
Verification of Policies in Human Cyber-Physical
Systems: the Role and Importance of Resilience

Antonios Gouglidis
School of Computing and Communications

Lancaster University
Lancaster, United Kingdom
a.gouglidis@lancaster.ac.uk

David Hutchison
School of Computing and Communications

Lancaster University
Lancaster, United Kingdom
d.hutchison@lancaster.ac.uk

Abstract—Cyber-physical systems (CPS) are characterised by
interactions of physical and computational components. A CPS
also interacts with its operational environment, and thus with
other entities including humans. Humans are an important aspect
of human CPS (HCPS) since they are responsible for using
(e.g., administering) these types of system. Such interactions are
usually expressed though access control policies, which in many
cases (e.g., when performing critical operations) are required to
support the property of resilience to cope with challenges to the
normal operation of the HCPS. In this paper, we pinpoint the
importance of resilience as a property in access control policies
and we describe a mechanism to conduct its formal verification.
Finally, we identify potential future directions in the verification
of access control properties, complementary to resilience.

Index Terms—access control, autonomy, model checking, pol-
icy, resilience, security, verification

I. INTRODUCTION

Cyber-physical systems (CPS) are gaining considerable at-
tention, now more than ever before, as the result of several
advancements in engineering and sciences. Although there
is an abundance of definitions for CPS, they all appear to
converge to a single definition which states that a CPS is a
network of both physical and computational components, co-
engineered to interact together [1]. Examples of new technolo-
gies often classified as CPS are the Internet of Things (IoT),
Industrial Internet, Smart Cities, etc. A CPS also interacts
with its operational environment, and thus with other entities
including, crucially, humans. Humans are usually part of
such an environment since they are required to control a
CPS, consume its output, and so on. We call these extended
interactions between a human CPS (HCPS). Although there
are several aspects that can be investigated, in this paper we
are mainly interested in the concepts of access control policies
and resilience since they are both considered to be of vital
importance in the design of a HCPS [1].

The importance of access control in HCPS led to research in
several directions, one of them being the investigation of prop-
erties related to the security offered by policies, e.g., secure
inter-operation [2]. However, little attention has been paid to
resilience as a property in access control policies. Resilience

The research presented in this paper is sponsored by the UK Engineering
and Physical Sciences Research Council (EPSRC) via grant agreement no.
EP/L020009/1: Towards Ultimate Convergence of All Networks (TOUCAN).

in access control is conceived as the ability of a system not
to restrict, but to enable access to resources [3]. Most of the
research work in this context is initiated around the ’resiliency
checking problem’, which examines whether a given resilience
policy is satisfied by an access control state. This problem has
been investigated from a generic point of view [3], and thus the
proposed approaches are agnostic to the actual types of policy
implemented by an underlying model. Additional research on
the resiliency checking problem was performed to investigate
the time complexity introduced by the various parameters used
in it [4]. Moreover, the ’resiliency checking problem’ is shown
to have a connection with the ’work-flow satisfiability problem’
in [5], with the latter being investigated extensively in the
literature, e.g., in [6]–[8] among others. Further information
on work-flow management systems and on how to model and
enforce resilience policies is available in [9], [10].

The aim of this paper is to present a technique for the
verification of resilience policies in a HCPS. To achieve
this, we describe an automated technique for conducting
formal verification (i.e., model checking) and elaborate on the
verification of resilience policies, which we have previously
presented in [11]. Furthermore, we provide a list of potential
future directions, which indicate the need for investigating
multiple properties, the definition of strategies to resolve
conflicts among properties, and finally, the need to conduct
additional checks to ensure completeness with regards to
property verification.

II. FORMAL VERIFICATION

In this section, we provide brief information on model
checking, which is a formal verification technique. Formal
verification considers the use of applied mathematics for
modelling and analysing systems, and its aim is to ensure
the correctness of a system with mathematical rigour. Specif-
ically, in model-based verification techniques, such as model
checking, the possible states of a system are described through
a transition system (TS). A set of specifications is also
defined on the basis of linear-time properties. Model checking
conducts an exhaustive exploration of all the possible states
of a system, and checks whether the defined properties hold
for a given state in the model [12].

Linear-time properties are usually classified into ’safety’ and
’liveness’ properties. Safety properties can be characterised as
’nothing bad should happen’ and liveness as ’something bad
never happens’. A ’bad’ situation is an undesirable state of the
system – assuming a Smart City scenario with ’smart’ traffic
lights, a ’bad’ situation is when the red, amber, and green
lights are all on or all off. On the contrary, liveness properties
require some progress – they are interpreted as ’something
good will happen’ in the future [12].

The use of temporal logic, apart from providing a language
for the property specification of policies, will eventually under-
pin the mathematical foundation used to formally verify access
control policies. This requires the definition of a language for
expressing polices and a TS able to describe the behaviour
of the access control model, and thus for properties to be
verifiable for the model.

We consider AP to be a set of atomic propositions (e.g.,
with α, β, . . . elements of AP). The set of propositional logic
formulae over AP is inductively defined as:
• true is a formula;
• Any atomic proposition, which is element of AP is a

formula;
• If Φ, Φ1 and Φ2 are formulae, then are (¬Φ) and (Φ1 ∧

Φ2);
• Nothing else is a formula.
We say that the conjunction operator ∧ binds stronger

than the derived binary operators, such as that of disjunction,
implication, etc. Specifically, we define the former two as in
the following: Φ1 ∨ Φ2 := ¬(¬Φ1 ∧ ¬Φ2) and Φ1 → Φ2 :=
¬Φ1 ∨ Φ2, respectively. The → means ‘imply’.

We also assume the following notation regarding the as-
sociativity and commutativity law for disjunction and con-
junction:

∧
1≤i≤n Φi for Φ1 ∧ . . . ∧ Φn and

∨
1≤i≤n Φi for

Φ1 ∨ . . . ∨ Φn. If I = ∅, then
∧

i∈∅ Φi := true and∨
i∈∅ Φi := false.
Then, we consider the evaluation of atomic propositions.

This is done by assigning a truth value to each of them, i.e.,
a function µ : AP → {0, 1}, where 0 is false and 1 is true.
The → means ‘maps to’. Therefore, a satisfaction relation |=
indicates the evaluations µ for which a formula Φ is true.
Formally, it is written as:
• µ |= true
• µ |= α ⇐⇒ µ(α) = 1
• µ |= ¬Φ ⇐⇒ µ 2 Φ
• µ |= Φ ∧Ψ ⇐⇒ µ |= Φ and µ |= Ψ

Further on, we define the access control rule, the access
control property, and the transition system of an access control
model. Here we use the Computation Tree Logic (CTL)
in order to specify policy properties. Linear-time Temporal
Logic (LTL) could alternatively be used since we do not take
advantage of the different expression level of neither CTL or
LTL in our defined properties [13].

With regard to CTL, the prefixed path quantifiers assert
arbitrary combinations of linear-time operators. Hence, we use
the universal path quantifier ∀ that means ‘for all paths’, and

the linear temporal operators � and ♦ that mean ‘always’ and
‘eventually’, respectively. Furthermore, we use the temporal
modalities ∀�Φ representing invariantly Φ, and ∀♦Φ repre-
senting inevitably Φ, where Φ is a state formula.

Definition 1: An access control rule is an implication of
type ‘c → d’, where constraint c is a predicate expression,
which when true implies the permission decision d. The →
means ‘imply’.

Definition 2: An access control property p is an implication
formula of type ‘b → d’, where the result of the access
permission d depends on quantified predicate b.

Definition 3: A transition system TS is a tuple (S,
Act, δ, i0) where
• S is a set of states, e.g., S = {Permit,Deny};
• Act is a set of actions;
• δ is a transition relation where δ : S ×Act→ S;
• i0 ∈ S is the initial state.
The p in Definition 2 is expressed by the proposition p :

S ×Act2 → S of TS, which can be collectively translated in
terms of logical formula.

The behaviour of the system is defined by the access control
rules, and they function as the transition relation δ in TS.
Thus, by representing an access control property using the
temporal logic formula p, we can assert that model TS satisfies
p by TS � ∀�(b → ∀♦d). Property ∀�(b → ∀♦d) is a
response pattern such that d responds to b globally (b is the
cause and d is the effect) [14].

III. VERIFICATION OF RESILIENCE

Based on the theory provided in the previous section,
resilience can be characterised as a ’safety’ property of a
system. In this section, we elaborate on the notion of resilience
policies, and discuss how this could be interpreted in the
context of an access control model. Resilience policies are
defined in [3]. Specifically, a resilience policy is defined as
the tuple of ResiliencePolicy〈P, s, d, t〉, where P is the set
of permissions, s ≥ 0, d ≥ 1 and t ∈ N+ or t =∞. Thus, a
resilience policy is satisfied in an access control state ‘if and
only if upon removal of any set of s users, there still exist
d mutually disjoint sets of users such that each set contains
no more than t users and the users in each set together are
authorised for all permissions in P’ [3]. The construction
of a resilience policy is also known in the literature as the
‘resiliency checking problem’ [4], [3]. Specifically, given a
resilience policy tuple ResiliencePolicy〈P, s, d, t〉 the solu-
tion provides an answer to the existence of binary relation
between users U and permissions P , i.e., UP ⊆ U × P [3],
or between users U and their authorised resources R, i.e.,
UR ⊆ U × R [4]. In general, permissions are considered to
be operations on objects. Assuming a system that operates in a
critical infrastructure, we may have the following operations of
a CPS device: ‘monitor screen’, ‘start system’, ‘stop system’,
‘disable alarm’, and ‘change set points’, and thus we set P =
{Supervisor, Manager}. Given P , we may have the following
values for the rest of the resilience policy parameters: s = 1,
d = 1, and t = 1. Specifically, s = 1 indicates that we want

Fig. 1. Example of a resilience policy

the policy to be resilient to the absence of any (one) user,
d = 1 indicates that we require one set of users such that
users in that set together possess all permissions; and, t = 1
since there is a single user that has all the permissions [3].

The definition of a resilience policy requires initially a
careful definition of the different critical tasks in a HCPS
and subsequently identification of the main users and assigned
permissions required to successfully complete these tasks. As
mentioned already, this process can be performed during the
early stages of the design of a system. Nevertheless, users
and policies may change in a system, i.e., certain policies
may be altered, deleted or new policies may be introduced.
Therefore, these operations may introduce disruptions in an
already existing resilience policy. Designing these policies
from scratch may not be a viable solution, especially in
the context of a HCPS, where systems must operate in an
uninterrupted manner. Hence, administrators or operators in
such environments may require to verify at any time the re-
silience offered by the active set of policies in their operational
environment. Such an approach may also lead to reducing the
overall complexity imposed by solving the resiliency checking
problem from scratch.

In Fig. 1, we consider an attribute-based access control
model (ABAC) as defined in [11] to provide an example
of a resilience policy. We also consider a critical task T in
a HCPS. In order to successfully accomplish the critical
task, the users have to be collaboratively authorised for all
three attributes. In this example, we consider two groups of
users, where the first group includes the following users and
assigned attributes: User1 × {Attribute1, Attribute2},
User2 × {Attribute1, Attribute3}, User3 ×
{Attribute2, Attribute3}; and the second group includes
the following users and attributes: User4 × {Attribute1,
Attribute2}, User5 × {Attribute2, Attribute3}. In the
context of an industrial control system, the above attributes
could be equivalent with: Attribute1 ≡ (monitor a device),
Attribute2 ≡ (start or stop a device), and Attribute3 ≡
(maintain a device). Thus, in case of a device malfunction,
operators (i.e., users of the HCPS) shall be in position to
monitor and acknowledge the problem, stop the faulty device,
maintain the device, and finally, start the device.

Therefore, assuming the response property pattern defined

in Section II, we can define resilience specifications and check
their satisfiability using formula 1.

TS � ∀�
(∧

1≤i≤n

!subn
∧

0≤i≤m

attrm∧
1≤i≤k

!subk → ∀♦Deny
) (1)

where TS is the resilience ABAC policy transition system,
subn, subk are subjects (e.g., users) of a system, subn 6= subk,
{subn}×{attrm} ∈ Act, and Deny ∈ S is the permission de-
cision. In relation to the resilience policy tuple, i.e., 〈P, s, d, t〉,
subn is mapped onto the set of users s that are considered to
be absent; attrm refers to the attributes assigned with a user
s and represent permissions required to perform a task; and,
subk refer to the mutual disjoint set of users expressed by
d. The t parameter can be introduced implicitly by adding
specifications following formula 1.

IV. FUTURE DIRECTIONS

Although resilience is undoubtedly an important property
of access control policies, it is one of several that have to
be ensured in a HCPS access control policy. In case the
HCPS is a collaborative system, it may also be required to
verify properties as secure inter-operation [2]. Secure inter-
operation in collaborative systems is required for secure col-
laboration among participating parties such that the principles
of autonomy and security can be guaranteed. The principle
of autonomy states that if an access is permitted by an
individual system, it must also be permitted under secure inter-
operation. The principle of security states that if an access
is denied by an individual system, it must also be denied
under secure inter-operation. From the above definitions it is
obvious that conflicts may occur when trying to ensure both
security and autonomy at the same time. Furthermore, when
considering additional properties such as resilience, further
conflicts may arise. Therefore, it is evident that although the
verification of the individual properties may not raise any
concerns, ensuring multiple properties may be problematic.
Thus, conflict resolution strategies should be investigated to
resolve potential conflicts. Nevertheless, these strategies may
vary depending on the type of process or service offered by
the HCPS.

All properties mentioned above are characterised as ’safety’
ones. This implies that verifying their absence will ensure that
nothing bad should happen. However, it is also important to
investigate ’liveness’ properties in HCPS. These are properties
that complement ’safety’ ones and require some progress,
i.e., properties that are violated in infinite time [12]. To the
best of our knowledge, liveness properties are not investigated
adequately in HCPS access control policies.

Finally, coverage and confinement are considered to be
important aspects of verification. The formal verification of
’safety’ or ’liveness’ results in ensuring the logic integrity
of the access control policies against them. Nevertheless, for
reasons of completeness, the policies should be verified against

coverage and confinement faults as well [15]. With regard to
coverage, mutated models of the original model should be
checked. The mutated models will include changes in the logic
of policies, i.e., a rule r will change from ‘c→ d’ to ‘c→ ¬d’.
If the ’safety’ or ’liveness’ properties are satisfied against both
the original and the mutated models, then this is an indication
that the verified properties do not cover all the policies in the
defined model. With regard to confinement, the model should
be verified against an extended set of ’safety’ or ’liveness’ that
may include negative expressions of existing specifications,
i.e., specifications of the form ∀�(b → ∀♦d) will have to
change in ¬∀�(b → ∀♦¬d). Confinement checking should
discover the discrepancy of the specified ’safety’ or ’liveness’
properties and the ’safety’ or ’liveness’ properties the access
control policy author intend. The rationale is that if the model
does not satisfy the modified specifications, then there are
access permissions that may leak through the ’safety’ or
’liveness’ properties [15].

V. CONCLUSION

Human CPS may be considered to be an extension of
CPS. These systems are known to underpin technologies such
as the Internet of Things which are becoming increasingly
important in critical infrastructures, on which our society
depends. In that context, resilience is a concept of vital
importance. To introduce resilience by design in access control
policies, we described a formal verification technique that may
facilitate its adoption. Existing toolchains described in [2],
[11], [15] may be used to implement the approach described
in this paper. Finally, we provided three main future directions
when considering the verification of properties in HCPS, and
we anticipate these directions to provide interesting multi-
disciplinary insights in both industry and academia, and to
stimulate further research in this important field of study.

REFERENCES

[1] NIST, “Framework for cyber-physical systems,” Cyber Physical Systems
Public Working Group, 2016. [Online]. Available: https://goo.gl/FcL1rZ

[2] A. Gouglidis, I. Mavridis, and V. C. Hu, “Security policy verification for
multi-domains in cloud systems,” International Journal of Information
Security, vol. 13, no. 2, pp. 97–111, 2014.

[3] N. Li, Q. Wang, and M. Tripunitara, “Resiliency policies in access con-
trol,” ACM Transactions on Information and System Security (TISSEC),
vol. 12, no. 4, p. 20, 2009.

[4] J. Crampton, G. Gutin, S. Pérennes, and R. Watrigant, “A multivariate
approach for checking resiliency in access control,” arXiv preprint
arXiv:1604.01550, 2016.

[5] J. Crampton, G. Gutin, and R. Watrigant, “Resiliency policies in access
control revisited,” in Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies. ACM, 2016, pp. 101–111.

[6] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones, “Iterative
plan construction for the workflow satisfiability problem,” Journal of
Artificial Intelligence Research, vol. 51, pp. 555–577, 2014.

[7] J. Crampton, G. Gutin, and D. Karapetyan, “Valued workflow satisfia-
bility problem,” in Proceedings of the 20th ACM Symposium on Access
Control Models and Technologies. ACM, 2015, pp. 3–13.

[8] Q. Wang and N. Li, “Satisfiability and resiliency in workflow authoriza-
tion systems,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 4, p. 40, 2010.

[9] V. Atluri and J. Warner, “Supporting conditional delegation in secure
workflow management systems,” in Proceedings of the tenth ACM
symposium on Access control models and technologies. ACM, 2005,
pp. 49–58.

[10] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement
of authorization constraints in workflow management systems,” ACM
Transactions on Information and System Security (TISSEC), vol. 2, no. 1,
pp. 65–104, 1999.

[11] A. Gouglidis, V. C. Hu, J. S. Busby, and D. Hutchison, “Verification
of resilience policies that assist attribute based access control,” in
Proceedings of the 2nd ACM Workshop on Attribute-Based Access
Control. ACM, 2017, pp. 43–52.

[12] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

[13] R. B. Krug, “CTL vs. LTL,” Presentation, May 2010. [Online].
Available: http://www.cs.utexas.edu/users/moore/acl2/seminar/2010.05-
19-krug/slides.pdf

[14] SAnToS Laboraroty, “Specification patterns, Responce
property pattern,” 2012. [Online]. Available:
http://patterns.projects.cis.ksu.edu/documentation/patterns/response.shtml

[15] V. C. Hu, R. Kuhn, and D. Yaga, “Verification and test methods for
access control policies/models,” NIST Special Publication, vol. 800, p.
192, 2017.

