that (e#he\%g/of the qubit system decays exponentially, due to interaction with

o OO

the environme

We would few like to show that this still happens when dynamical decoupling is applied. We
choose thedgroupsgenerated by the four Pauli matrices as decoupling set V. Following , at
time 471 find the total perturbed time evolution

s e Tay —ieT [y e¥2&(s)ds+ie T ffT e*/2 £5(s) ds

0

0

£(27 + ) —iX[_2r () e @2z 4ix g () e BT 2 g
~X[-2r—r)(") Jo e BT 232 &a(s)ds
X[ (1) o @1 e FEN 2 e 2 gy (s5)ds — X_r g () [T e BTH) 2 et/ 2 gy (s) ds
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Publi Shiﬁg iting this cycle now n times, we can compute the perturbed time evolution at time ¢t = 4mn
v this formula. However, we do not require such a level of generality since we are mainly
interested in the evolution of the state (1,0,0,0). A closer inspection under the assumption that
the initial state is (1,0,0,0) shows the following: the second and third component remain 0 at
time t; the fourth component evolves to a function with support on [—27n, 0], so on the negative
half-axis, so that the term

—ie " /OTes/2§2(s) ds+ie " /TQT e*/2 &y(s) d{\

vanishes. Therefore, we get )
o t/4
0
= )
i d’n t
where 3
n

(22) Pi(s) = e~ 1/2Fe) (X[ th/2n,—th/2n+t ’n] @tk/2n+t/4n —t(k—1)/4n) (8 ))
k=1

so we still get exponential decay on the syste M | state was (1,0,0,0). We are interested
in the limit n — oo with 7 — 0 such that r;%vkre ins fixed. Then we should get

\6_74

OO O

(23)

with some function s — szs),%s out impossible to obtain the limit ¢; because (22))
See Fi

does not converge as n — oc. .
Notice, however, that mcjerges weakly to zero, that is (f|¢n) — 0 as n — oo for all

f € L*(R). Physically jonéan initerpret the behaviour of the wave function ¢, ; as the result
of pumping larger a ergy in the system through the decoupling pulses. In the limit
n — oo the pump v begomes infinite and ¢, ; gets orthogonal to any given wave function.
ecoupling worked then there would be a self-adjoint B such that

In any case, 1f ic
the time evolu Z)%\O 0) = (1 0) ® (1,0) is given by
1 it (1Y (1
)= (o) 2o (5) = (o) @0

with sénie v of norm 1; this in turn would be a vector of the form

3
\ <

ien that the first component was e , we see that the second should be nonzero, which
contradicts where the second component is 0. Therefore there cannot be such B and thus
dynamical decoupling does not work for this model.

S O % %

—t/4
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FIGURE 3. Plot of the function ¢, s) vergus ‘s We set ¢t = 6 and n = 20.

6. MSIO S

We have provided criteria and examples for amical decoupling of unbounded Hamiltonians.
From a mathematical perspective, the ability _to“decouple is essentially a question of approxi-
mate commutativity and of operatér,doniains. From a physical perspective, it is a question of
interaction time-scales, but we sawﬂ&i uch time-scales cannot be revealed by looking at the
reduced dynamics only. Moreover;«eyen if the complete model is known and can be decoupled,
such time-scales are very hard tomte in practice, because they depend explicitly on the
environment initial state.

In practice, our result

In particular, seeing exponential decay in the lab should not stop
ly decoupling. Whether or not it works on a feasible time-scale can be

'm‘p}iat many more systems can be protected from environmental

one from trying to a

decided experimentally.
This paper is

obably the first to discuss dynamical decoupling of unbounded Hamiltonians
saw that the question of whether decoupling works is a very hard and
we believe a precise characterization, e.g. an affirmative answer to Problem
: yet we provided some new and very useful methods to start with.
sical motivation, our work also offers a refreshed view on the mathematics
imits. On the one hand, established results on convergence can be embedded
ecoupling model through the construction , and get a physical meaning.
and, a proof of long-standing conjectures such as the generalization of [14] to
re thag wo generators would be highly relevant in dynamical decoupling.
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