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Abstract

The monetary economics literature has highlighted four issues that are important
in evaluating U.S. monetary policy since the late 1960s: (i) time variation in pol-
icy parameters, (ii) asymmetric preferences, (iii) real-time nature of data, and (iv)
heteroskedasticity. In this paper, we exploit advances in sequential monte carlo
methods to estimate a time-varying nonlinear Taylor rule that addresses these four
issues simultaneously. Our findings suggest that U.S. monetary policy has experi-
enced substantial changes in terms of both the response to inflation and to real eco-
nomic activity, as well as changes in preferences. These changes cannot be captured
adequately by a single structural break at the late 1970s, as has been commonly
assumed in the literature, and play a non-trivial role in economic performance.
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1 Introduction

In a seminal paper, Clarida, Gali, and Gertler (2000) (CGG hereafter) show that changes
in monetary policy played an important role in the performance of the post-war US
economy. By estimating monetary policy reaction functions before and after Volcker’s
appointment as Fed’s Chairman in 1979, they find that in the pre-Volcker period monetary
policy was greatly accommodative with interest rates rising less than expected inflation,
thus violating the Taylor principle; while, in the Volcker-Greenspan era, monetary policy
became strongly anti-inflationary with increases in expected inflation being associated
with larger increases in the policy instrument.! This change in monetary policy has been
highlighted by several authors as one of the main causes of the remarkable decline in the
variability of output and inflation after the mid-1980s - the so-called Great Moderation.

However, the view that monetary policy led to the Great Moderation is not universal.
Many economists argue that what actually changed between the pre- and post-Volcker
periods were not macroeconomic policies but luck -in the sense that the shocks hitting
the economy became smaller and more infrequent. Most notably, Sims and Zha (2006)
examine a battery of multivariate regime-switching models for the U.S. economy and find
that the model that fits the data best is a linear in mean model with time-varying error
variances. On this basis, the authors conclude that the documented changes before and
after 1979 can be attributed to the failure to allow properly for heteroscedasticity. Recent
studies, such as Mumtaz and Zanetti (2013) and Born and Pfeifer (2014), also confirm
that the volatility of monetary policy shocks have changed overtime.

In addition to allowing for heteroskedastic errors, the empirical monetary economics
literature has criticized the approach of CGG in other three dimensions. The first is
related to the nature of changes in policy parameters, and, in particular, the fact that a
single structural break may be too restrictive when considering long periods of data. For
instance, Alcidi et al. (2011) use a logistic smooth transition regression (LSTR) model
developed by Terésvirta (1994) and provide empirical evidence of policy regime changes
even during the Greenspan era. Also based on the Terdsvirta (1994)’s LSTR, Martin and
Milas (2010) document changes in the conduct of monetary policy during the 1983-2004
period. Furthermore, Cogley and Sargent (2001, 2005) and Boivin (2006) argue that
changes in the Fed’s monetary policy may be gradual rather than discrete and, therefore,
a more flexible modeling approach, such as a time-varying parameter (TVP) framework,
is required to study the historical conduct of monetary policy. See, e.g, Terasvirta et al.
(2010) and Terésvirta (2018 forthcoming) for discussions on TVP models.

The second criticism of the CGG approach is related to the data employed for the
estimation of policy reaction functions. CGG fit their model to revised data, but, as

!The basic logic behind this principle is that when inflation increases, monetary policy needs to raise
the real interest rate in order to slow the economy and reduce inflationary pressures (Woodford, 2001).
Also, Woodford (2003) shows that this condition (or some close variant forms of it) must be satisfied
for the determinacy of most existing macroeconomic models. Lubik and Schorfheide (2004) formally test
for indeterminacy of U.S. monetary policy in a New Keynesian framework and find that the post-1982
U.S. monetary policy is consistent with determinacy, whereas the pre-Volcker policy is not, therefore
confirming the findings of CGG.



Orphanides (2001) points out, using information, which was not available to the monetary
authorities when making decisions, to evaluate monetary policy may lead to false inference.
By fitting a forward-looking Taylor rule, similar to that of CGG, to real time data on
inflation and unemployment, Orphanides (2002) finds no significant differences between
monetary policy in the 1970s and the period after. Following the work of Orphanides,
real-time data have been widely used in the investigation of historical monetary policy,
not only in the US but also in many other countries. Examples include Boivin (2006),
Molodtsova et al. (2008), Martin and Milas (2010), Nikolsko-Rzhevskyy (2011) and Lee
et al. (2013), among many others.

Finally, a number of studies have argued that the preferences of central bankers may be
asymmetric with respect to inflation and/or real activity (see, e.g., Nobay and Peel, 2003;
Ruge-Murcia, 2003). This asymmetry can occur from several sources. For instance, if a
central banker is devoted solely to inflation targeting, a deflationary bias may arise, which
will make the response of monetary policy to changes in the state of the economy highly
asymmetric. On the other hand, a central banker may behave as having an inflationary
bias when trying to exploit the output-inflation tradeoff. The existence of asymmetric
preferences is supported by statements of policy makers such as that of Blinder (1998,
pp.19-20): “in most situations the central bank will take far more political heat when it
tightens pre-emptively to avoid higher inflation than when it eases pre-emptively to avoid
higher unemployment.” De Long (1997) and Nelson (2005) present extensive narrative
evidence in favor of the notion of asymmetric preferences induced by politics during the
1970s. Dolado et al. (2004) provide empirical support for this type of asymmetric behavior.
In addition, using the Luukkonen et al. (1988)’s non-linearity test, Surico (2007) rejects
the null hypothesis of symmetric preferences of the Fed.?

In summary, the existing empirical literature highlights four issues as crucial in prop-
erly evaluating US monetary policy: time-variation in policy parameters, asymmetric
preferences, heteroskedastic errors, and real-time data. This paper, for the first time,
simultaneously takes all these issues into account.®> To do so, we derive a model spec-
ification as the discretionary outcome of the formal monetary policy design problem in
which the central bank can display asymmetric preferences. We allow the coefficients of

2 Asymmetric responses of monetary policy may also come from other sources which are not examined
in our framework. For instance, Dolado et al. (2005) derive an asymmetric optimal policy by combing a
quadratic loss function with a nonlinear Phillips curve. Nevertheless, they only find empirical support for
this type of asymmetries for four European central banks but none for the Fed. Meanwhile, Meyer et al.
(2001) show that episodes of heightened uncertainty about the NAIRU may warrant a nonlinear policy
response to changes in the unemployment rate. Although we do not investigate this type of nonlinearities,
we consider different measures of the natural rate of unemployment as shown in section 4.4.1 as robustness
checks of our findings.

3Boivin (2006) is the first study that deals with time-variation in policy parameters, heteroskedastic
errors, and real-time data. Although the issue of asymmetric preferences was not considered in that
paper. Moreover, Boivin (2006) models heteroskedasticy with a single break in the variance at 1979 in
the baseline model and two breaks at 1979 and 1982 in the robustness checks. However, as we shown below
in Figure 5, such an approach with discrete breaks may not fully capture the changes in the variance.
For example, in the 1970s, which Boivin (2006) considers as one regime, the variance was lower in the
second half than the first half on the average.



the derived policy rule to vary over time, as in Kim and Nelson (2006), in order to capture
potential changes in policy parameters; and, we deal with heteroscedasticity by allowing
the standard deviation of monetary policy innovations to follow a stochastic volatility
process similar to Stock and Watson (2007) and Justiniano and Primiceri (2008). Finally,
following Orphanides (2001), we use real-time Greenbook forecasts for estimation. The
resulting econometric model is both time-varying and nonlinear with respect to parame-
ters. As a consequence, the popular Kalman filter cannot be utilized for estimation. To
overcome this obstacle, we adopt a novel Bayesian approach, namely particle filtering,
which has gained popularity in economics and econometrics over recent year (see Creal
(2012) and Terésvirta et al. (2010, p. 229-231) for reviews and the references therein).
The key idea of particle filtering is to represent the required posterior density function
by a set of random samples with associated weights and to compute estimates based on
these samples and weights (Ristic et al., 2004).

Our results suggest that substantial changes in the response to inflation and to real
economic activity as well as in Fed’s preferences have occurred over time. Regarding the
pre-Volcker period, we find that the response to inflation was not uniformly weak, as
typically assumed in the literature, with the Taylor principle being violated in the second
half of the 1970s, but not in the period before (see, also, Cogley and Sargent, 2001, 2005;
Boivin, 2006). This finding supports the point made by Boivin (2006) that the failure
to properly account for the rich evolution of monetary policy seems to be the cause of
conflicting results between CGG and Orphanides (2002). Moreover, our results are in
favor of the notion of an inflationary bias, with the interest rate response in the pre-
Volcker era being stronger for negative deviations of inflation from target in comparison
to positive deviations of the same size, which can help explain the high levels of inflation
in the 1970s. This result therefore confirms the importance of taking the asymmetric
preferences into account when studying the historical conduct of U.S. monetary policy.

With respect to the post-Volcker era, we find considerable differences in the response
of interest rate to inflation and to real activity between the 1980s-90s, and the period
thereafter. In the former period, monetary policy responded strongly to inflation but
weakly to real activity, in line with the findings of Kim and Nelson (2006) and CGG,
which implies a concentration of the Fed on stabilizing inflation. In contrast, in the latter
period, once inflation was stabilized, the Fed appears to have paid more attention to
stabilizing real activity, while hardly responding to inflation. These results are broadly
similar to Martin and Milas (2010) and Ferndndez-Villaverde et al. (2010, 2015).

The paper proceeds as follows. Section 2 discusses the formal monetary policy design
problem in which the central bank’s loss function is asymmetric with respect to inflation.
Section 3 describes the empirical model with time-varying parameters and stochastic
volatility. The same section outlines the particle-filtering estimation method. Section 4
presents the empirical results, and section 5 concludes.



2 The Theoretical Model

The central bank chooses interest rates to minimize the present discounted value of its
loss function which depends on the inflation gap, which is the difference between inflation
and its target m, — 7", the output gap y;, which is the gap between the actual output and
the potential one, and the interest rate gap, which is the distance between the interest
rate level and the target i, —i* (Surico, 2007; Tillmann, 2011). Formally, the loss function
takes the following form*

a(me—m*) * 1
€ Q\ Tr ™
L, (2 13 )
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where « captures the asymmetry in the loss function with respect to inflation, p and ~
are parameters representing the central bank’s preferences towards the output gap and
the deviation of the interest rate from its target. The preference to inflation is normalized
to one. This specification of the loss function is called the linex function proposed by
Varian (1975) and introduced to the optimal monetary policy literature by Nobay and
Peel (2003).

The loss function (2.1) differs from the conventional quadratic set-up in the way it deals
with inflation deviations. For a > 0, when inflation is above the target, the exponential
term of the loss function e*™~™") dominates the linear term a(m, — ©*), so the value
of the loss function rises exponentially. However, if inflation is below the target, the
linear term dominates the exponential term and the value of the loss function increases
linearly. This implies that, for a > 0, positive deviations of inflation relative to the target
are more costly than negative deviations. In this case, the central bank can be said to
have deflationary bias. In contrast, for a < 0, negative deviations cause a greater loss
than positive deviations. This case reflects the view of the central bank that deflation is
more costly than inflation. Therefore, the central bank can be characterized as possessing
inflationary bias. Another interesting feature is that when o approaches zero, the loss
function becomes the common quadratic form. The quadratic loss function is thus a
special case of the loss function (2.1).

The policy action is subject to the following constraints:

T = BEm41 + Ky + €,
Y = Epypr — o(is — Eymeg) + £f.

The above expressions represent the equilibrium conditions of the standard New Key-
nesian model. The reader is referred to Woodford (2003, Chapter 3) and Gali (2008,
Chapter 3) for a complete derivation. Equation (2.2) is the forward-looking Phillips

4Typically, the loss function of the households has a quadratic form derived as a second-order approx-
imation to the utility losses experienced by the representative consumer as a consequence of deviations
from the efficient allocation, e.g. Rotemberg and Woodford (1999). We deviate from such a framework
in regard to the loss function of central bankers in order to investigate the possibility of their asymmet-
ric behavior in policy-making. The suggested framework nests the popular quadratic loss function as a
special case.



curve, which builds on the Calvo-type staggered nominal price setting in which only a
fraction of firms are allowed to reset their prices in any given period, whereas the others
are constrained to keep their prevailing prices. Inflation in this setting depends on the
current output gap and expected inflation. Equation (2.3) is the log-linearized consump-
tion Euler equation which is derived from the household’s optimal consumption decision
and the market clearing condition. This equation shows that the current output gap
depends on the expected future output gap and the real interest rate. A higher level of
expected future output leads to a greater level of current output because of the consump-
tion smoothing behavior, whereas a higher real interest rate lowers the current output
owning to the intertemporal substitution of consumption. The interest elasticity ¢ cor-
responds to the intertemporal elasticity of substitution. Finally, £f and ¢ are cost and
demand disturbances.

2.1 Asymmetric Policy Rule

Central bankers conduct monetary policy to minimize the expected value of a loss criterion
of the form

o0
W=EY fL, (2.4)
i=1
subject to the forward-looking Phillips curve (2.2) and the IS curve (2.3).

It is assumed that central bankers are unable to make any kind of commitment over
the course of future monetary policy. Instead, they take private sector expectations as
given and execute policy under discretion. According to CGG, this scenario seems to
accord best with reality. Given this assumption, the Lagrangian of the policy problem is
written as follows

a(me—m*) _ ( _ *) -1
- € o\ — T Foona 0o a2
M E{ - —(1¢ —
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where ¢7 and ¢} are the Lagrange multipliers. Solving this problem, we obtain the
following approximated optimal policy rule®

K Ak
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The expectations operator in (2.5) implies that the policy action is taken before the
realization of inflation and the output gap. Therefore, the central bank chooses the
interest rate at time ¢ based on its expectations on the relevant variables conditional on
the information available at that period. Let m, 072”‘ +» Yt¢ be the nowcasts of inflation, the

5The derivation of the optimal rule can be found in Online Appendix 1.



variance of inflation, and the output gap, respectively. Equation (2.5) can be re-written
as

: 2
1+ = Qo + alﬂ-t‘t + agaﬂt‘t + agyt|t. (26)
where ag = i* — £571% ay = 25, ay = 25 and a3 = £2. Note that when a approaches
v v 297 Y

zero, so does ag, the reaction function (2.6) collapses to a standard interest rate rule in
which the interest rate responds symmetrically to the deviations of inflation and output
from their targets. Equation (2.6) therefore nests the symmetric form as a special case.
In the next section, we describe how to fit (2.6) to data.

3 The Empirical Model

The empirical counterpart of the theoretical model (2.6) is written as follows

iv = prie—1 + (1 — pe)(aos + Q14T + Gz,taidt + ag yye) + exp(aay)es, (3.1)
1

= , 3.2

Pr 1+ exp(—as4) (32)

ak,t - ak,tfl + eXp<O-ak)€ak,t7 k - 07 17 R3] 57 (33)

where €; ~ i.i.d.N(0,1) and ¢, ; ~ 7.4.d.N(0,1) for £ = 0,1,...,5. The innovations, &
and g,, ¢ for k =0,1,...,5, are independent.

This empirical model deals with the four issues raised in the literature on modeling
monetary policy. First, its specification takes into consideration the asymmetric issue in
monetary policy. Second, parameters are allowed to vary over time to capture potential
changes in the conduct of monetary policy.® Third, the issue of heteroscedasticity is
treated by modeling the standard deviation of monetary policy innovations as stochastic
volatility process, a popular mean to model heteroscedasticity in the literature (see, e.g.,
Cogley and Sargent, 2005; Primiceri, 2005; Stock and Watson, 2007). Finally, the model is
fitted with real-time data, as will be discussed below. It is also worth noting other features
of the model. Following CGG, the lag of interest rate is included as an explanatory variable
to capture the observed smoothing of interest rate. Moreover, the smoothing parameter
Pt is constrained to be positive but smaller than unity and then transformed to the real
line by the logit transformation as in Kim and Nelson (2006). For the time-variation of
parameters, it is assumed to follow random walk dynamics similar to Cogley and Sargent
(2005) and Boivin (2006), among many others.

SWith a time-varying intercept, we allow for the possibility of changes in the equilibrium interest rate
and inflation target. Although it is worth noting that the evidence of changes in inflation target is mixed.
For instance, Favero and Rovelli (2003) find that the implicit inflation target is higher in the pre-Volcker
period than the post- Volcker one. However, according to Clarida et al. (2000), such a difference is not
significant when taking into account the change of the response to inflation and, thus, differences in
monetary policy between the pre- and post-1979 does not simply reflect differences in the target inflation
rate.



Substituting (3.2) into (3.1) yields

B 1 . exp(—as,)
= -1+
1+ exp(—ast) 1+ exp(—asy)

it

2
(ao,t + a1y + Q2,07 |t + a3,tyt\t)

(3.4)
+exp(aqt)et,

The combination of (3.3) and (3.4) generates a state-space system. In this system, the
state model (3.3) describes the evolution of the state vector x; = [ag ¢, a1, 2, A3, Gat, G54
and the measurement model (3.4) relates the noisy measurement i; to the state. In order
to facilitate the analysis, the state-space system is written in its probabilistic form as
follows

Xt = h<Xt—1a Wi, w)v

i = g(x¢, e, Ay),

where Wy = [0+, €14, €24, €3¢, Eat, E5,4) 18 the vector of state noises, which has a multivari-

ate normal distribution with zero mean and identity covariance matrix, @ = [04y, Oass Tags Tass Tays Oas)
and Ay = [i;_1, Tt Yilt» Ufrt|t]' includes observed inputs. To ease notation, in what follows

we drop A; without any loss of generality. The functions A(-) and g(-) come from the

equations that characterize the behavior of the model, i.e. (3.3) and (3.4).

Our objective is to estimate the evolution of state variables given the sequence of
received measurement. In order to do so, it is required to construct the posterior prob-
ability density function of the state vector. However, the constraint on the smoothing
parameter and the stochastic volatility of monetary policy shocks generate nonlinearities
in the system, preventing us from using the well-known Kalman filter and, thus, compli-
cating the estimation. To deal with the nonlinearities, we apply the approach called the
particle filter, which is proposed by Gordon et al. (1993). The key idea of particle filtering
is to represent the required posterior density function by a set of random samples with
associated weights and to compute estimates based on these samples and weights (Ristic
et al., 2004).

Let Xy = {x;,j =0,...,t} and I; = {ij,j = 0, ..., t} represent the sequences of all states
and available measurements, respectively, up to time ¢. The joint posterior density at time
t is denoted by p(X;|I;) and its marginal is p(x|I;). Let {X},wF}¥ | denote a random
measure that describes the joint posterior p(X;|I;) where {XF k = 1,...,N} is a set of
support points with associated weights {w¥, k = 1,..., N}. The weights are normalized to
sum to unity. Thus, the joint posterior distribution at ¢ can be approximated by

N
p(Xll) = ) wfs(X, — XP), (3.7)
k=1

where §(.) is the Dirac delta measure. The normalized weights w¥ are chosen by applying
the principle of importance sampling in which X} is drawn from an importance density
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If the importance density is chosen so that it can be factorized by

q(Xy|I}) £ q(x| Xyo1, 1) q(Xya | i—a), (3.9)

then the samples X} ~ ¢(X;|I;) can be achieved by augmenting each of the existing
samples XF | ~ q(X;_1|I;_1) with the new state xF ~ q(x¢|Xy_1, ). At time step ¢ when
a measurement i; becomes available, the posterior density p(X;|I;) can be updated from
p(Xe1|li-1) by

p(it‘XtaIt—l)p(Xtut—l)
X L) = g
p( t| t> p(2t|]t—1)

o< plig|x)p(xe|xi—1)p(Xi1 [ Li—1). (3.11)

(3.10)

Substituting (3.9) and (3.11) into (3.8) yields the weight update equation

e i)
' - Q(Xﬂth,l, ]t)

By using the bootstrap filtering proposed by Gordon et al. (1993), we evaluate the im-
portance weights attached to each particle as follows

w o wi 1 p(ie|xy)-

Given these weights, the marginal posterior density p(x;|/;) can be approximated as

N

pxill) = > wpd(xe — xf ). (3.12)

k=1

Ristic et al. (2004) shows that as N — oo the approximation (3.12) approaches the true
marginal posterior density p(x;|I;). Based on this posterior density, we estimate the state
vector as its conditional mean. To deal with the degeneracy problem, i.e. the variance of
importance weights can only increase over time (Ristic et al., 2004), we use the systematic
resampling method because it is easy to apply and outperforms other resampling schemes
in most cases (Doucet and Johansen, 2009).

Moreover, a by-product of the particle filter is that the likelihood can be approximated

by using the weights wi:”
T /N
p(Ir;w) ~ [ | (Z w,ﬁ) . (3.13)
i—1

=1

"We use 10,000 particles. This number delivered a good compromise between accuracy and time to
calculate the likelihood.



Once the likelihood is evaluated, we can use the maximum likelihood approach to estimate
w, the vector of time-invariant parameters.®

Note that particle filtering generates an approximation to the likelihood function that
is not differentiable with respect to the parameters because of the inherent discreteness of
the resampling step. Therefore, Newton’s type algorithms, based on derivatives, are not
applicable. We instead use the covariance matrix adaption evolutionary strategy (CMA-
ES) to obtain the maximum-likelihood estimates of w. This optimization algorithm is
designed to cope with objective functions that are non-linear, non-convex, rugged, and
multimodal (Hansen, 2011; Andreasen, 2010).

4 Data and Empirical Results

4.1 Data

The estimation of the state-space system described by (3.3) and (3.4) requires data for
the nominal interest rate, expected inflation, expected variance of inflation, and expected
output gap. For the nominal interest rate, we use the effective federal funds rate extracted
from the FRED economic database. For the expected value of inflation, we use the
Greenbook forecasts of the current-quarter annualized percentage change in the GNP or
GDP deflation.

Regarding the expected variance of inflation, this variable is obviously not directly
observable. The data and the methodology used for its construction are discussed in the
following subsection. With respect to the real economic activity measure, we use the
unemployment gap in place of the output gap. The reason for this choice is twofold.
First, because of repeated changes in the base year, no consistent time series of predicted
real GDP or GNP can be derived from the Greenbook over the sample (Boivin, 2006).
Second, maximum employment is one of the objectives of monetary policy clearly written
in the Federal Act, thus it is natural to include the unemployment rate directly into
the policy function. The unemployment gap is defined as the difference between the
natural rate of unemployment and the forecasted unemployment rate so that the sign of
the unemployment gap is consistent with that of the conventionally-defined output gap.
While the forecast of contemporaneous unemployment rate is collected directly from the
Greenbook, the natural rate of unemployment is measured by a 5-year moving average
of unemployment rate as in Bernanke and Boivin (2003). We name this proxy the 5-year
moving average unemployment gap. The dataset spans the period 1965Q4 to 2007Q4.
The start of the sample corresponds to the first period predictions were recorded in the
Greenbook. The sample ends prior to the federal funds rate hitting the zero lower bound
in 2008.

4.2 Expected Variance of Inflation
Bollerslev (1986) and Dolado et al. (2004) among others obtain the conditional variance

80nline Appendix 3 presents how to derive the approximation of the likelihood function.
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of inflation from ex-post revised data by using a dynamic model with GARCH(1,1) dis-
turbances. We employ a similar framework that accommodates the use of real-time data.
In particular, for each time period, we estimate

T = C+Zﬁi7ft—i+gyt+€t7 (4.1)
i=1
€t = Ox t2t,
2 2 2
0ns = 0o+ ai€  + Brog, . 4.3

by using information available at time ¢, and, based on the fitted GARCH process (4.3),
we forecast the contemporaneous variance of inflation (see Terédsvirta (2009) for a brief
survey of univariate GRACH models).? Note that the specification (4.1), which has been
proven fairly successful in capturing the dynamics of inflation in the U.S. economy (see,
e.g., Rudebusch, 2001), can be derived using our theoretical framework by substituting
Eymiy1 in (2.2) by a linear combination of the lags of inflation.!® Thus, it has theoretical
underpinnings.

To enhance our GARCH-based estimations, we exploit the fact that data on inflation
and unemployment are available at a higher frequency. Specifically, we use monthly data
for the construction of the expected variance of inflation spanning the period 1948M1 to
2007M9. We assume that the variance of inflation of quarter ¢ is nowcasted using the
information available at the first month of that quarter.!’ This assumption is in line
with the Greenbook forecasts because they are often published by the end of the first
month or the middle of the second month of a quarter. The procedure for forecasting
the contemporaneous variance of inflation series with four steps is described in detail
in Appendix A.1. We also examine alternative proxies of the output gap and different
numbers of lags of inflation used in Equation (4.1) and summarize all the results in
Table 1 in Appendix A.1. The results show that those forecasts are very similar, thus
corroborating our constructed series. The forecasts also remain similar if we substitute
the real activity variable y,; in (4.1) by a linear combination of its lags.

Figure 1 present one of the measures of the expected variance of inflation estimated
by applying the above procedure with three lags of inflation (n = 3) and the output
gap (y;) proxied by the 5-year moving average unemployment gap. Overall, we observe
that, as well documented in the literature, the expected variance of inflation has changed
considerably over time. Specifically, it increased substantially in the mid-1970s, then

9We use the popular GARCH model instead of the SV model due to the large computational costs
associated with the estimation of the latter in a recursive framework. As a robustness check, we compare
the estimates of the two models using several sub-samples of the data, and do not find any substantial
differences.

10We can not use the one-quarter-ahead Greenbook forecasts of inflation directly as a measure of E;m; 1
in (4.1) because there is not enough data to estimate the model and to conduct forecasts, say, at the
vintage 1965Q4.

HUThe estimation and forecast are conducted repeatedly on the rationale of real-time data, so the
coefficients of the GARCH process can vary overtime. For this reason, we do not show the estimates
associated with the GARCH process; they are, however, available upon request.
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Figure 1: Expected Variance of Inflation
Notes: The expected variance of inflation is computed by applying the procedure
described in Section 4.2, with the number of lags of inflation set equal to three and the
output gap y; proxied by the five-year moving average gap in Equation (4.1).

reduced gradually to its late 1960s - early 1970s level by 2000s, but rose again after that
and reached a peak in 2007Q1.

4.3 Results for the Baseline Model

We proceed to analyze the estimation results, with a particular interest in the responses
of the interest rate to real activity (unemployment gap), inflation and the variance of
inflation.'? Figure 2 reports the response to real activity. We observe that the response
was positive and statistically significant in the 1970s, in line with the findings of Clarida
et al. (2000). It then decreased and became insignificant in the second half of the 1980s.
In the early 1990s, the response to real activity experienced a substantial increase from
just above 1.0 in 1990 to approximately 2.0 from 1995 onwards, which implies that the
Fed paid more attention to real activity since then. Martin and Milas (2010) find that
the response to real activity is around 2.0 for the 1983-2004 period.'® A similar value is
also reported in Blinder and Reis (2005) for the Greenspan period. Moreover, Blinder and
Reis (2005) find that monetary policy under the Greenspan regime responded stronger
to unemployment than the policy under the Volcker period. Kim and Nelson (2006) also
obtain a similar pattern when estimating a time-varying parameter model using ex-post
data.

I2The estimates of time-invariant parameters are presented in Appendix A.2.

13Gerdesmeier and Roffia (2005) consider the conduct of monetary policy in the euro area and document
that the estimate of the response to output is higher when using real-time output data as opposed to
ex-post output data. Gerberding et al. (2005) also obtain a similar finding for the Bundesbank.
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Note: Dashed lines are 68% and 90% percentile intervals.
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The response to inflation is depicted in Figure 3. The pre-1979 response to inflation was
not uniformly weak as typically assumed. It was above unity until 1975, then decreased
considerably and went below unity, particularly between 1976 and 1978. This property
of the pre-1979 monetary policy is consistent with Boivin (2006) and Cogley and Sargent
(2001, 2005). Based on narrative evidence, Romer and Romer (1989) also conclude that
the actual commitment of the Fed to combat inflation appeared to have been weak in
the 1976-1978 period. As soon as Paul Volcker was appointed Chairman of the Fed in
the third quarter of 1979Q3, the response to inflation became strong. However, the main
shift under the Volcker’s tenure seems to have happened during the 1981-1982 period. The
inflation coefficient was mainly above unity to the early 1990s, then fell and has become
not significant by the mid-1990s.!* This result is inline with Ferndndez-Villaverde et al.
(2010, 2015) who estimate a DSGE model for the U.S. economy with stochastic volatility
and parameter drifting in the Taylor rule and find that the post-1990 response to inflation
was weak.!?16 Alternatively, the insignificant response to inflation can be explained from
a statistical perspective. If inflation was close to the implicit target in the post-1990
period as suggested by Martin and Milas (2010), it might be hard to identify the response
of interest rate to inflation due to lack of variability.

We now turn to the response to inflation variance. Figure 4 shows that this response
was negative and statistically significant in the pre-1979 period, but became statistically
insignificant in the post-1979 period. This suggests that in the pre-1979 period the Fed
behaved as if having asymmetric preferences - in the sense that negative inflation gaps
were considered more costly than positive gaps of the same absolute size. On the other

14For narrative evidence, see Online Appendix 8.

15Ferndndez-Villaverde et al. (2015) show that the relevant part of the solution of the model for de-
terminacy is only the linear first-order component which depends on the mean policy response, not the
current value of the response. The authors find that the estimated mean policy response to inflation is
greater than one, therefore, guaranteeing the local determinacy of the equilibrium.

16 A similar result can be derived from a model with the opportunistic approach.The idea of the op-
portunistic approach is that if inflation stays within a range around a target, the interest rate should
not respond to inflation, but rather should wait for external circumstances to bring inflation back to the
target. In this case, the focus is on stabilizing output (Orphanides and Wilcox, 2002). By estimating
a non-linear Taylor rule for the U.S. monetary policy during the 1983-2004 period to test the oppor-
tunistic model developed by Orphanides and Wilcox (2002), Martin and Milas (2010) find that there is
no response of interest rates to inflation when inflation is within 1 per cent of the intermediate target
but a strong response when inflation is further from the intermediate target. The authors also point out
that expected inflation since the early 1990s seldom moved away from the zone of inaction. According to
Granger (2008), any non-linear model can be approximated by a time-varying parameter linear model,
which therefore helps to account for the similarities in the results of Martin and Milas (2010) and ours
when it comes to monetary policy during this episode.
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Figure 5: Interest Rate Smoothing Degree, Stochastic Volatility, and Intercept
Note: Dashed lines are 68% and 90% percentile intervals.

hand, the post-1979 monetary policy seems to be characterized by symmetric rules.!7-18

1"These results are broadly similar to Surico (2007) who investigates changes in asymmetric preferences
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In summary, through the lens of our model, inflation stabilization can be attributed
to both changes in the direct response to inflation, as suggested by Clarida et al. (1999,
2000), Cogley and Sargent (2001, 2005), and Boivin (2006), and changes in preferences, as
put forward by Cukierman and Gerlach (2003), Dolado et al. (2004), and Surico (2007).
Regarding the former, the response to inflation was weak in the second half of the 1970s,
which likely contributed to the high level of inflation during this era. In contrast, the
strong response to inflation in the 1980s played a role in bringing inflation down and
keeping it stable. It appears that the Fed’s preferences changed in the late 1970s as well.
Prior to that, the Fed’s behavior was seemingly asymmetric in the sense that negative
inflation deviations from the target are considered to be more costly than positive ones of
the same magnitude. This asymmetry led to inflationary bias in the conduct of monetary
policy, which might have accounted for the great inflation during this decade. On the
contrary, we do not find evidence of such an inflationary bias from the early 1980s onwards.

The smoothing parameter, the standard deviation of monetary policy shocks, and the
intercept also vary over the sample as displayed in Figure 5. The smoothing parameter was
large and stable from the mid-1980s to the mid-1990s, which suggests that the interest
rate was persistent during these periods. It then decreased reaching a trough in the
early 2000s, before returning to the high level of persistence at the end of the sample.
Concerning the standard deviation of monetary policy shocks, this variable has declined
and also become more stable since the mid-1980s. This result therefore highlights the
importance of taking heteroscedasticity into account as argued by Sims and Zha (2006).
Regarding the intercept, as in line with Kim and Nelson (2006), it was high in the early
1980s and consistently statistically significant from the mid 1990s onwards.

4.4 Robustness Checks

We study the robustness of the results of the baseline model in two dimensions: alternative
measures of real activity and another model specification with asymmetric preferences
with respect to both inflation and real activity.

4.4.1 Real Activity Measures

In the baseline model, we proxy the output gap by the difference between a 5-year moving
average of unemployment rate and the expected contemporaneous unemployment rate.
Because there is no guarantee that this proxy corresponds to the real activity measure

of the Fed before and after 1979. The inflationary bias in the pre-1979 period in Surico (2007) is caused
by an asymmetric response to changes in the real activity with the interest rate response to output
contractions being larger than the response to output expansions of the same magnitude. However,
different with our results, Surico (2007) does not find the evidence of asymmetric preferences with respect
to inflation. Recall that Surico (2007) estimates with ex-post revised data for the pre- and post-1979
subsamples, therefore not taking into account the issue of real-time data and the nature of changes
in policy parameters which are considered in our models. In section 4.4.2, we consider a model with
asymmetric preferences to both inflation and real activity
18 Additional discussions about changes in the Fed’s preference are provided in Online Appendix 8.
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perceived by policymakers, it is important to investigate how robust the results are with
respect to different measures of the output gap.
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Figure 6: Measures of Real Activity for the Contemporaneous Quarter.

First, we consider two alternative measures of the natural rate of unemployment: a
historical average and a 3-year moving average, leading to the two different measures
of unemployment gap. The figures are not shown to save space, but the readers can
find them in Online Appendix 5. We observed that the response to inflation follows a
similar path regardless of the measure used. In terms of the response to real activity,
the coefficient corresponding to the 3-year moving average unemployment gap was not
statistically different from zero in the 1980s. On the contrary, the coefficient for the
historical average unemployment gap was statistically significant over the sample - though
only marginally significant in the second half of the 1980s. The results for both measures
affirm that the Fed has responded stronger to real activity since the early 1990s. With
respect to the coefficient on inflation variance, this was negative and significant in the
1970s, but switched to insignificant since the early 1980s. Overall, these results are
similar to those of the baseline model.

We have so far considered the unemployment rate as a proxy for the output gap.
In this robustness check, we re-estimate our model using the HP output gap, and then
compare the results obtained with those in the baseline model. The construction of
the expected contemporaneous real-time HP output gap series is described in Online
Appendix 4. Figure 6 shows the constructed series together with the above measures
of unemployment gap. As can be seen in the figure, the HP output gap series shows a
similar trend with the measures based on unemployment. Moreover, the results for the
state space system based on the HP output gap are similar with those documented in
the baseline model (See Online Appendix 5). That is, the results are not sensitive to the
output gap measures.
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4.4.2 Asymmetric Preferences to Both Inflation and Real activity

So far, we have considered asymmetric preferences with respect to inflation. However,
the central bank may also react asymmetrically to real activity. For instance, a negative
output/unemployment gap may be considered more costly than a positive gap of the same
absolute size, causing interest rate to react more strongly to negative than positive gaps.
This kind of asymmetry is studied in Ruge-Murcia (2003) and Cukierman and Gerlach
(2003). For this reason, we modify the loss function in Equation (2.1) to include a linex

function of the output gap as follows?"
em=m") _ o, — ) — 1 et — Ny, — 1 .
Li- Mo T T )

where A captures the asymmetry in the loss function with respect to the output gap and
other notations are the same as in (2.1). The central bankers are therefore allowed, but
not required, to weight differently positive and negative deviations of inflation and output
from the target values.

In this setting, the interest rate responds to inflation, unemployment gap, the variance
of inflation and the variance of unemployment gap.?! The corresponding empirical model
is then given by

B 1 , exp(—be,)
= L1 +

1 + exp(—be ) 1 + exp(—be )
+ b3 yee + b4,t0-32/t\t) + exp(bs,¢ )&

- 2
2 (bos + brgmie + b 107, 1t

(4.5)

and the state vector becomes x; = [bot, b1+, bat, bst, bay, bst, bs ). The estimation of (4.5)
requires the data of the expected variance of unemployment gap which is not available.
We also use the GARCH model as above to construct this series.?? Other variables remain
as in the baseline model.

Figure 7 presents the time-varying parameter results. It is apparent that the response
to inflation, unemployment gap, and the variance of inflation are essentially the same
with those in the baseline model. For the response to the variance of unemployment gap,
the estimate also indicates an inflationary bias in the early 1970s, i.e. monetary policy
responded stronger to negative unemployment gap than positive ones. Overall, the results
are again in line with those documented in the baseline model.

9Negative output gap implies that output is below the potential output and negative unemployment
gap means that unemployment rate is above the natural rate of unemployment.

20A similar loss function is considered in Surico (2007).

210nline Appendix 6 presents how to derive the approximated optimal policy rule under this specifi-
cation.

22The dynamics of unemployment gap is derived from the IS equation, in which the expected inflation
and unemployment gap are substituted by the linear combinations of their lags, with GARCH (1,1)
disturbances. See the details of the construction in Online Appendix 7.
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5 Conclusion

This paper analyzed how the conduct of U.S. monetary policy has changed since the late
1960s by simultaneously accounting for time-variation in policy parameters, heteroscedas-
tic disturbances, asymmetric preferences, and real-time data. Our findings show that the
evolution of monetary policy since the late 1960s has been rich in terms both of the re-
sponse to inflation and real activity, and of preferences. Specifically, the Fed behaved
like having asymmetric preferences, which induced an inflationary bias, in the pre-Volcker
period, but changed to symmetric preferences in the post-Volcker era. Regarding the
response to inflation, we found that it was strong only in the first half of the 1970s and
the 1980s. On the other hand, the response to real economic activity was found to be
weak in the 1980s. Overall, the estimated changes assign a nontrivial role of monetary
policy in economic performance.
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A Appendix

A.1 Forecasting the Contemporaneous Variance of Inflation

We detail the procedure to forecast the contemporaneous variance of inflation series as
follows:

Step 0, Initiation: We start with the 1965Q4 period, set ¢ ~» 1965(Q4.

Step 1, Estimation: Let I; be the information set at time ¢ which includes available
monthly inflation and the unemployment gap to the last month of the quarter ¢ — 1.
Given I;, Equation (4.1) is estimated with GARCH(1,1) errors.

Step 2, Forecast: Based on the estimated-GARCH process, we forecast the conditional
variances of inflation for the three months of quarter i. Take the average of those
forecasts and save it as 072”' I

Step 3, Termination: If i # 2007Q4, move to the next period i =i+ 1 and follow step

2. Otherwise, the procedure stops and we collect the expected variance of inflation
02, for i = 1965Q4, .., 2007Q4.

Table 1 report the means, the standard deviations and the correlation matrix of dif-
ferent estimates of the expected variance of inflation by applying the four-step procedure
outlined above. The measures are different in terms of the number of lags of inflation (n)
and the measure of output gap (y;) which are used in Equation (4.1).

Table 1: Summary Statistics for Forecasts of Inflation Variance: 1965Q4-2007Q4

MO M1 MQ M3 M4 M5
Means 0.102 0.100 0.104 0.102 0.099 0.098
Standard deviations 0.055 0.056 0.059 0.058 0.051 0.052

Correlation matrix

M, 1.000 0.994 0.993 0.991 0.992 0.988
M, 0.994 1.000 0.984 0.995 0.987 0.995
M, 0.993 0.985 1.000 0.993 0.978 0.973
M; 0.991 0.995 0.993 1.000 0.978 0.984
M, 0.992 0.987 0.978 0.978 1.000 0.994
M; 0.988 0.995 0.973 0.984 0.994 1.000

Notes: The measure M| is associated with three lags of inflation n = 3 and the output gap y; proxied
by the five-year moving average unemployment gap. For M, n = 6 and y; proxied by the five-year
moving average unemployment gap. For My, n = 3 and y; proxied by the historical average
unemployment gap. For M3, n = 6 and y; proxied by the historical average unemployment gap. For
My, n = 3 and y; proxied by the three-year moving average unemployment gap. Finally, for M5, n =6
and y; proxied by the three-year moving average unemployment gap.
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A.2 Estimates of Time-Invariant Parameters

The estimates of time-invariant parameters are presented in Table 2

Table 2: Means and Standard Deviations of Time-Invariant Parameters

Parameters Means Standard deviations

Tap —0.86 0.11
Oa, —2.22 0.08
Oay 0.63 0.11
Oas —2.23 0.14
Oay —1.10 0.07
Oag —1.28 0.08
Notes: The table presents the estimates of the time-invariant parameters of the state space system:
it : 11 + exp(~ds.) (ao,e + a1 474t + ag 1021+ as tYe|e) + exp(as,t)et,
1+exp(—ase) ’ At ' ’

1 + exp(—as,t)
Akt = Gkt—1 + €Xp(0q, )ear,ts K =0,1,...,5.
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