
Statistica Sinica 28 (2018), 1821-1838
doi:https://doi.org/10.5705/ss.202016.0526

OPTIMAL DESIGN WHEN OUTCOME VALUES

ARE NOT MISSING AT RANDOM

Kim May Lee, Robin Mitra and Stefanie Biedermann

University of Southampton

Abstract: The presence of missing values complicates statistical analyses. In de-

sign of experiments, missing values are particularly problematic when constructing

optimal designs, as it is not known which values are missing at the design stage.

When data are missing at random it is possible to incorporate this information into

the optimality criterion that is used to find designs; Imhof, Song and Wong (2002)

develop such a framework. However, when data are not missing at random this

framework can lead to inefficient designs. We investigate and address the specific

challenges that not missing at random values present when finding optimal designs

for linear regression models. We show that the optimality criteria depend on model

parameters that traditionally do not affect the design, such as regression coefficients

and the residual variance. We also develop a framework that improves efficiency of

designs over those found when values are missing at random.
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model, missing observations, not missing at random, optimal design.

1. Introduction

Missing values are a common problem in many fields. Their presence com-

plicates statistical analysis, and appropriate methods are required to handle the

missing data to ensure valid inferences. There is a wide variety of techniques

to handle missing values once the data are observed, but the objective in this

paper is to focus on handling the missing data problem at the design stage of an

experiment. By incorporating information about the missing data mechanism we

may be able to design a more efficient experiment that allows more information

to be obtained from the data collected.

There has been work on finding optimal designs for experiments with po-

tentially missing. The majority of the contributions is concerned with robust-

ness of designs to missing values; see for example Hedayat and John (1974),

Ghosh (1979), Ortega-Azurduy, Tan and Berger (2008), and Ahmad and Gilmour

(2010). Herzberg and Andrews (1976) and Hackl (1995) introduce design criteria

https://doi.org/10.5705/ss.202016.0526


1822 LEE, MITRA AND BIEDERMANN

that account for the presence of missing responses for some special cases. Imhof,

Song and Wong (2002) develop a framework that finds optimal designs by taking

the expectation of the information matrix with respect to the missing data mech-

anism; this has been extended by Lee, Biedermann and Mitra (2017) to improve

the approximation of the covariance matrix.

These contributions to optimal design implicitly assume that the data are

missing at random, that the missing data mechanism depends on only observed

variables. This is referred to as a missing at random (MAR), Rubin (1976). If it is

assumed that the missing data mechanism depends on unobserved variables, such

as the missing values themselves, Rubin (1976) referred to this as not missing

at random (NMAR). Typically NMAR problems are much more challenging to

handle, as learning about the exact form of the NMAR mechanism is not typically

possible, and thus often leads to biased inferences.

To our knowledge there has not been any explicit consideration of dealing

with NMAR when finding optimal designs. This article intends to address the

specific problems that NMAR causes in optimal design. We mean to extend

the framework of Imhof, Song and Wong (2002) to incorporate the possibility of

NMAR, using an approximation to the bias. By doing so we can mitigate the

problems caused by NMAR and find more efficient designs.

We assume that inferences stem from a linear regression model once the

experiment has been performed, and we deal with the missing data using the

complete cases. Complete case analysis is a widely used strategy. In the context

of regression analysis, complete case analysis can be appropriate when the missing

mechanism is MAR (Little (1992)). Under NMAR there are obvious problems

that can occur and these will be noted and mitigated is our optimal design

framework.

The remainder of the article is organised as follows. Section 2 presents some

background for the key elements of missing data and optimal design. Section 3

motivates the problems NMAR causes in optimal design. Section 4 presents an

optimal design framework that takes NMAR into account, and compares how

it relates to the traditional MAR framework. Section 5 empirically evaluates

the proposed framework to determine the benefits of using this approach. Sec-

tion 6 evaluates our methodology in a data scenario. Section 7 ends with some

concluding remarks.



OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NMAR 1823

2. Background

We review the relevant background for dealing with missing data, then

present the key concepts in constructing optimal designs when a linear regression

analysis model is used, and we review how the potential for missing data can be

taken into account when finding optimal designs.

2.1. Missing data

Let xi, i = 1, . . . , n, represent a set of explanatory variables for unit i in

the experiment, and let yi be the outcome for unit i once the experiment is

performed. We assume that inferences are drawn by fitting a linear regression

model to the data of the form,

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn), X is the design matrix, β is the vector of regression

coefficients and ε ∼ N(0, σ2I) is the error vector with residual variance σ2. We

define a missing indicator, mi, for each unit i; mi = 1 if yi is missing and mi = 0

otherwise. We write ymis = {yi : mi = 1} and yobs = {yi : mi = 0} as the missing

and observed outcomes, respectively. Typically, inference on β is made using the

joint likelihood for (yi,mi). This can be expressed as

p(mi|xi, yi,γ)p(yi|xi,β), (2.2)

known as the selection model framework (Little and Rubin (2002)), where the

vector γ represents parameters characterising the model for mi, also known as the

missing data mechanism. We implicitly assume in this model that the parameters

γ and β are distinct. Under MAR, p(mi|xi, yi,γ) = p(mi|xi,γ), and one sees

that (2.2) factorises, so that inferences concerning β can be made using only

p(yi|xi,β). Here we assume the analyst will base inferences on the complete

cases, those units where mi = 0. Under MAR, estimates for β are unbiased

(Little (1992)). In this paper, we assume that the missing mechanism can be

modelled using a logit link function. Specifically, under MAR,

p(mi = 1|xi,γ) =
exp(x′iγ)

1 + exp(x′iγ)
. (2.3)

We denote the expression in (2.3) by P (xi) for short, indicating that it is

explicitly dependent on values of xi. A corresponding NMAR mechanism, which

incorporates the (potentially missing) values of the response variable and includes

(2.3) as a special case, is proposed in Section 3.

If the missing mechanism is NMAR, then estimates for β, based only on
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p(yi|xi,β), are biased (including those obtained using a complete case analysis).

The presence of NMAR is an untestable assumption, and if it exists there is

currently little that can be done to adjust for this, beyond assessing sensitivity of

the results to different NMAR mechanisms (Little and Rubin (2002)). In Section

4 we propose a strategy that mitigates the effect NMAR has in finding designs

and estimating regression coefficients.

2.2. Optimal design

In experimental design the goal is to choose values of xi that optimise a rel-

evant criterion to obtain maximum information from the experiment. Typically,

the optimality criterion minimises a function of the covariance matrix of the es-

timators. We take the estimate of β to be β̂ = (XTX)−1XTy, with covariance

matrix

var(β̂) = σ2(XTX)−1.

We consider designs of the form

ξ =

{
x∗1, . . . , x∗m
w1, . . . , wm

}
, 0 < wi ≤ 1,

m∑
i=1

wi = 1,

where x∗1, . . . ,x
∗
m (m ≤ n) are the distinct values of the explanatory variables,

referred to as the support points of the design, and the weights w1, . . . , wm are the

relative proportions of observations taken at the corresponding support points

x∗i , i = 1, . . . ,m.

This approach avoids the problem of discrete optimisation and is thus widely

used in finding optimal designs for experiments. Since nwi, i = 1, . . . ,m, are not

necessarily integer valued, a rounding procedure is applied; see, for example,

Pukelsheim and Rieder (1992).

For an approximate design ξ, the Fisher information matrix for model (2.1)

is

M(ξ) =

m∑
i=1

f(x∗i )f
T (x∗i ) wi

where the vector fT (x∗i ) is a row in the design matrix X corresponding to x∗i ,

and its inverse, M−1(ξ), is proportional to var(β̂).

We consider two optimality criteria: D-optimality: Minimise |M−1(ξ)|; A-

optimality: Minimise trace (M−1(ξ)).

2.3. Optimal design for missing values

When certain values yi may be missing we can take account of this through
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the missing data mechanism. Assuming MAR, the Fisher information matrix

containing the missing data indicators M = {m1,m2, . . . ,mn} is given, say, by

M(ξ,M) and we have

E[M(ξ,M)] = E

{
n∑
i=1

f(xi)f
T (xi) (1−mi)

}

=

n∑
i=1

f(xi)f
T (xi){1− P (xi)}

= n

m∑
i=1

f(x∗i )f
T (x∗i ) wi{1− P (x∗i )} (2.4)

which is equivalent to M(ξ) if the responses are fully observed. Imhof, Song

and Wong (2002) proposed a general framework where M(ξ) is replaced by (2.4)

in the respective optimality criterion. This assumes that E[{M(ξ,M)}−1] is

proportional to E{var(β̂|M)}, and may result in a crude approximation to

the covariance matrix, in particular for small to moderate sample sizes. Lee,

Biedermann and Mitra (2017) develop an improved approximation by considering

the expectation of a 2nd order Taylor expansion of {M(ξ,M)}−1 which also

results in better designs. For large sample sizes, however, the two approaches

generate similar designs.

These approaches are implicitly based on assuming MAR. If the potential for

NMAR exists then this framework may lead to inefficient designs, with biased

estimates. We first look to determine what effect NMAR might have on the

performance of designs found assuming MAR holds, then consider how to best

address the problem of NMAR in Section 4. In Sections 5 and 6 we present

results that incorporate our findings from Section 4 to find designs and evaluate

performance.

3. Effect of NMAR on Optimal Designs

If we have NMAR when constructing optimal designs then our missing data

mechanism implicitly depends on the outcome variable. We consider one such

situation and modify the missing data mechanism in (2.3) to

p(mi = 1|xi, yi,γ) =
exp(x′iγ + δyi)

1 + exp(x′iγ + δyi)
(3.1)

for i = 1, . . . , n.

We now illustrate what effect, if any, NMAR might have in the construction

of optimal designs and their resulting performance. We focus on the simple linear
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regression model for the design region X = [0, u] for some value 0 < u < ∞. As

such we treat the model

yi = β0 + β1xi + εi, εi ∼ N(0, σ2) (3.2)

for i = 1, . . . , n. Without loss of generality we assume δ = 1 which gives us the

missing data mechanism as

p(mi = 1|xi, yi, γ0, γ1) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)
. (3.3)

From (3.2) and (3.3) it is clear that our design depends on the regression coeffi-

cients β0 and β1. This can be seen by re-expressing (3.3) as

p(mi = 1|xi, yi, γ0, γ1) =
exp(γ∗0 + γ∗1xi + εi)

1 + exp(γ∗0 + γ∗1xi + εi)
(3.4)

where γ∗0 = γ0 + β0 and γ∗1 = γ1 + β1. We assume that designs are constructed

under some known fixed values of β0 and β1. Knowing these values is unrealistic,

finding their values is the goal of the experiment. It may be possible that the

analyst has some prior information about likely values of β0 and β1 that can be

used. The resultant designs will be locally optimal. This is a specific complication

that arises due to NMAR.

It is not clear what effect, if any, σ2 has on the efficiency of the design. As εi
has zero mean, it may be the case that this term does not influence the design,

but the larger the value of σ2 the greater the uncertainty about the expected

amount of missing data at any given point xi within the design region X. This

might influence what design we choose.

Let u = 2, so the design space is X = [0, 2] in what follows. We first find the

optimal two-point designs, underD- andA- optimality, assuming (γ0, γ1, β0, β1) =

(−5.572, 2.191, 1, 1) and σ2 = 0. This is equivalent to setting εi = 0 in (3.4) and

assumes a MAR mechanism with parameters (γ∗0 , γ
∗
1) = (−4.572, 3.191). With

these values we find the probability of missing at the end points of the design

space, 0 and 2, are 0.01 and 0.859 respectively and is monotone increasing over

the space. Thus the potential for missing data is not too extreme at any point in

the design space, but allowing the potential for missing data to have an impact on

the performance of any given design. When the missing mechanism is monotone

increasing, Lee, Biedermann and Mitra (2017) show that the lower bound of the

design space is always one of the support points in an optimal design. Thus in

a two-point design it suffices to find the second support point, x∗2 and its weight

w2, as w1 = 1 − w2. Using the fmincon function in Matlab, we find an optimal

design of {x∗1, x∗2;w1, w2} = {0, 1.3766; 0.5, 0.5} under the D-optimality criterion
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Table 1. Simulation outputs of A- and D-optimal designs across 100,000 simulated data
sets under different missing data mechanisms.

under NMAR under MAR
σ = 0.5 σ = 1 σ = 1.5 σ = 0.5 σ = 1 σ = 1.5

A-optimal design, {x∗1, x∗2;n1, n2} = {0, 1.5147; 33, 27}
bias of β̂0 −0.00303 −0.0163 −0.0555 −7.82×10−5 −2.34×10−4 −3.91×10−4

bias of β̂1 −0.0855 −0.292 −0.538 2.56×10−4 7.69×10−4 0.00128

mse of β̂0 0.00765 0.0306 0.0701 0.00191 0.0172 0.0478

mse of β̂1 0.0198 0.130 0.379 0.00327 0.0294 0.0817
tr(mse) 0.0275 0.161 0.449 0.00518 0.0466 0.130
|mse| 1.29×10−4 0.00374 0.0263 4.65×10−6 3.77×10−4 0.00291

var(β̂0) 0.00764 0.0303 0.0670 0.00191 0.0172 0.0478

var(β̂1) 0.0125 0.0447 0.0891 0.00327 0.0294 0.0817

tr(var(β̂)) 0.0201 0.0750 0.156 0.00518 0.0466 0.130

|var(β̂)| 7.01×10−5 9.53×10−4 0.00401 4.65×10−6 3.77×10−4 0.00291

D-optimal design, {x∗1, x∗2;n1, n2} = {0, 1.3766; 30, 30}
bias of β̂0 −0.00312 −0.0165 −0.0559 −1.26×10−4 −3.79×10−4 −6.31×10−4

bias of β̂1 −0.0761 −0.266 −0.501 2.43×10−4 7.29×10−4 0.00121

mse of β̂0 0.00840 0.0335 0.0766 0.00210 0.0189 0.0525

mse of β̂1 0.0180 0.116 0.345 0.00317 0.0285 0.0793
tr(mse) 0.0264 0.150 0.422 0.00527 0.0475 0.132
|mse| 1.17×10−4 0.00351 0.0258 4.37×10−6 3.54×10−4 0.00273

var(β̂0) 0.00839 0.0333 0.0735 0.00210 0.0189 0.0525

var(β̂1) 0.0123 0.0456 0.0945 0.00317 0.0285 0.0793

tr(var(β̂)) 0.0206 0.0789 0.168 0.00527 0.0475 0.132

|var(β̂)| 6.59×10−5 9.36×10−4 0.00410 4.37×10−6 3.54×10−4 0.00273

and {x∗1, x∗2;w1, w2} = {0, 1.5147; 0.546, 0.454} under the A-optimality criterion.

For each optimal design, we then simulated n = 60 (where n1 = nw1 and

n2 = nw2 with integer rounding if necessary) observations from (3.2) using the

support points, the values of β0, β1 above, and under different σ2. Some out-

come were missing using (3.3) with the values of these γ0, γ1, as well as the

simulated yi values. Estimates of β0, β1 were obtained using the complete case

data. This process was repeated 100,000 times to obtain measures of bias and

mean squared error for β0 and β1. We also found the determinant and trace of

the variance-covariance and mean squared error matrix that correspond to the

objective functions we sought to minimise under D- and A-optimality.

Table 1 presents the performance of the two optimal designs under different

missing data mechanisms and different values of σ2. The outputs under NMAR

correspond to the situations where εi in (3.4) has the corresponding σ2 whereas

those under MAR correspond to the situations where εi in (3.4) has σ2 = 0. In all

cases, the responses were simulated with the corresponding values of σ2. We see
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Figure 1. Mean squared error and bias of the estimates that were computed using the
A- and the D-optimal design in the presence of NMAR mechanisms.

that the bias and the mean squared error increase as σ2 increases. Comparing the

two scenarios for the same σ2, the estimates obtained in the presence of a NMAR

mechanism have more bias and larger mean squared errors than those obtained

in the presence of the MAR mechanism. We also find a similar profile for the

determinant and trace of the covariance and the mean squared error matrix.

Focusing on the bias and the mean squared error of the estimates in the

presence of a NMAR mechanism, in Figure 1 we plot how this varies with different

values of σ2 under the D- and A- optimal designs found above. The mean squared

error of each estimate increases with the values of σ2 and the estimates are biased

downward when σ2 is large. Thus σ2 plays a role in affecting the performance

of any design under NMAR. In the next section we investigate how we can take

account of the effect of σ2 in constructing optimal designs.
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4. Optimal Design under NMAR

We first provide intuition behind why new theory needs to be developed in

constructing optimal designs when NMAR is present, then present details con-

cerning our investigation into approximating the missing indicator probability,

and consider broadening the framework to include bias into the optimality crite-

rion.

4.1 Incorporating NMAR into the design framework

When missing data are present, we seek to minimise a function of E[{M(ξ,

M)}−1] as this can be viewed as a surrogate for minimising the corresponding

function of E{var(β̂|M)}. Evaluating this expectation is not straightforward

and must be approximated. Imhof, Song and Wong (2002) approximate it by

[E{M(ξ,M)}]−1, while Lee, Biedermann and Mitra (2017) first take a 2nd

order Taylor expansion of {M(ξ,M)}−1 and then take the expectation.

Regardless, both approaches assume MAR, and the expectations involve tak-

ing expectations of the missing data indicators E(mi) = P (xi) that are then

components of the resulting optimality criterion. To account for NMAR when

finding optimal designs, we use P (xi, yi), where P (xi, yi) = E(mi|xi, yi) is now

random.

To proceed, we replace P (xi, yi) with its expected value E{P (xi, yi)} where

the expectation is taken with respect to yi. This expectation is not typically

available in closed form and we investigate ways to approximate it in Section 4.2.

A key consideration is the potential for bias. When NMAR is present, esti-

mates are likely to be biased as is evident from the results in Section 3. Optimal

design criteria then must incorporate bias, or some approximation to it, to find

designs with small MSE. This is discussed in more detail in Section 4.3.

4.2 Evaluating the expectation of P (xi, yi)

To evaluate the expectation of P (xi, yi) we consider the specific example of

the NMAR mechanism (3.3) introduced in Section 3. In principle, the approach

would work with any appropriate NMAR missing data mechanism. We can write

P (xi, yi) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)
=

exp(zi)

1 + exp(zi)
(4.1)

where zi ∼ N(γ0 + β0 + (γ1 + β1)xi, σ
2). Thus exp(zi) has a Log-normal distri-

bution with parameters given by the mean and variance of zi, and P (xi, yi) =

exp(zi)/{1 + exp(zi)} has a logit-normal distribution with parameters given by
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the mean and variance of zi. As the mean of the logit normal distribution is

not available in closed form, we consider approximating the expected value of

P (xi, yi).

The simplest approach replaces zi with its expected value in (4.1),

E{P (xi, yi)} ≈
exp{E(zi)}

1 + exp{E(zi)}
. (4.2)

This is equivalent to the naive approach of finding an optimal design in Section

3 which assumes MAR, and we see that it does not perform well.

An improved approximation uses the fact that E{exp(zi)} = exp(γ0 + β0 +

(γ1 + β1)xi + σ2/2), and taking a first order Taylor expansion of P (xi, yi) as a

function of exp(zi) about the mean of exp(zi),

E{P (xi, yi)} ≈
E{exp(zi)}

1 + E{exp(zi)}
=

exp(γ0 + β0 + (γ1 + β1)xi + σ2/2)

1 + exp(γ0 + β0 + (γ1 + β1)xi + σ2/2)
, (4.3)

We also consider approximating the expectation of P (xi, yi) using numerical

methods. Write P (xi, yi) = ti for simplicity, we use the function integral in

Matlab to evaluate

E

{
exp(zi)

1 + exp(zi)

}
= E(ti) =

∫ 1

0
ti

1

σ
√

2π

1

ti(1− ti)
e−{logit(ti)−µi}2/2σ2

dti. (4.4)

We conducted simulation studies to empirically evaluate the performance of

these methods for approximating E{P (xi, yi)}. We generated data that followed

a specific logit normal distribution, with parameters µ and σ, and computed the

estimated mean of this distribution using the different approximations. This was

repeated many times and estimates from the different methods were averaged

over the replications and compared to the “true mean” obtained empirically by

averaging the sample mean of observations over the replications. This process

was then repeated for a range of different values of µ and σ. Our simulation

studies showed that approximations from (4.2) and (4.3) performed poorly com-

pared to (4.4). The approximation given by (4.4) gives us very small magnitude

absolute differences for −30 ≤ µi/σ ≤ 30. We also considered approximating the

expected value using a second order Taylor expansion about exp(zi) as well as

first and second order Taylor expansions about zi. We tried using the median

of the logit normal distribution implied by P (xi, yi), available in closed form,

as a surrogate for the expected value. None of them performed as well as the

numerical approximation considered, and we use (4.4) in our design framework

going forward.
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4.3 Incorporating bias into the design criterion

When responses are not missing at random, estimates will be biased. Hence,

instead of simply considering var(β̂), we consider broadening the framework to

incorporate bias. We focus on optimising a function of the mean squared error.

Returning to the example of obtained regression coefficient estimates β̂, the mean

squared error incorporates both variance and bias,

m.s.e. (β̂) = E{(β̂−β)(β̂−β)T } = var(β̂) +
{
E(β̂)−β

}{
E(β̂)− β

}T
. (4.5)

We denote E(β̂)− β by ∆(σ, ξ), assuming the bias depends on σ as well as the

design. Other more complex bias functions that depend on more parameters

could be considered.

To find optimal designs in the presence of NMAR with good MSE properties,

we numerically approximated the bias function by simulating it over a range of

different pairs of values (σ, ξ). Each simulation step involved fitting the model

and evaluating the bias for the given pair. We then fit a smooth function, e.g.

a second order response surface or a LOESS function, to these simulated ‘bias

data’, and used this function, B(σ, ξ) say, as an approximation to the true bias.

In the next section we evaluate how the approach of finding optimal designs

based on the approximation given in (4.4) and the inclusion of a bias term per-

forms in the presence of NMAR, and whether it offers any improvements over

the optimal designs that assume MAR.

5. Simulation Study

We set the design region X = [0, 2] and sample size n = 60. For a given

design we simulated a response variable as

yi = 1 + xi + εi, εi ∼ N(0, σ2)

for a given σ2. We then introduced missing values into the observed yi, i =

1, . . . , n, through the logistic model

P (xi, yi) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)

with γ0 = −5.572 and γ1 = 2.191. We fit a simple linear regression model to

the complete case data, obtaining estimates of the coefficients, (β̂0, β̂1), and their

variances, from the cases for which yi was observed.

We restricted our optimal designs to the class of designs with two support

points. From Lee, Biedermann and Mitra (2017), the lower bound of X, 0, was

chosen as one of the support points, x∗1. To find the second support point,
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Table 2. The first column from the left shows the optimal designs that assume a MAR
mechanism (4.2); the other columns show the optimal designs for NMAR mechanisms
(4.1) with different σ2. In all designs, x∗1 = 0, n = 60 and w1 = 1− w2.

MAR σ = 1 σ = 1.5 σ = 2
D-optimal x∗2 1.3766 0.9793 1.0202 1.1210

design w2(n2) 0.5000 (30) 0.3811 (23) 0.3194 (19) 0.2879 (17)
A-optimal x∗2 1.5147 1.0871 1.0617 1.0671

design w2(n2) 0.4539 (27) 0.4462 (27) 0.4508 (27) 0.4534 (27)

x∗2, we substituted the approximation to E{P (x∗i , yi)} given by (4.4) with mean

−5.572+1+(2.191+1)x∗i and a known value of σ2, the value of x∗1 and w1 = 1−w2

into the mean squared error given in (4.5). The expected bias term in (4.5) was

treated as being a function of x∗2 and σ2, and was approximated numerically.

An optimal design was then found by minimising a function of this matrix with

respect to x∗2 and w2 in Matlab with the fmincon function.

Table 2 presents the values of x∗2 under the D- and A- optimality criteria for

various different values of σ2, the corresponding weight w2, and the (rounded)

number of replicates, n2, of x∗2. The optimal designs that account for the impact

of NMAR have smaller x∗2 for both design criteria than those that assume the

presence of a MAR mechanism. The optimal weights of A-optimal designs remain

constant in the considered cases whereas w2 of the D-optimal design decreases

with σ2 when responses are assumed to be NMAR. Figure 2 further illustrates

the optimal designs that account for the impact of NMAR.

To illustrate the performance of these designs we repeatedly simulated an

incomplete data set 200,000 times, using each of the designs given in Table 2 and

the models for the response and the missing data mechanism. For each design,

we calculated the empirical bias and the mean squared error for β0 and β1, as

well as the determinant and trace of the empirical mean squared error matrix for

(β0, β1). Table 3 presents these results for various different values of σ.

The designs that assume the presence of MAR have the largest biases and

m.s.e. (β̂) across the board. By taking NMAR into account at the design stage,

we can mitigate some of its effects. For example, the A-optimal design for σ = 1.5

reduces the bias of β̂1 by more than 23% from −0.53864 to −0.41095, and a

similar reduction applies to the trace of m.s.e. (β̂). The NMAR design with

the conjectured value of σ performs best with respect to the relevant optimality

criterion, and the NMAR designs with different conjectured values of σ also

perform well, far better than the designs that assume MAR.

We consider the problem of assuming the presence of NMAR when in fact



OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NMAR 1833

σ

σ

Figure 2. “+” correspond to A-optimal designs, “�” correspond to D-optimal designs
in the presence of different NMAR mechanisms with x1 = 0 and w1 = 1− w2.

Table 3. Performance of various designs in the presence of NMAR mechanism over
200,000 simulated data sets.

σ2 = 1 in generating yi and in the NMAR mechanism

D-optimal design that assumes A-optimal design that assumes
MAR σ = 1 σ = 1.5 σ = 2 MAR σ = 1 σ = 1.5 σ = 2

bias of β̂0 −0.015710 −0.015657 −0.015559 −0.015525 −0.015717 −0.015717 −0.015717 −0.015717

bias of β̂1 −0.26664 −0.18472 −0.19344 −0.21511 −0.29240 −0.20739 −0.20208 −0.20313

m.s.e. (β̂0) 0.033581 0.027279 0.024665 0.023522 0.030604 0.030604 0.030604 0.030604

m.s.e. (β̂1) 0.11689 0.11449 0.12077 0.12403 0.13022 0.10697 0.10728 0.10713

tr(m.s.e. (β̂)) 0.15047 0.14176 0.14544 0.14756 0.16083 0.13758 0.13788 0.13774

|m.s.e. (β̂)| 0.0035232 0.0025149 0.0025445 0.0026165 0.0037448 0.0026704 0.0026408 0.0026451

σ2 = 1.52 in generating yi and in the NMAR mechanism
D-optimal design that assumes A-optimal design that assumes

MAR σ = 1 σ = 1.5 σ = 2 MAR σ = 1 σ = 1.5 σ = 2

bias of β̂0 −0.054443 −0.054393 −0.054202 −0.054178 −0.054465 −0.054465 −0.054465 −0.054465

bias of β̂1 −0.50182 −0.38675 −0.39934 −0.42936 −0.53864 −0.41838 −0.41095 −0.41264

m.s.e. (β̂0) 0.076555 0.062639 0.056827 0.054331 0.070012 0.070012 0.070012 0.070012

m.s.e. (β̂1) 0.34630 0.32185 0.33703 0.34929 0.37910 0.31198 0.31145 0.31162

tr(m.s.e. (β̂)) 0.42285 0.38449 0.39386 0.40362 0.44912 0.38199 0.38146 0.38163

|m.s.e. (β̂)| 0.025828 0.018580 0.018181 0.018456 0.026319 0.020325 0.020139 0.020183
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Table 4. Performance of various designs in the presence of a MAR mechanism, i.e.
NMAR with σ2 = 0. Responses yi are generated with σ2 = 1.52, and over 200,000
simulated data sets.

D-optimal design that assumes
MAR σ = 1 σ = 1.5 σ = 2

bias of β̂0 (10−4×) 3.7083 4.0648 5.8203 6.2709

bias of β̂1 (10−4×) 4.4560 2.9727 −5.9871 −8.3833

m.s.e. (β̂0) 0.075687 0.061415 0.055479 0.052892

m.s.e. (β̂1) 0.11455 0.19076 0.19898 0.18913

tr(m.s.e. (β̂)) 0.19024 0.25218 0.25446 0.24202

|m.s.e. (β̂)| 0.0056653 0.0078116 0.0081087 0.0077921
A-optimal design that assumes

MAR σ = 1 σ = 1.5 σ = 2

bias of β̂0 (10−4×) 3.3924 3.3924 3.3924 3.3924

bias of β̂1 (10−4×) 2.4240 2.4140 3.2951 3.3618

m.s.e. (β̂0) 0.068937 0.068937 0.068937 0.068937

m.s.e. (β̂1) 0.11793 0.15299 0.15843 0.15727

tr(m.s.e. (β̂)) 0.18687 0.22192 0.22736 0.22621

|m.s.e. (β̂)| 0.0060607 0.0065411 0.0067209 0.0066843

a MAR assumption is reasonable. We evaluated the performance of the designs

given in Table 2 when the missing mechanism was in fact MAR, with

P (xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)
,

where γ0 = −4.572 and γ1 = 3.191. The performance metrics considered were

empirical bias and mean squared error for β0 and β1, as well as the determinant

and trace of the empirical mean squared error matrix for (β0, β1).

Table 4 presents these results for MAR optimal designs and different NMAR

optimal designs constructed assuming various values of σ2. In this simulation,

we used a residual variance of σ2 = 1.52 in generating the responses under each

different design. The empirical biases are negligible, as expected. We thus focus

on the mean squared errors. The designs generated assuming MAR perform best

but there is evidence to suggest that the loss in assuming a positive value of σ is

less severe than the one incurred when using the MAR design for NMAR data.

6. Case Study: Two-Group A-Optimal Design for Alzheimer’s Disease

Trial

As an application, we used data from an Alzheimer’s disease study that
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investigated the benefits of administering donepezil, memantine, and the combi-

nation of the two, to patients over a period of 52 weeks, on various quality of life

measures. See Howard et al. (2012) for full details of the study. We only consid-

ered the experimental units in the placebo group and the donepezil-memantine

treatment group that were included in the primary intention-to-treat sample.

The sample size in each group (n1, n2) is 72, resulting in a total sample size of

144. Here we treat the rate of change of the primary outcome measure, SMMSE

score (higher score indicates better cognitive function), as the response variable

in a simple linear model,

yi = β0 + β1xi + εi, εi ∼ N(0, σ2),

where xi = 0 if subject i is in the placebo group and xi = 1 if subject i is in the

treatment group, i = 1, . . . , 144.

From the data set for the per-protocol analysis, we found 46 patients in the

placebo group and 23 patients in the treatment group who had missing responses

by the end of the study. Assuming that these responses were not missing at ran-

dom, a logistic regression model was fit to the missing data indicator, obtaining

exp(γ̂0 + γ̂1xi)

1 + exp(γ̂0 + γ̂1xi)

where γ̂0 = 0.5705 and γ̂1 = −1.3269. Using the observed responses, we fit a lin-

ear model to the data, obtaining β̂0 = −0.10503, β̂1 = 0.04302 and σ2 = 0.061432.

We then used these estimates to construct a NMAR mechanism, (4.1), where the

logit-normal variable, ti, had mean γ0 + β0 + (γ1 + β1)xi = 0.5705 − 0.10503 −
(1.3269 − 0.04302)xi and variance σ2 = 0.061432. We used this information in

(4.2) to approximate the expected NMAR mechanism, present in the elements

of the approximation to E{var(β̂|M)} when finding optimal designs. In prac-

tice NMAR is an untestable assumption and there is no guarantee that such a

conjectured mechanism corresponds to the true missing mechanism.

The support points of an optimal design are given as x∗1 = 0 (placebo) and

x∗2 = 1 (active treatment) since we are comparing two groups. We considered

A-optimality with m.s.e. (β̂0) +m.s.e. (β̂1). The optimisation problem is now in

one variable, w2, with the condition w1 + w2 = 1.

We conducted simulation studies on designs that had n2 = 37, 38, . . . , 107

in each design, with σ = 0.04, 0.05, . . . , 0.09 in each case, to obtain empirical

biases for β̂0 and β̂1. Fitting a second order response surface to these observed

biases and values of n2 and σ, we approximated bias as a function of n2 and σ,

as
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Table 5. Fitted coefficients for the approximation function B(σ, ξ) of ∆(σ, ξ) for β̂0 (first

row) and β̂1 (second row), respectively.

λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5
−2.5282×10−5 1.8727×10−6 −1.2511×10−3 −1.4028×10−8 8.7490×10−7 −0.6023
−2.9306×10−5 −4.1954×10−7 1.6884×10−3 2.9213×10−9 3.1693×10−6 0.2919

Table 6. Performance of various designs where n2 is the sample size of the treatment
group and n1 = 144− n2 for each design.

n2 52 51 50 49 72

tr(m.s.e. (β̂))(×10−4) 3.2950 3.2927 3.2934 3.2919 3.6155

B(σ, ξ) = λ̂0 + λ̂1n2 + λ̂2σ + λ̂3n2
2 + λ̂4n2σ + λ̂5σ

2

for each estimate β̂0 and β̂1 (see Table 5).

Using this information, we found the A-optimal design by using the fmincon

numerical method in Matlab. The optimal design resulted in w2 = 0.34365, or

n2 = 144 × w2 = 49.486 = 49 subjects in the treatment group, with n1 = 95

subjects in the placebo group. We then conducted a simulation study compar-

ing this design with other design candidates using the estimates β̂0, β̂1, γ̂0, γ̂1
and σ̂2 in generating responses (both observed and missing). Table 6 shows the

performance of these designs in the simulation. We repeatedly simulated incom-

plete data under the various designs and computed the trace of the mean squared

error matrix obtained from each design. The simulation study shows that the

A-optimal design that accounts for NMAR and bias in the experiment performs

better than all other designs considered, and in particular is better than the

original design that assumes equal sample size for both groups. There is about

a 9% (1 − 3.2919/3.6155) × 100% efficiency loss if we use the equal sample size

design instead of the optimal design. This indicates that there is the potential

for obtaining estimates with smaller mean squared error if the proposed design

is used rather than conventional designs.

7. Discussion and Remarks

There are many open problems left to investigate. A similar approximation

to (4.3) can be found for nonlinear models with normally distributed errors, and

extensions to generalised linear models are also possible in our framework.

The designs we find are locally optimal in the sense that they depend on

the unknown model parameters. Our numerical investigations show that, even
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when the value of σ2 is misspecified at the design stage, the designs assuming

NMAR with an incorrect σ2 perform still better than the MAR design when

the missing data mechanism is NMAR. For the other parameters, we assume

that good information can be elicited from the experimenter. If this is not the

case, parameter robust design criteria, such as Bayesian or standardised maximin

criteria (see, e.g., Chaloner and Verdinelli (1995), and Dette (1997)), need to be

developed for our approach.

There is a plethora of possible methods to handle the problem of missing

values, in addition to complete case analysis considered here. Other common

approaches include multiple imputation, methods based on the EM algorithm,

Hot Deck methods, and more. We do not investigate these here, as our approach

focuses on the design aspect of the problem, rather than the specific method for

dealing with the missing data. It would be interesting to investigate whether the

benefits seen here could be similarly observed when other methods are used to

handle the missing data.
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