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Abstract 11 

Recent technological breakthroughs of optical sensors and analysers have enabled matching the water 12 

quality measurement interval to the time scales of stream flow changes and led to an improved 13 

understanding of spatially and temporally heterogeneous sources and delivery pathways for many 14 

solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted 15 

renewed interest in the concentration-discharge (c-q) relationship and its value in characterising 16 

catchment storage, time lags and legacy effects for both weathering products and anthropogenic 17 

pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality 18 

determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural 19 

catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-20 

monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in 21 

water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. 22 

We showed that the uncertainty in water quality parameters increases with reduced sampling frequency 23 

as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q 24 

mailto:magdalena.bieroza@slu.se
mailto:katarina.kyllmar@slu.se
mailto:louise.heathwaite@lancaster.ac.uk
mailto:marianne.bechmann@nibio.no
mailto:p.jordan@ulster.ac.uk


2 

 

relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes 25 

derived from the long-term low-frequency data for different determinands and catchments and showed 26 

strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy 27 

effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks 28 

and the effectiveness of water management interventions. This research highlights how improved 29 

understanding of solute and particulate dynamics obtained with optical sensors and analysers can be 30 

used to understand patterns in long-term water quality time series, reduce the uncertainty in the 31 

monitoring data and to manage eutrophication in agricultural catchments. 32 

Keywords 33 

Eutrophication; Concentration-discharge relationship; Chemostatic behaviour; High-frequency 34 

monitoring; Long-term water quality time series; Phosphorus and Nitrogen 35 

Highlights 36 

High-frequency data help to understand the patterns in long-term data 37 

Chemostatic responses lead to low errors in water quality parameters 38 

Low-order agricultural catchments homogenize stream solute responses 39 

Phosphorus and nitrogen chemostatic responses are driven by legacy stores 40 

Concentration-discharge slope helps to prioritise monitoring and mitigation efforts  41 

Introduction 42 

Combating eutrophication is proving difficult and exposes gaps in our scientific understanding of 43 

hydrological and biogeochemical processes controlling stream concentrations of solutes and 44 

particulates. The relative importance of these processes and contribution of dominant sources and 45 

delivery pathways is captured by the concentration-discharge (c-q) relationship. The c-q relationship 46 

characterises solute/particulate change (dilution or concentration) with varying flow (Evans and Davies, 47 

1998) and can be quantified as the slope b of the c-q regression relationship on logarithmic axes (Godsey 48 
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et al., 2009). The c-q relationship is often complex due to hydrochemical variability but can generally 49 

be classified into two patterns: chemostatic (|b|<0.1) and chemodynamic (|b|>0.1) with either dilution 50 

(b<-0.1) or concentration (b>0.1) pattern. The chemostatic c-q pattern, in which the concentrations are 51 

stable over a large range of flows has been observed for many solutes and particulates with an abundant 52 

source of the chemical in the catchment (Thompson et al., 2011) e.g. weathering bedrock (Ameli et al., 53 

2017; Godsey et al., 2009; Hoagland et al., 2017) or agricultural soils and the unsaturated zone (Basu 54 

et al., 2011; Van Meter et al., 2017). These sources are also referred to as the legacy stores that can 55 

control the mobilisation and stream transport of the chemicals in the long-term and lead to transport-56 

limitation (Basu et al., 2011). When the rate of the concentration change is larger than the flow change, 57 

a chemodynamic c-q pattern and source-limitation are observed with either concentrations increasing 58 

(concentration) or decreasing (dilution). Recent increased availability of high-frequency (sub-hourly) c 59 

and q data, due to deployment of optical sensors and wet-chemistry analysers, has led to improved 60 

understanding of the complex c-q patterns observed in water quality data. For example, recent work 61 

explains how both seasonal and storm-to-storm dynamics in source mobilisation and activation of 62 

different delivery pathways control the chemostatic and chemodynamic c-q responses (Bieroza and 63 

Heathwaite, 2015; Lloyd et al., 2016).  64 

To date, the c-q relationship has been evaluated for a large range of chemicals both derived from 65 

weathering of bedrock and from agricultural land use. The studies of c-q dynamics in agricultural 66 

catchments focus on chemicals that are of major concern due to increasing eutrophication and hypoxia 67 

of inland and coastal waters: phosphorus (P) both as total P (TP) and total and soluble reactive P (TRP 68 

and SRP) (Basu et al., 2011; Bieroza and Heathwaite, 2015; Dupas et al., 2015), suspended sediments 69 

(SS) measured directly or with turbidity (TURB) as a proxy (Lawler et al., 2006), organic and inorganic 70 

nitrogen (N), particularly in the form of nitrate-nitrogen (NO3-N) (Bieroza et al., 2014; Dupas et al., 71 

2016; Van Meter et al., 2017) and compounds that provide information on the general hydrochemical 72 

functioning of catchments: total and dissolved organic carbon (TOC and DOC) (Butturini et al., 2008; 73 

Hoagland et al., 2017) and specific conductivity (COND) (Bieroza and Heathwaite, 2015) . 74 
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Hydrochemical data have been collected for over 150 years (Howden et al., 2010) and most of these 75 

long-term datasets are from rivers (>4th Strahler order) and collected at low frequency (typically 76 

monthly) (Tetzlaff et al., 2017). Therefore, this existing water quality sampling method is not suited to 77 

target the highly variable, in space and time, agricultural P and N pollution in low-order (<3rd Strahler 78 

order) catchments (Bieroza et al., 2014). Recent advances in in situ water quality monitoring with 79 

optical sensors and wet-chemistry analysers (Bieroza and Heathwaite, 2016; Floury et al., 2017; Jordan 80 

et al., 2012; Rode et al., 2016) help to bridge this gap, but due to high-financial cost of the in situ 81 

technology per sampling site, new approaches that integrate the high- and low-frequency sampling are 82 

needed (Bieroza et al., 2014; Chappell et al., 2017; Jordan and Cassidy, 2011). To address this scientific 83 

and management need, we propose that the new knowledge of c-q dynamics obtained with high-84 

frequency sampling can improve the understanding of hydrochemical patterns in readily available long-85 

term datasets and can help to prioritise monitoring and mitigation efforts.   86 

Specifically, we evaluated the uncertainty and variation in the c-q relationship for selected solutes and 87 

particulates, for a number of low-order small agricultural catchments in the UK, Norway and Sweden 88 

that are subjected to eutrophication pressures. We hypothesized that the c-q slope represents the 89 

catchment’s tendency to store and transport chemicals and that it can be a useful tool in water 90 

management practice. Our objectives were to: 1) evaluate the variation in the c-q slopes for P, SS, NO3-91 

N, DOC and COND for both high- and low-frequency sampling, 2) evaluate the uncertainty in 92 

operational water quality parameters (mean, 95th percentile and load) derived from low-frequency 93 

datasets as a function of the c-q slope, 3) provide recommendations on how the c-q slopes can help to 94 

improve water quality management.  95 

Methods 96 

High-frequency datasets 97 

Two high-frequency datasets were used in the analysis: HF1 (Leith catchment, UK, 2009-2014, hourly 98 

and sub-hourly, TP, TRP, TURB, NO3-N and COND) and HF2 (SE3 catchment, SE, 2017-2018, sub-99 

hourly, TP, TRP, TURB, NO3-N and DOC) with continuous flow discharge measurements. Similar 100 
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experimental setups were deployed in both cases, with stream water pumped to a small hut on the bank 101 

and the measurements conducted on unfiltered samples with wet-chemistry analysers (Systea’s Micro 102 

Mac for HF1 and Hach Lange’s Phosphax for HF2 giving TP and TRP) and in-line optical sensors for 103 

TURB and solutes (Systea’s WaterWatch and Hach Lange’s Nitratax for HF1 and s:can’s Spectrolyser 104 

for HF2). The details of the HF1 experimental setup and principles of the in situ monitoring are given 105 

elsewhere (Bieroza and Heathwaite, 2015; Bieroza and Heathwaite, 2016; Bieroza et al., 2014). Both 106 

study catchments represent small, low-order catchments dominated by agricultural land use: grassland 107 

and livestock grazing in the Leith catchment (HF1 in Table 1) and arable land and crop production in 108 

the SE3 catchment (HF2 in Table 1). The catchments differ in terms of geology and soils, with sandstone 109 

and loam soils in HF1 and marine clay and heavy clay soils in HF2 with the effect on hydrology: 110 

intensive ground-surface water interactions (Krause et al., 2009) and subsurface flow pathways in HF1 111 

(Bieroza et al., 2014) and overland, macropore and tile drainage flow pathways in HF2 (Ulén et al., 112 

2011).        113 

Low-frequency datasets 114 

We collated long-term low-frequency water quality time series (TP, TRP and SRP, SS, NO3-N, DOC 115 

and TOC and  COND) for agricultural catchments subject to risk of eutrophication from three EU 116 

countries (UK, Norway and Sweden) spanning a range of climatic and soil conditions (USDA, 1987) 117 

(Table 1). The datasets varied in terms of sampling frequency: fortnightly sampling for the Swedish and 118 

Norwegian catchments under Agricultural Monitoring Programmes to 6-12 samples a year in the UK 119 

catchments under the routine monitoring programmes (Water Framework and Nitrates Directives).  120 

In the UK, all environmental datasets were accessed online: the water quality datasets were obtained 121 

from the Environment Agency (http://environment.data.gov.uk/water-quality), flow records from the 122 

National River Flow Archive (https://nrfa.ceh.ac.uk/) and soil data from the UK Soil Observatory Map 123 

(http://www.ukso.org/home.html). As the UK does not have a specific agricultural impact monitoring 124 

programme, unlike Sweden and Norway, a selection of the sampling points and study catchments was 125 

made from over 1500 gauging stations and over 7000 water quality sampling points with the following 126 

http://environment.data.gov.uk/water-quality
https://nrfa.ceh.ac.uk/
http://www.ukso.org/home.html
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criteria: continuous (no breaks due to gauging station closure) flow discharge record, catchment area 127 

<60 km2, agricultural land use >70%, no major settlements/fish farms/sewage treatment outlets in the 128 

catchment and a nearby water quality sampling point (up to 50 m upstream and 100 m downstream, 129 

with no tributaries between both points) with at least 50 TRP and NO3-N measurements. Based on these 130 

criteria, a selection of 42 catchments representing diverse soil, climatic and agricultural conditions was 131 

made (Table 1). For the UK, DOC and TP measurements are not part of the routine monitoring (Table 132 

ST1). 133 

In Norway, data about water quality and agricultural production are collected in the Agricultural 134 

Environmental Monitoring Programme (JOVA) (Bechmann et al., 2008). The selected ten catchments 135 

represent the main agricultural production systems in Norway including cereals (E), vegetables (S), 136 

intensive dairy farming (W) and more extensive grass production (S and N) and vary in terms of soils, 137 

topography and climate (Table 1). In all catchments, fortnightly flow-proportional samples are collected 138 

(TP, SRP, SS, NO3-N) and water level is recorded automatically. Since the P, SS and NO3-N 139 

concentrations and loads are high, economic subsidies and information campaigns have been introduced 140 

to reduce pollution trough e.g. reduction in autumn ploughing, improved nutrient and animal waste 141 

management and mitigation measures (buffer zones and constructed wetlands) (Bechmann et al., 2008). 142 

In Sweden, ten small agricultural catchments (Table 1) have been monitored for agricultural impact on 143 

water quality for more than 20 years (Kyllmar et al., 2014). Fortnightly water quality sampling includes 144 

time-proportional grab sampling (1990-2010) and flow-proportional composite sampling (from 2005) 145 

for TP, TRP, SRP, NO3-N, SS, DOC and COND with continuous flow discharge measurements. The 146 

catchments represent various types of soils, agricultural production and climate with a clear 147 

precipitation gradient between SW and E Sweden. Higher precipitation in the SW catchments results in 148 

higher flow discharge and nutrient loads (SE6, SE8 and SE9) compared to the E catchments (SE1, SE2, 149 

SE3 and SE5). As a result, the SW Sweden catchments have climatic and hydrological conditions 150 

similar to the UK and Norway (Table 1). Catchments with high clay content (SE9, SE10) generally 151 

have higher P and SS loads compared to those with sandy soils (SE8). 152 
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Data analyses 153 

All high- and low-frequency datasets were quality controlled to remove outliers and calculate basic 154 

descriptive statistics (Tables 2 and ST1). Flow discharge records were used to calculate the flashiness 155 

index as a ratio of the high (5th percentile) and low flows (95th percentile) which describes the dominant 156 

flow pathways in the catchment (Jordan et al., 2005). A higher flashiness index (Q5:Q95; Table 1) 157 

indicates a higher ratio of flashier, faster flow responses to rainfall compared to slower, low flows 158 

(baseflow and slow subsurface). For each high-frequency dataset, loads were calculated using a 159 

standard algorithm based on instantaneous concentration and flow discharge (Bieroza et al., 2014; 160 

Jordan and Cassidy, 2011) (Equation 1):  161 

𝐿 =  
𝐾 ∑ 𝐶𝑖𝑄𝑖

𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

𝑄𝛤         (Equation 1) 162 

Where: Ci and Qi are instantaneous high-frequency concentration and discharge data, L is the load 163 

estimate, QΓ is the average flow discharge based on the long-term data, K is a constant which accounts 164 

for the duration of the record, n is the number of concentration measurements. 165 

To examine the effect of sampling frequency on the uncertainty in water quality parameters routinely 166 

used for water management (mean, standard deviation, maximum and 95th percentile concentration, 167 

load and c-q slope), the high-frequency datasets were resampled using 10,000 Monte Carlo iterations 168 

each, to simulate daily, weekly, fortnightly and monthly sampling frequencies, respectively (Table 2). 169 

For each simulated frequency (daily, weekly, fortnightly and monthly) 10,000 individual datasets were 170 

created by randomly selecting samples from the high-frequency data with the single constraint criterion 171 

– samples need to represent unique days, weeks, fortnights or months respectively. We calculated the 172 

relative errors e for each water quality parameter and determinand (TP, TRP, TURB, NO3-N, DOC and 173 

COND) as Equation 2: 174 

𝑒 =  
100(𝐿𝐹−𝐻𝐹)

𝐻𝐹
%         (Equation 2) 175 

with an assumption that the high-frequency value HF (e.g. mean concentration or load) represents the 176 

true value compared to the low-frequency value LF (Supplementary Tables ST2-7 and Supplementary 177 
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Figures SF1-3). The c-q slopes were calculated by fitting a linear regression to the log-transformed 178 

concentration and flow discharge data. To compare the differences in mean errors, concentrations and 179 

c-q slopes between the catchments and determinands, a non-parametric analysis of variance was used 180 

(Kruskal-Wallis test). To analyse the catchment controls (e.g. soil type and flashiness) on the c-q slopes 181 

and interactions between different determinands, a multivariate non-parametric canonical redundancy 182 

analysis (RDA) was performed (Bieroza and Heathwaite, 2015; Legendre and Legendre, 1998). 183 

Spearman’s correlations p-values were corrected for multiple comparisons with a Bonferroni correction 184 

(Holm, 1978) and for all analyses a uniform significance level of 0.05 was used. All data processing 185 

and statistical analyses were carried out in MATLAB version 8.6 (R2015b).  186 

Results 187 

Concentration-discharge relationship for the high-frequency datasets 188 

Comparison of the c-q relationships from the two high-frequency datasets (HF1 and HF2) showed that 189 

concentration effect (b>0) was predominant for both datasets with the exception of solutes: NO3-NHF1, 190 

CONDHF1 and TRPHF2, all showing the dilution pattern (b<0; Figure 1). Three determinands (NO3-NHF1, 191 

CONDHF1 and TPHF2) showed chemostatic behaviour (|b|<0.1) suggesting a predominant transport-192 

limitation mechanism (Basu et al., 2011). TPHF1, TURBHF1 and TURBHF2 showed chemodynamic 193 

behaviour (|b|>0.1) and source-limitation mechanism (b=0.36, 0.27 and 0.32). Two solutes (NO3-NHF2 194 

and DOCHF2) showed a step change from chemostatic (b=0.1 and 0.04) to chemodynamic behaviour 195 

(b=0.28 and 0.25) at q=0.01 m3s-1 (Figure 1 and Table ST8). The c-q relationship for CONDHF1 showed 196 

non-linear curvature with two linear slopes fitted: b=-0.06 for flows 0-10 m3s-1 and b=-0.26 for flows 197 

>10m3s-1 (Table ST8). 198 

The HF1 determinands (TP, TRP and TURB) showed a large scatter in the data due to seasonal and 199 

storm-to-storm variation in the c-q behaviour and hysteretic responses (Bieroza and Heathwaite, 2015). 200 

TP, TRP and TURB responded similarly in both study catchments, showing a concentration pattern. 201 

Conversely, NO3-NHF1 and CONDHF1 showed a weak dilution pattern, while NO3-NHF2 and DOCHF2 202 

showed an overall concentration pattern in HF2. The TRP c-q pattern was the opposite to solutes in 203 
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both datasets – a concentration pattern in HF1 similar to TP and TURB and a dilution pattern in HF2 in 204 

contrast to both TP and TURB (Figure 1).  205 

Uncertainty in water quality parameters estimated from the low-frequency datasets 206 

To assess the uncertainty in derivation of water quality parameters from routine low-frequency 207 

monitoring, the high-frequency datasets were resampled to simulate daily, weekly, fortnightly and 208 

monthly sampling (Table 2). For all determinands, the mean and standard deviation of the resampled 209 

datasets were consistent with the values derived from the high-frequency datasets (suggesting that the 210 

errors were normally distributed), whereas the maximum gradually decreased with the sampling 211 

frequency (Table 2).  212 

In general, the uncertainty increased for all parameters and determinands with decreasing sampling 213 

frequency (Tables ST2-7). The mean concentration, which is often used as an indicator of water quality 214 

status, was underestimated by the low-frequency sampling for TP and TURB. The errors in the mean 215 

TRP and NO3-N concentrations showed two patterns: underestimation or both under- and over-216 

estimation (Figures 2 and SF1-3). The lowest errors (<10%) were observed for NO3-NHF1 and CONDHF1 217 

and the largest for TURB and TP with the greatest underestimations of -441% TURBHF2, -305% 218 

TURBHF1, -288% TPHF2 for the monthly datasets (Table ST2). Similar patterns were seen in the errors 219 

in calculation of the 95th percentile (Table ST5), instantaneous load (Table ST6) and the c-q slopes 220 

(Table ST7). The general trend was that determinands showing near-chemostatic c-q slopes (NO3-NHF1, 221 

CONDHF1, TPHF2 and TRPHF2) had lower errors for all water quality parameters compared to the 222 

determinands with the chemodynamic slopes (Figures 2 and SF1-3). From all determinands, TURB 223 

showed the largest errors spanning three orders of magnitude for all low-frequency sampling 224 

simulations. This shows that only sub-hourly sampling can accurately capture the SS dynamics.    225 

The observation that uncertainty in the water quality parameters derived from the low-frequency data 226 

is low for near-zero, chemostatic slopes (|b|<0.1) and high for chemodynamic c-q slopes (|b|>0.1) can 227 

be tested by plotting the mean c-q slope and mean parameter estimation error from 10,000 Monte Carlo 228 

simulations (Figure 3). The positive correlation (R2=0.52) indicates that errors are small (0-20%) for 229 
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the low c-q slopes and increase with the increasing c-q slopes. Solutes showed lower slopes and errors 230 

and the highest values of slopes and errors were observed for both particulates and solutes. For the same 231 

determinand, the slopes can be different between catchments suggesting that distribution of the delivery 232 

pathways and catchment-specific processes play an important role in controlling the c-q relationship. 233 

The high variation in the load estimation errors for similar values of the c-q slopes for TURBHF1, 234 

TURBHF2 and TPHF2 can be seen in Figure 4. In contrast, NO3-NHF1 and CONDHF1 showed very little 235 

variation in the simulated c-q slopes and corresponding load estimation errors. The much wider range 236 

of the observed c-q slopes for the HF2 dataset can be explained by a more flashy catchment character 237 

compared to HF1 (Q5:Q95 237 to 74, Table 1). From all determinands, only the TRPHF2 showed a shift 238 

from a strong dilution pattern (b=-0.5) and high load overestimation (up to 50%) to near-chemostatic 239 

behaviour (b=-0.1) and small load estimation errors (10%, Figure 4).  240 

Variation in the c-q relationship in the low-frequency datasets 241 

To evaluate the variation in the c-q slopes for different determinands, we analysed available water 242 

quality time series for selected agricultural catchments in the UK, Norway and Sweden (Tables 1 and 243 

ST1). Mean concentrations (Table ST1) varied between determinands and countries (Figure 5). The 244 

Norwegian and Swedish catchments showed higher TP and SS and lower TRP and NO3-N 245 

concentrations compared to the UK catchments. These differences result from different dominant 246 

geology and soil types: post-glacial clay geology and fine texture soils in the Norwegian and Swedish 247 

catchments (Kyllmar et al., 2014) with a high risk of TP and SS losses and permeable sediments with 248 

deep unsaturated zone in the UK catchments (Ascott et al., 2016) with a high risk of NO3-N and TRP 249 

pollution (Bieroza et al., 2014). 250 

Figure 6 shows the variation in the c-q slopes between determinands. TRP showed the largest variation 251 

with the c-q slopes from b=-0.6 (strong dilution pattern) to b=0.5 (strong concentration pattern). Two 252 

solutes, DOC and COND showed a typical chemostatic c-q behaviour with near-zero slope b values (-253 

0.08 and 0.08 respectively) and a small variation in the c-q relationship. The SS concentrations showed 254 

a predominant concentration pattern (mean b=0.40) with slopes changing between -0.1 and 0.9, while 255 
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both TP and NO3-N exhibited a weak chemostatic/concentration pattern (mean b=0.12 and 0.18 256 

respectively). For the TP concentrations, the predominant type of the c-q relationship measured as a 257 

single slope b will depend on the relative contribution of particulate and dissolved fractions of P. This 258 

effect can be seen in Figure 1; for HF1 both the TP and TRP show similar c-q slopes as the TRP/TP 259 

ratio is 85% but for  HF2 (TRP/TP ratio is 60%) the TP slope is almost the arithmetic mean of the SS 260 

(TURB) and TRP slopes. This averaging of the particulate and solute c-q behaviour for the TP results 261 

in near-chemostatic behaviour for analysed agricultural catchments.  262 

To evaluate the effect of catchment properties (Table 1) and mean determinand concentrations (Table 263 

ST1) on the observed c-q slopes, we conducted a redundancy analysis (Figure 7). The catchment 264 

properties explained 57% of the variance in the c-q slopes of TRP, SS and NO3-N, with the bTRP 265 

positively correlated with the first canonical axis and bSS negatively and bNO3-N positively correlated with 266 

the second canonical axis. No significant effects of the catchment area, percentage of the agricultural 267 

land use or Strahler order were observed since our study explicitly focuses on low order, small 268 

agricultural catchments. The first canonical axis discriminated between catchments with high TRP 269 

concentrations and a predominant dilution c-q pattern (e.g. UK24) and low TRP concentrations, high 270 

rainfall and a predominant concentration c-q pattern (e.g. NO5). The second canonical axis 271 

discriminated between flashy, clay catchments with low NO3-N concentrations, chemostatic NO3-N and 272 

SS c-q response and well-drained, groundwater-dominated catchments with high positive c-q slopes for 273 

SS and negative c-q slopes for NO3-N (Figure 7). These results indicate that TRP and NO3-N saturation 274 

effects, catchment soil type and flashiness provide a good explanation of the observed differences in 275 

the c-q slopes between the catchments and determinands.       276 

Robustness of the c-q relationship 277 

To test the robustness of the c-q relationship we compared the slopes for high- and low-frequency 278 

datasets, different sampling strategies and nonlinear and non-stationary c-q relationships - in general 279 

there were no significant differences. There were no statistically significant differences in the c-q slopes 280 

calculated independently from the high- (HF1 and HF2) and low-frequency (LF1 and LF2) datasets 281 
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(Table ST1) despite much longer coverage of the low-frequency time series (HF1 2009-2015, LF1 282 

1990-2015, HF2 2016-2017, LF2 1988-2016). There were no statistically significant differences 283 

between c-q slopes for different sampling strategies: time- and flow-proportional sampling for the 284 

Swedish catchments (Table ST1 and Figure SF4), despite both datasets only partially overlapping, e.g. 285 

for SE1 time-proportional (grab) 1992-2010 and flow-proportional 2004-2017. There was a strong 286 

linear relationship between the c-q slopes calculated from both datasets (R2=0.88, p<0.05) and the data 287 

were generally grouped by the determinand (Figure SF4a) rather than the catchment (Figure SF4b).   288 

We examined all datasets for the presence of nonlinear c-q relationships (as NO3-NHF2 and DOCHF2 in 289 

Figure 1), visually determined the inflection point and fitted two separate linear slopes for low (≤ 290 

inflection point discharge) and high (≥ inflection point discharge) flows. Majority of the c-q 291 

relationships (92%) showed single linear slopes with the exception of the datasets listed in Table ST8 292 

that showed changes in the c-q slope at a given threshold value of flow. The differences between single 293 

and dual slopes were significant for TP and SS but not for RP, NO3-N, DOC or COND (Table ST8). 294 

The threshold value of flow discharge in nonlinear c-q relationships varied between determinands and 295 

catchments but in general low flows showed lower c-q slopes than high flows. Both TP and RP showed 296 

dilution pattern for low flows and strong concentration pattern for high flows, whereas SS slopes shifted 297 

from a moderate to strong concentration pattern (Figure 8). The single c-q slope reflected the dominant 298 

c-q relationship for TRP and SS and was the mean value of individual slopes for TP.   299 

The c-q relationship can also be affected by non-stationarity in either c or q data e.g. due to the presence 300 

of a linear trend in the long-term time series. To test this effect, we calculated linear trends for all high- 301 

and low-frequency datasets (Table ST9) and expressed the slopes as an annual percentage trend (Figure 302 

9). The mean annual trend varied from -2.2% for TRP to 0.4% for Q and TP and showed the largest 303 

variation between the catchments for SS (8.5% SE2fp and -17.9% NO4fp), TRP (16.7% SE7fp and -304 

16.8% UK5) and TP (10.5% SE7fp and -7.0% UK23). The high-frequency datasets showed higher 305 

annual trends (e.g. Q HF1 -9.7% and HF2 8.3%) likely due to a shorter length of the time series 306 

compared to the low-frequency, long-term datasets. To show the effect of significant linear trends with 307 

more than 5% annual change on the c-q slopes, the datasets were split in half and the c-q slopes were 308 
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calculated independently for each half (Figure SF5). There were no statistically significant differences 309 

between the c-q slopes for TP, TRP and SS but the effect varied between the datasets and determinands 310 

(Figure SF5). An example (Figure SF6) shows two time series with similar annual trends (-8.4% and -311 

7.8%) TRP (UK6) and NO3-N (NO4fp), however the slopes were different only for TRP as indicated by 312 

the dilution pattern (b=-0.16) in the first half and minor concentration pattern (b=0.09) in the second 313 

half of the time series. For NO3-N in the catchment NO4, similar slopes were observed potentially due 314 

to NO3-N saturation and consistent chemostatic response over time.          315 

Discussion 316 

c-q slope variation between determinands and catchments 317 

Recent studies highlight that catchment size and dominant land use can be predictors of the variation in 318 

concentrations (Abbott et al., 2018; Musolff et al., 2015) and the c-q relationship (Moatar et al., 2017). 319 

They show that the variation in the concentrations and nutrient retention declines with the catchment 320 

area for both solutes and particulates (Abbott et al., 2018; Cheng and Basu, 2017) and can lead to 321 

universal homogenization of the hydrochemical responses downstream in the river network (Basu et 322 

al., 2011; Creed et al., 2015). Adding to this homogenization, are the legacy stores of P and N in 323 

agricultural soils and unsaturated zone controlling water quality in the long-term for both small (Ascott 324 

et al., 2016; Bieroza et al., 2014; Dupas et al., 2016) and large catchments (Howden et al., 2010; Van 325 

Meter et al., 2017). A recent study (Bieroza and Heathwaite, 2015) showed that a low-order agricultural 326 

stream is a position in the stream network where both the hydrological and biogeochemical processes 327 

operate jointly to control the c-q relationship leading to a dynamic equilibrium between the chemostatic 328 

and chemodynamic responses.  329 

This ongoing research, focusing on large (catchment size and land use) or small scale (storm flow and 330 

meteorological controls) controls of the c-q relationship, suggest that headwater catchments (<3rd 331 

Strahler order) are critical landscape positions where most of the stream flow and hydrochemical 332 

signature of the stream network is generated. These headwater catchments are also the basic landscape 333 

units of water quality management and critical areas for combating eutrophication and hypoxia through 334 
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agri-environmental mitigation measures (Ockenden et al., 2017). Our study adds new evidence to this 335 

ongoing work by analysing the variability in the c-q relationships for a range of determinands and small, 336 

low-order agricultural catchments.  337 

Our results (Figure 6) indicate homogenization of the c-q responses in intensively managed agricultural 338 

catchments with many determinands showing typical chemostatic behaviour – a small range of 339 

concentrations compared to flow variation. This indicates that despite a large catchment-to-catchment 340 

variation in the c-q relationship, the net effect of agricultural management in headwater catchments on 341 

stream chemistry is chemostatic. This averaging potentially results from two reasons. Firstly, solutes 342 

(DOC, COND and NO3-N) surprisingly show a very narrow range of c-q slopes for catchments that 343 

vary significantly in terms of bedrock, soil type, climate and hydrology. A tendency towards 344 

chemostatic c-q relationship in the intensively managed catchments can be a result of agricultural land 345 

use overriding the structural differences between catchments (soil, vegetation and topography) and 346 

homogenization of hydrological responses (Basu et al., 2011). The long-term agricultural land use leads 347 

to shortening of the flow pathways and residence time that will in turn affect many hydrological and 348 

biogeochemical processes. Secondly, a large variation in the c-q slopes including both positive and 349 

negative values observed between the catchments and determinands can lead to apparent averaging of 350 

the c-q responses downstream the river network. This synchrony at the catchment level has been show 351 

recently by Abbott et al. (2018) for two nested agricultural catchments. Our results confirm similar 352 

effects for a large number of catchments with agricultural land use, varying in geology, climate and 353 

soils. On the determinand level, the averaging effect can be exemplified by the c-q responses of RP 354 

(dilution pattern) and SS (concentration pattern). These opposing effects result in the near-chemostatic 355 

responses for the TP, when the contribution of particulate and soluble fractions of P is similar. Also, 356 

some determinands and catchments show dual slopes for low and high flows with the opposing effect 357 

on the c-q slopes e.g. dilution at low flows and concentration at high flows for TRP, leading to an overall 358 

chemostatic c-q effect.  359 

The general strong affinity towards certain c-q behaviour, also shown by Moatar et al. (2017) in the >50 360 

km2 catchments, was not observed for TRP and NO3-N c-q responses. For the catchments analysed in 361 
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our study, subjected to diffuse pollution with no major point sources, with high concentrations the 362 

typical response is dilution for TRP and chemostasis for NO3-N, whereas a concentration pattern is 363 

observed for the catchments with lower concentrations (Figure 7). This links to the presence of the P 364 

and N legacy stores in agricultural catchments due to excess fertilisation over a long time. The effect of 365 

P and N saturation in agricultural catchments on the c-q relationship depends on the geology, soil type 366 

and the flashiness. In permeable catchments with deep unsaturated zone and low flashiness, excess 367 

NO3-N will gradually accumulate in the subsurface (Ascott et al., 2016; Howden et al., 2010; Van Meter 368 

et al., 2017) and produce a chemostatic c-q response in the stream (Bieroza et al., 2014). In poorly-369 

drained clay catchments, due to shorter residence times in the subsurface excess NO3-N will be flushed 370 

on a storm-to-storm basis leading to a concentration c-q response in the stream, as in HF2. The TRP 371 

behaviour is more complex due to its transport duality – it can be transported both as a solute along the 372 

subsurface flow pathways (Mellander et al., 2015) and sorbed to particulates and transported along the 373 

surface flow pathways (Dupas et al., 2015). A concentration c-q pattern is typical for P derived from 374 

diffuse agricultural sources but the presence of small rural point sources leads to a dilution pattern at 375 

low flows (Withers et al., 2012). When both types of P sources are present, the c-q relationship is 376 

nonlinear (Figure 8). The transient TRP storage (in bed sediments (Jarvie et al., 2005) or in the riparian 377 

zone (Dupas et al., 2015) can also lead to nonlinear c-q relationship by introducing delays in stream 378 

delivery and hysteretic c-q relationships (Bieroza and Heathwaite, 2015; Hoagland et al., 2017).  379 

A growing body of research suggests that the c-q slope expresses the relative importance between 380 

hydrological and biogeochemical controls (Basu et al., 2011; Thompson et al., 2011). Recent analysis 381 

of storm events showed that the chemostatic c-q responses indicated the dominance of hydrological 382 

controls and the chemodynamic c-q responses indicated the dominance of biogeochemical controls 383 

(Bieroza and Heathwaite, 2015). The c-q slope encapsulates both the individual effects of 384 

biogeochemical and hydrological process and their synergistic effects and thus represents the 385 

catchment’s tendency to store and transport solutes and particulates. However, these processes are non-386 

stationary and future land management and climate change will modify their relative balance (Basu et 387 

al., 2011). This combined effect on water quality can be difficult to predict due to positive and negative 388 
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feedbacks between the effect of land management and climate change (Ockenden et al., 2017). We 389 

suggest that the c-q slope can be a good measure of catchment’s response and resilience to future 390 

change. Future land management is likely to reduce P and N concentrations in agricultural catchments, 391 

alleviate the effects of P and N saturation and thus reduce the legacy effects on water quality while 392 

increased rainfall can increase the flashiness of the catchments, also due to higher seasonal gradients in 393 

flow conditions (Ockenden et al., 2017). Our results (Figure 7) suggest that this potential future change 394 

scenario (lower NO3-N and TRP concentrations, higher rainfall and flashiness) will shift the c-q 395 

responses in agricultural catchments from chemostatic to chemodynamic (concentration). Apart from 396 

being an indicator of these changes, higher c-q slopes will also mean a more dynamic c-q relationship 397 

and a higher uncertainty in water quality parameters.        398 

Errors in water quality parameters as a function of the c-q slopes 399 

Previous work focused on the advantages and limitations of the high-frequency in situ monitoring in 400 

comparison with the traditional low-frequency grab sampling (Bieroza et al., 2014; Cassidy and Jordan, 401 

2011; Dupas et al., 2016; Floury et al., 2017). These studies showed how the gain in number of 402 

observations due to high-frequency monitoring leads to improved load estimation compared to both 403 

actual and re-sampled low-frequency time series, specifically for the flashy catchments and P and SS 404 

concentrations (Cassidy and Jordan, 2011; Jordan and Cassidy, 2011; Rozemeijer et al., 2010). The load 405 

estimation errors were also compared for determinands showing different stream transport mechanisms 406 

– the chemodynamic c-q responses for P and chemostatic for NO3-N (Bieroza et al., 2014). The authors 407 

concluded that the chemostatic c-q pattern resulted in much lower load estimation errors compared to 408 

chemodynamic pattern for P and was driven by the groundwater legacy store of NO3-N. Here, we build 409 

on this work and show the errors not only for loads but also for other parameters used in water quality 410 

management: c-q slope, mean concentration used as an indicator of the water quality status e.g. for P in 411 

the Water Framework Directive (Wade et al., 2012), the 95th percentile used to select water bodies at a 412 

risk of pollution e.g. to designate Nitrate Vulnerable Zones.  413 
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Similarly to previous studies, we showed that errors increase with decreasing sampling frequency, are 414 

higher for particulates than solutes and are higher for determinands exhibiting chemodynamic c-q 415 

behaviour, specifically the concentration pattern. The range of errors observed in our study 416 

corresponded well with previous studies (Bieroza et al., 2014; Cassidy and Jordan, 2011), however by 417 

not constraining the sampling to typical sampling regimes (e.g. from 9 to 5), we were able to estimate 418 

the maximum possible errors. One of the main findings was that underestimation of parameters derived 419 

from low-frequency sampling was more severe than overestimation. Most determinands and parameters 420 

showed a maximum of one order of magnitude overestimations while the underestimations could reach 421 

three orders of magnitude. This could be a serious limitation of the low-frequency sampling for 422 

determinands showing highly dynamic flow responses e.g. SS and for flashy catchments with clay soils. 423 

For these determinands and catchments, there is a critical need to conduct high-frequency water quality 424 

measurements, particularly if those locations are also at high risk of failing to achieve good ecological 425 

status. Another limitation could be the estimation of the 95th percentile from the low-frequency NO3-N 426 

sampling for the catchments showing chemodynamic c-q responses e.g. HF2. In this case the potential 427 

underestimation of the 95th percentile is up to two orders of magnitude (Table ST5) and could lead to 428 

not designating the catchment as a Nitrate Vulnerable Zone.  429 

The errors in the c-q slopes followed the same pattern as for the other parameters, low errors for 430 

chemostatic and high errors for chemodynamic c-q slopes. However, the c-q slope errors reduced the 431 

strength of the effect (e.g. from strong concentration to weak concentration effect) rather than 432 

completely changed it (e.g. from the concentration to dilution). The uncertainty in the c-q slopes was 433 

also reduced for longer time series. This means that for most of the available long-term water quality 434 

time series, the c-q slope should adequately capture the catchment’s dominant behaviour in storing and 435 

transporting chemicals. The c-q pattern for a given determinand persists even if the sampling changes 436 

(e.g. from time- to flow-proportional) or the concentrations show a linear trend. Both cases should 437 

however always be checked for potential errors due to differences between flow-proportional and grab 438 

sample concentrations or averaging concentration and dilution patterns over time or for different flows 439 

in time series exhibiting temporal trends.  440 
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As our results show, the simple correlation between c-q slope and potential parameter estimation error 441 

(Figure 3) should be analysed with caution. Determinands delivered from a number of different sources 442 

or during different periods can exhibit different c-q patterns, therefore a good understanding of the main 443 

delivery pathways and times when they are active is needed to understand when the errors are likely to 444 

be high. Also, for the same determinand and the value of the c-q slope the errors can be enhanced by 445 

catchment properties (Figure 3 TURBHF2) e.g. by the presence of fast delivery pathways as in the tile 446 

drained clay catchments. For example, NO3-N showed highly chemostatic behaviour for HF1 likely due 447 

to nitrate saturation in the unsaturated zone but a step change from chemostatic to chemodynamic 448 

behaviour for HF2. For the clay catchment HF2, due to higher erosion risk, the load estimation errors 449 

for TURB were much higher compared with the similar c-q slope for HF1.  In special cases, when it is 450 

evident from the visual inspection of the data that two different c-q relationships exist for different 451 

flows, fitting separate linear regressions is needed. However, for many headwater catchments, the long-452 

term low-frequency datasets have too few samples to calculate statistically significant c-q slopes for 453 

different flows, in contrast to high order streams and rivers (Moatar et al., 2017) where 2/3 of cases 454 

showed dual slopes (in our study less than 8%). We found that single slopes capture well the dominant 455 

c-q relationship for cases where samples were collected at all flows. If there is a bias in the sampling 456 

e.g. towards low flows, measurements at high flows are needed to adequately represent the c-q 457 

relationship, dominant sources and delivery pathways. This can be achieved either by targeting storms 458 

with conventional sampling or by deploying in situ optical sensors (Bieroza et al., 2014).  459 

c-q slope as a robust water quality management tool 460 

Our study shows that the c-q slope is a robust descriptor of the catchment’s tendency to store and 461 

transport chemicals, since similar slopes were observed for both HF and LF datasets and different 462 

sampling strategies (time- vs flow-proportional). It can provide a rapid indication of the catchment’s 463 

status and resilience towards a given chemical – if the chemical exhibits the chemostatic or negative c-464 

q slopes the catchment is likely to be saturated with that chemical, whereas if the chemical shows the 465 

concentration pattern its delivery is likely to be transport-limited. In the latter case, appropriate 466 

mitigation measures to intercept dominant delivery pathways and target critical source areas could help 467 
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to reduce pollution. In the case of chemostatic solute behaviour, individual measures and short-term 468 

solutions can be ineffective, as is often the case for the catchments failing to meet good water quality 469 

status (Harris and Heathwaite, 2012). For these catchments, both long-term and large-scale mitigation 470 

approaches are needed (Ockenden et al., 2017; Van Meter et al., 2017) that will require a good 471 

cooperation between decision makers, farmers and scientists.  472 

Many water quality monitoring programmes are facing financial cuts that will inevitably result in the 473 

reduction of the sampling network. Water managers are therefore faced with critical questions: which 474 

sampling locations to keep, which long-term time series to continue and how to optimise the sampling 475 

to the local conditions. The c-q slope could help address many of these challenges. The optimal 476 

sampling frequency required to capture the full range of particulate and solute behaviour depends on 477 

their c-q slopes. For chemicals with a chemostatic c-q pattern (e.g. NO3-N and COND), low-frequency 478 

sampling (weekly to monthly) for all flows is sufficient to capture the c-q dynamics and obtain accurate 479 

estimates of water quality parameters. For chemicals with a dilution c-q pattern (e.g. TRP), daily to 480 

weekly sampling is needed to adequately characterise low flow concentrations and target diffuse 481 

sources at high flows. Finally, for chemicals with a concentration c-q pattern (e.g. TURB and SS but 482 

also TP and NO3-N), it is critical to target individual storm events at hourly time step as there is a large 483 

variation in the concentrations depending on distribution of the sources and hydrological connectivity. 484 

When selecting the sampling locations which should be retained, a priority should be given to those 485 

with a large variation in the c-q responses between determinands as indicative of the heterogeneous 486 

sources and delivery pathways, with dual slopes and chemodynamic patterns. The latter locations are 487 

more likely to be pivot points to the water quality in the stream network as they can experience large 488 

variations in concentrations (up to three orders of magnitude) over short storm flows (Bieroza et al., 489 

2014). Dual c-q slope relationships (e.g. dilution at low flows and concentration at high flows) indicate 490 

that different sampling regimes and different mitigation measures need to be considered for different 491 

combinations of source and delivery pathways. For any water quality monitoring network, the 492 

individual sampling points can be optimised depending on their dominant c-q patterns, in terms of 493 

sampling frequency and flow conditions to be targeted.       494 
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Changes in the c-q slope can also aid the location and subsequent evaluation of land management 495 

interventions e.g. in the form of mitigation measures to reduce agricultural losses of P, SS and N. To 496 

achieve the best environmental outcomes, the mitigation measures should be placed to intercept the 497 

main sources and delivery pathways. This spatial targeting can be achieved with critical source areas 498 

and critical pathways mapping (Abbott et al., 2018; Thomas et al., 2016) but also by evaluating the c-q 499 

slopes as discussed above. Improvements in water quality in catchments with a dilution-concentration 500 

P pattern are likely to be more difficult to achieve compared to uniform c-q patterns, and will require 501 

targeting both low flow (septic tanks or riparian zone) and high flow (diffuse catchment or in-stream) 502 

sources. The evaluation of the effectiveness of these mitigation measures can be achieved using c-q 503 

slopes both in time (by comparing low and high flows or periods before and after implementation of 504 

the measures) and space (by comparing locations upstream and downstream of the measures). This 505 

critical evidence obtained with c-q slopes is needed both for water managers to comply with the 506 

statutory requirements and the farming community to see that their efforts in building and maintaining 507 

mitigation measures bring the desired environmental benefits.  508 

Conclusions 509 

The c-q slope is a single metric that expresses the catchment’s dominant tendency for storing and 510 

transporting solutes and particulates, is easy to calculate from readily available hydrochemical datasets 511 

and can be used to effectively guide water quality management. The c-q slope can be used to understand 512 

solute and particulate behaviour across spatial (from stream reaches to stream networks and between 513 

catchments) and temporal scales, and by this to extrapolate beyond single catchment process 514 

understanding (Abbott et al., 2016). As it encapsulates information about dominant biogeochemical and 515 

hydrological controls, the c-q slope is a good measure of current balance and future change in any of 516 

the underlying processes, e.g. due to land management including mitigation measures or climate 517 

change. Agricultural catchments analysed in our study had no major point sources and showed on 518 

average strong chemostatic behaviour for TP and NO3-N due to long-term accumulation of agricultural 519 

N and P in unsaturated zone and soils. Future reduction in P and N pollution, increased rainfall and 520 
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flashiness in agricultural catchments are likely to shift this dominant chemostatic behaviour to 521 

chemodynamic, concentration c-q responses to flow. For water managers, this shift will require a more 522 

targeted approach to water quality monitoring, both in space and time, since the chemodynamic c-q 523 

slopes have higher uncertainty in the diagnostic parameters derived from low-frequency sampling e.g. 524 

loads, mean or 95th percentile concentrations. To achieve the best outcomes, water management should 525 

focus on catchments and determinands showing chemodynamic and dual slope c-q responses. The c-q 526 

slope analysis combined with high-frequency monitoring using optical sensors and analysers can 527 

provide an effective toolset to evaluate the effectiveness of management interventions. By focusing on 528 

low-order agricultural catchments, we provide a critical understanding of the linkages between 529 

hydrochemical functioning and eutrophication risks and translate this knowledge into operational 530 

responses. 531 
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Table 1 Study catchment characteristics including permeability (high H, moderate M and low L), soil texture, 

Strahler order, mean rainfall and runoff flashiness (Jordan et al., 2005). Agricultural land use comprises arable, 

horticulture and grassland land uses. Soil texture: clay (C), clay loam (CL), silt loam (SiL), loam (L), sandy loam 

(SaL), sand (Sa), silt (Si), loamy sand (LSa), silty clay (SiC) (USDA, 1987). UK soil data were obtained from 

the UK Soil Observatory Map Viewer (http://www.ukso.org/home.html), and flow data from the National River 

Flow Archive (https://nrfa.ceh.ac.uk/). Catchment codes: HF – high-frequency dataset, LF – low-frequency 

dataset, SE1-10 Swedish catchments, NO1-10 Norwegian catchments and UK1-42 UK catchments. Water 

quality monitoring starting year is also given 

Catchment Are

a 

(km
2) 

Longitude

, latitude 

Perm

e-

abilit

y 

Soil 

texture 

Agricultu

ral land 

use (%) 

Strahler 

order 

Rainfall 

(mm) 

Flashiness 

(Q5:Q95) 

Water 

quality 

monitoring 

from 

HF1 (LF1) 54.0 -2.6, 54.5 M CL, SiL 85 3 957^ 74 2009/1990 

HF2 (LF2) 7.4 16.1, 58.3 L C 54 2 594* 237 2017/1988 

          

SE1 33.0 17.1, 59.6 M CL  59 2 623* 605 1992 

SE2 16.3 14.9, 58.5 H SaL  89 2 506* 279 1988 

SE3 7.4 16.1, 58.3 L C 54 2 594* 237 1988 

SE4 1.8 13.4, 57.2 H LSa  70 2 1066* 103 1993 

SE5 4.7 18.5, 57.7 H SaL  84 2 587* 372 1989 

SE6 7.8 12.9, 56.2 M C, SaL  86 2 719* 330 1988 

SE7 8.3 13.2, 55.4 H SaL, L  93 2 709* 556 1992 

SE8 13.9 13.3, 56.7 M SaL, SiL  85 2 886* 17 1996 

SE9 7.6 12.7, 58.4 L C  92 2 655* 214 1988 

SE10 5.7 16.1, 59.2 L C  56 2 539* 605 1993 

          

NO1 4.5 10.8, 59.6 H LSa 61 2 785x 38 1993 

NO2 6.8 11.3, 60.1 L SiC 65 3 665  42 1990 

NO3 3.1 10.7, 60.8 L C 68 2 585x 17 1985 

NO4 1.7 10.7, 59.3 L CL 62 1 829x 10 2004 

NO5 0.9 8.4, 58.3 H Sa 48 2 1230x 8 1991 

NO6 19.4 8.7, 60.6 L SiC 80 3 892x 79 1992 

NO7 29.3 5.7, 59.9 L C 85 2 1180x 20 1995 

NO8 1.0 5.6, 58.7 H LSa 88 1 1180x 7 1985 

NO9 1.5 14.7, 67.2 H Sa 35 2 1020x 19 1994 

NO10 1.7 9.0, 61.1 H LSa 41 1 575x 11 1991 

          

UK1 9.0 -0.3, 55.2 M CL 86 2 669* 80 2000 

UK2 57.2 -0.3, 54.0 H L 95 3 699* 12 2000 

UK3 41.9 -0.7, 53.8 H SaL 87 2 690* 14 2000 

UK4 47.0 -0.9, 53.9 L CL 86 3 654* 39 2000 

UK5 12.9 -0.6, 54.2 M L 90 2 735* 15 2000 

UK6 32.2 -1.2, 53.2 H SaL 77 2 668* 4 2000 

UK7 46.2 -0.1, 53.1 L CL 86 3 655* 8 2000 

UK8 55.2 0.0, 53.4 H SaL 90 2 699* 9 2000 

UK9 54.7 -0.4, 53.4 M CL 96 3 614* 46 2000 

UK10 48.4 -0.4, 53.0 M L 87 2 601* 168 2000 

UK11 50.5 -0.6, 52.9 H SaL 88 3 656* 12 2000 

UK12 51.3 -0.6, 52.8 H SaL 83 3 642* 41 2010 

UK13 20.8 -0.9, 52.5 L C 90 3 648* 127 2000 

UK14 22.3 -0.5, 52.7 M CL 71 3 616* 19 2000 

UK15 58.3 -0.7, 52.4 M CL 74 3 634* 18 2000 

UK16 38.8 -0.6, 51.9 M SaL 91 4 640* 53 2006 

UK17 59.0 0.5, 52.9 H Sa 90 2 688* 9 2000 

UK18 28.3 1.0, 52.5 H L 89 2 608* 26 2000 

UK19 36.4 0.3, 52.2 H SiL 90 2 565* 7 2000 

UK20 47.7 0.5, 52.8 H Sa 87 2 685* 5 2000 

http://www.ukso.org/home.html
https://nrfa.ceh.ac.uk/


UK21 16.0 0.0, 52.1 H SiL 70 2 561* 6 2000 

UK22 59.8 1.5, 52.8 H SiL 88 3 589* 65 2007 

UK23 49.3 1.4, 52.2 M SaL 81 2 631* 3 2000 

UK24 54.9 0.9, 52.0 M L 88 3 597* 16 2010 

UK25 53.9 0.7, 52.1 M SiL 90 2 566* 10 2000 

UK26 47.4 0.7, 52.0 H SaL 91 3 589* 30 2000 

UK27 58.6 0.5, 52.0 H SaL 95 3 560* 38 2000 

UK28 28.3 0.6, 51.8 H L 94 3 589* 215 2000 

UK29 60.7 0.0, 51.7 L CL 83 2 572* 6 2000 

UK30 38.4 0.2, 51.8 L C 72 2 616* 88 2000 

UK31 54.6 0.2, 51.9 L CL 83 3 599* 44 2000 

UK32 25.9 0.0, 51.9 M SaL 73 2 609* 24 2013 

UK33 50.4 -1.3, 51.4 H Sa 93 3 625* 36 2000 

UK34 49.2 -1.7, 51.4 H SaL 84 1 716* 8 2000 

UK35 59.2 -1.9, 51.7 H SaL 86 1 769* 129 2000 

UK36 18.5 1.3, 51.3 H SaL 77 2 702* 48 2000 

UK37 37.7 -2.1, 51.6 H SaL 87 1 723* 73 2000 

UK38 28.2 -2.3, 52.6 M CL 89 2 792* 53 2000 

UK39 54.9 -2.5, 52.8 M L 78 3 706* 17 2000 

UK40 25.0 -2.2, 52.3 H Sa 92 2 677* 8 2000 

UK41 53.4 -2.4, 52.8 M SaL 81 2 653* 12 2000 

UK42 33.6 -0.4, 51.8 M SaL 93 3 712* 13 2000 

*1961‐1990, ^1999–2014, x1990-2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 Resampled water quality datasets (mean number of samples N, mean concentration μ, standard 

deviation of the concentration δ and maximum value Max) based on 10,000 Monte Carlo iterations 

Parameter Sampling HF1    HF2    

  N μ δ Max N μ δ Max 

          

TP (mgl-1) HF 18 364 0.04 0.08 1.63 7 024 0.28 0.12 1.40 

 Daily 764 0.04 0.08 0.99 144 0.27 0.11 0.88 

 Weekly 110 0.04 0.07 0.60 22 0.28 0.10 0.50 

 Fortnightly 55 0.04 0.07 0.42 11 0.28 0.09 0.42 

 Monthly 26 0.04 0.06 0.28 6 0.27 0.08 0.34 

          

TRP (mgl-1) HF 32 688 0.04 0.03 0.99 7 024 0.16 0.06 0.34 

 Daily 997 0.03 0.03 0.43 144 0.16 0.06 0.33 

 Weekly 143 0.03 0.03 0.22 22 0.16 0.06 0.27 

 Fortnightly 71 0.03 0.03 0.17 11 0.16 0.06 0.25 

 Monthly 33 0.03 0.03 0.13 6 0.15 0.06 0.20 

          

TURB (NTU) HF 44 893 2.48 4.61 242.20 13 766 35.12 39.70 838.72 

 Daily 1 209 2.36 4.89 94.30 185 34.75 38.14 314.57 

 Weekly 175 2.40 4.53 46.92 27 36.78 34.88 154.09 

 Fortnightly 87 2.38 4.19 33.15 14 35.65 32.37 113.07 

 Monthly 42 2.37 3.67 21.58 7 34.88 28.96 78.55 

          

NO3-N (mgl-1) HF 36 779 2.33 0.47 7.46 13 763 3.14 3.27 11.91 

 Daily 799 2.45 0.47 4.60 185 3.14 3.27 10.20 

 Weekly 115 2.46 0.47 3.75 27 3.29 3.07 9.87 

 Fortnightly 58 2.46 0.47 3.56 14 3.19 3.04 9.39 

 Monthly 27 2.46 0.46 3.38 7 3.12 2.93 6.99 

          

COND/DOC HF 42 890 425.03 69.50 1291.00 13 766 27.61 11.09 71.78 

(μSm-1/mgl-1) Daily 1 158 434.59 64.62 1042.65 185 27.53 11.06 61.72 

 Weekly 167 434.54 63.92 702.34 27 28.20 11.29 52.05 

 Fortnightly 83 434.68 63.22 623.59 14 27.46 11.09 47.71 

 Monthly 40 435.30 61.75 565.75 7 27.49 11.40 42.99 

  

 

 

 

 

 

 

 

 

 



 

Figure 1 Concentration-discharge (c-q) relationship for the two high-frequency datasets (HF1 top row and HF2 

bottom row) including the following determinands TP, TRP, TURB, NO3-N and COND/DOC (columns). Slope 

of the c-q relationship b is given along with the p value. Both axes are in logarithmic scale 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 Relative errors in mean (top row), 95th percentile (second row), load estimation (third row) and c-q slope 

(bottom row) for HF1 for TP, TRP, TURB, NO3-N and COND. The central red mark is the median, the edges of 

the box are the 25th and 75th percentiles, the black whiskers extend to the most extreme data points. For better 

clarity the figure does not contain outliers (given in Supplementary Figure SF1) 

 

 

 

 

 

 

 



 

Figure 3 Relationship between c-q slope b and mean relative error in load estimation based on the 10,000 Monte 

Carlo simulation for all determinands in HF1 and HF2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4 Daily load estimation errors (%) vs. c-q slope b based on 10,000 Monte Carlo simulations for two high-

frequency datasets (HF1 top row and HF2 bottom row). Mean slope b and load estimation error e are given 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5 Analysis of variance (Kruskal-Wallis one-way ANOVA) for the mean TP, TRP, SS and NO3-N 

concentrations per catchments’ location (UK, Norway NO and Sweden SE). The central red mark is the median, 

the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the most extreme data points 

and outliers are plotted as red crosses. Mean values are given as numbers 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6 Analysis of variance (Kruskal-Wallis one-way ANOVA) for the c-q slopes per determinand (N=76). 

The central red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers extend 

to the most extreme data points and outliers are plotted as red crosses. Mean values are given as numbers above 

boxplots 

 

 



 

Figure 7 The redundancy analysis distance biplot showing ordination of selected explanatory (Area – catchment 

area, Arable – agricultural land use percentage, Permeability – 1 low, 2 moderate and 3 high, Q5:Q95 - the 

flashiness index, Soils - soil texture 1 clay soils, 2 loam soils and 3 sand soils, Strahler order; Table 1) and response 

variables (c-q slopes bTRP, bSS and bNO3-N). The length of explanatory vectors indicates strength of the relationship 

with the scores of canonical axes. Distances among individual catchments (grey dots) are approximations of their 

Euclidean distances. Projecting a catchment at the right angle onto the response vector approximates a value of 

the c-q slope for that determinand. The angles between response and explanatory vectors indicate their correlation 

(Legendre and Legendre, 1998) 

 

 

 

 

 

 

 



 

Figure 8 Analysis of variance (Kruskal-Wallis one-way ANOVA) for the c-q relationships showing step changes 

(N=6) in slope values: single linear slope (Q<>) and two linear c-q slopes (Q< for flows lower than the threshold 

value Q and Q> for flows higher than the threshold value Q). The data are also shown in Supplementary Table 

ST8. The central red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers 

extend to the most extreme data points and outliers are plotted as red crosses 

 

 

 



 

Figure 9 Analysis of variance (Kruskal-Wallis one-way ANOVA) for the annual linear trends per determinand 

for the flow and water quality datasets (N=76). The data are also shown in Supplementary Table ST9. The central 

red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the 

most extreme data points and outliers are plotted as red crosses. Mean values are given as numbers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legendre L, Legendre P. Numerical Ecology. Amsterdam: Elsevier Scientific Pub. Co., 1998. 

 



Supplementary Table ST1 Water chemistry in the study catchments: N number of measurements, μ mean, δ standard deviation and c-q slopes b. Slopes which are not 

significant at 0.05 level are marked with strikethrough. Flow-proportional sampling results are marked with fp 

 TP (mgl-1) RP (mgl-1) SS (mgl-1) NO3-N (mgl-1) DOC/COND (mgl-1/μSm-1) 

 N μ  δ b N μ  δ b N μ  δ b N μ  δ b N μ  δ b 

HF1 18.3k 0.04 0.08 0.36 32.6k 0.04 0.03 0.24 44.9k 2.48 4.61 0.32 36.8k 2.33 0.47 -0.04 42.9k 425.0 69.5 -0.07 

LF1 314 0.07 0.08 0.29 565 0.06 0.14 0.17 435 6.3 12.5 0.35 561 2.96 1.10 0.01 91 551.1 70.5 -0.05 

HF2 7024 0.28 0.12 0.09 7024 0.16 0.06 -0.13 13.8k 35.12 39.7 0.27 13.8k 3.14 3.27 0.42 13.8k 27.61 11.09 0.11 

LF2 905 0.28 0.18 -0.09 903 0.16 0.13 -0.22 877 69.80 87.40 0.36 898 2.82 2.55 0.30 605 13.33 5.72 0.06 

                     

SE1 544 0.10 0.09 0.11 537 0.04 0.03 -0.01 518 44.18 80.96 0.44 553 1.58 1.23 0.32 520 9.87 4.61 0.05 

SE2 698 0.08 0.10 -0.07 519 0.04 0.07 0.00 562 10.20 21.42 0.09 676 6.01 4.48 0.62 541 13.53 14.38 -0.16 

SE3 905 0.28 0.18 -0.09 903 0.16 0.13 -0.22 877 69.80 87.40 0.36 898 2.82 2.55 0.30 605 13.33 5.72 0.06 

SE4 569 0.09 0.06 0.00 526 0.02 0.01 0.03 539 12.23 9.43 0.07 570 3.31 1.07 -0.13 569 18.55 7.87 0.15 

SE5 570 0.11 0.17 0.03 324 0.07 0.16 0.05 523 8.38 15.88 0.04 559 4.87 5.03 0.74 514 8.67 5.19 0.00 

SE6 693 0.16 0.14 0.06 461 0.06 0.04 -0.07 649 34.92 63.01 0.34 694 6.38 2.88 0.08 549 9.78 5.17 0.07 

SE7 705 0.37 0.54 -0.33 547 0.23 0.38 -0.43 611 14.72 31.31 0.04 702 8.64 3.01 0.03 579 12.61 7.90 0.01 

SE8 490 0.06 0.07 0.42 448 0.01 0.02 0.25 471 17.56 30.64 0.53 493 8.15 1.83 0.06 493 7.90 2.65 0.20 

SE9 994 0.23 0.22 -0.05 923 0.12 0.12 -0.16 911 37.71 102.5 0.34 992 3.39 2.68 0.44 324 9.33 6.05 0.04 

SE10 596 0.20 0.21 0.30 303 0.05 0.05 0.21 593 53.27 105.6 0.29 596 1.54 1.43 0.34 592 11.89 6.42 0.11 

                     

SE1fp 296 0.16 0.10 0.15 289 0.04 0.02 0.06 284 93.53 97.03 0.32 297 1.81 1.08 0.17 295 10.01 4.28 0.05 

SE2 fp 320 0.07 0.08 -0.07 317 0.03 0.05 0.02 298 17.60 18.80 -0.09 320 5.89 3.29 0.31 319 15.84 3.47 0.09 

SE3 fp 212 0.34 0.16 -0.09 212 0.16 0.12 -0.19 211 117.5 100.9 0.15 209 2.95 2.07 0.19 211 13.14 4.87 0.02 

SE4 fp 297 0.14 0.16 -0.06 297 0.03 0.02 0.02 294 28.32 48.48 -0.10 297 2.52 0.67 -0.08 297 20.42 8.69 0.05 

SE5 fp 256 0.25 0.27 -0.15 256 0.17 0.18 -0.15 250 21.29 29.26 -0.06 254 6.42 5.48 0.40 255 7.93 5.77 0.00 

SE6 fp 306 0.18 0.15 0.08 304 0.06 0.03 0.01 301 59.62 52.62 0.30 305 4.74 1.47 0.04 305 8.71 3.56 0.09 

SE7 fp 253 0.27 0.25 -0.25 253 0.15 0.15 -0.28 243 31.19 59.84 -0.11 253 6.81 2.37 0.07 253 10.44 3.10 -0.02 

SE8 fp 311 0.10 0.08 0.12 310 0.02 0.01 0.22 310 31.06 25.91 0.19 312 7.13 1.25 0.04 312 7.85 2.65 0.16 

SE9 fp 290 0.33 0.27 0.19 287 0.08 0.05 0.01 280 255.0 334.7 0.41 289 2.90 3.01 0.18 286 10.05 7.04 0.19 

SE10 fp 184 0.22 0.15 0.17 183 0.05 0.02 0.05 182 138.8 178.4 0.34 184 1.69 1.50 0.27 184 11.60 4.68 0.11 

                     

NO1fp 491 0.21 0.19 0.33 490 0.04 0.06 0.17 492 91.23 164.6 0.59  -  -  -  - - - - - 



NO2 fp 395 0.50 0.49 0.27 396 0.06 0.06 -0.09 396 297.4 413.4 0.54 396 3.46 1.90 -0.08 - - - - 

NO3 fp 661 0.08 0.13 0.37 654 0.03 0.03 0.21 661 21.00 53.54 0.56 661 7.80 3.53 0.04 - - - - 

NO4 fp 111 0.43 0.39 -0.13 111 0.24 0.23 -0.22 111 46.32 81.56 -0.03 111 9.03 4.73 0.01 - - - - 

NO5 fp 450 0.26 0.34 0.74 421 0.05 0.03 0.37 450 52.26 92.91 0.89 448 4.17 2.24 0.23 - - - - 

NO6 fp 586 0.26 0.27 0.21 204 0.08 0.09 -0.09 583 149.4 260.6 0.54 586 3.48 2.25 0.05 - - - - 

NO7 fp 542 0.15 0.11 -0.02 207 0.05 0.05 0.12 335 11.18 9.95 0.17 536 3.52 1.17 0.15 - - - - 

NO8 fp 432 0.16 0.14 0.05 432 0.06 0.05 0.15 432 11.39 17.39 0.00 429 4.75 1.11 -0.07 - - - - 

NO9 fp 576 0.11 0.09 0.15 576 0.06 0.06 0.14 576 19.53 25.07 0.53 576 0.38 0.28 -0.03 - - - - 

NO10 fp 501 0.07 0.15 0.26 501 0.03 0.10 0.02 498 20.57 46.21 0.38 501 2.58 1.13 0.12 - - - - 

                     

UK1 - - - - 139 0.17 0.11 -0.26 96 12.03 15.51 0.36 141 3.01 2.00 0.38 65 888.9 460.5 -0.03 

UK2 22 0.03 0.03 -0.18 173 0.05 0.17 0.27 173 11.17 15.41 0.08 174 10.63 1.27 0.06 123 615.3 108.2 0.00 

UK3 - - - - 205 0.07 0.17 0.12 166 11.93 22.69 0.77 209 11.71 2.09 0.10 159 724.3 132.3 -0.03 

UK4 - - - - 127 0.13 0.26 -0.41 172 4.70 3.94 0.24 127 9.38 2.06 0.07 42 690.8 96.36 -0.01 

UK5 - - - - 50 0.02 0.01 0.04 - - - - 50 9.57 0.91 -0.03 54 665.8 49.59 0.04 

UK6 21 0.10 0.02 0.24 210 0.13 0.09 -0.08 129 7.11 3.53 0.00 178 14.44 1.50 0.00 114 1770 429.5 -0.12 

UK7 - - - - 89 0.46 0.12 -0.10 5 5.00 2.12 0.32 54 11.27 1.58 -0.03 - - - - 

UK8 - - - - 189 0.04 0.02 -0.21 142 9.52 12.18 0.55 152 10.64 1.55 0.13 138 570.8 110.4 0.05 

UK9 - - - - 210 0.43 0.35 -0.04 168 18.64 27.97 0.33 139 8.47 2.32 0.04 166 735.5 89.29 -0.01 

UK10 - - - - 71 0.68 0.56 -0.36 - - - - 104 13.99 6.71 0.27 49 1088 248.9 -0.07 

UK11 206 0.03 0.02 0.09 207 0.02 0.01 0.00 165 5.55 11.62 0.21 184 10.30 2.40 0.27 158 670.7 64.62 -0.03 

UK12 - - - - 176 0.36 0.25 -0.42 142 10.19 22.93 0.34 152 12.09 2.97 0.01 126 970.6 184.2 -0.12 

UK13 - - - - 164 0.27 0.31 -0.41 - - - - 110 4.37 3.67 0.58 122 764.5 141.9 -0.07 

UK14 - - - - 79 0.02 0.01 0.06 - - - - 79 6.95 2.25 0.27 79 731.1 282.9 0.03 

UK15 - - - - 140 0.20 0.13 -0.34 64 20.74 51.07 0.44 88 5.48 2.70 0.34 156 758.6 117.3 -0.05 

UK16 46 0.21 0.17 0.28 224 0.10 0.08 0.00 - - - - 164 5.71 3.86 0.50 155 782.1 78.08 -0.05 

UK17 - - - - 172 0.03 0.01 0.08 167 6.13 8.14 0.06 142 12.48 0.91 0.10 124 751.5 62.50 -0.01 

UK18 - - - - 90 0.66 0.46 -0.63 - - - - 63 9.67 2.25 0.07 44 895.3 84.03 -0.01 

UK19 - - - - 118 0.38 0.18 -0.38 - - - - 82 14.01 0.66 0.05 93 747.0 29.85 0.06 

UK20 - - - - 141 0.03 0.01 0.14 169 7.55 3.87 0.42 178 11.38 0.65 0.07 94 691.2 98.08 0.00 

UK21 - - - - 182 2.02 1.70 -0.20 115 19.70 18.07 -0.09 146 16.06 3.37 0.04 131 1332 324.0 -0.14 

UK22 217 0.06 0.03 0.53 187 0.03 0.01 0.06 331 6.82 5.13 1.16 151 3.37 0.72 0.40 225 814.2 50.73 -0.05 

UK23 927 0.62 1.19 0.29 1015 0.27 0.13 -0.01 926 58.56 144.2 0.90 978 10.83 3.05 0.03 67 1043 122.6 -0.12 



UK24 - - - - 169 0.27 0.13 -0.34 168 9.30 11.18 0.73 140 7.93 2.04 0.14 155 817.4 55.76 -0.02 

UK25 - - - - 101 0.12 0.12 -0.02 - - - - 65 6.87 4.65 0.41 52 851.0 73.76 -0.06 

UK26 - - - - 134 0.07 0.04 0.08 - - - - 98 5.90 3.76 0.37 113 840.7 70.57 -0.04 

UK27 - - - - 142 1.30 1.32 -0.68 - - - - 103 10.82 6.20 0.05 100 936.8 188.9 -0.10 

UK28 - - - - 188 0.55 0.27 -0.36 141 14.75 35.26 1.19 152 10.61 1.74 -0.11 151 986.9 150.4 -0.22 

UK29 - - - - 176 0.51 0.35 -0.38 72 13.40 25.19 0.55 140 7.40 3.96 0.07 82 832.7 194.6 -0.02 

UK30 - - - - 138 0.56 0.35 -0.55 123 13.67 13.64 0.18 102 7.10 3.74 0.29 44 819.1 125.4 -0.02 

UK31 - - - - 122 0.08 0.16 0.06 6 13.74 5.89 0.62 85 5.63 2.19 0.14 18 734.8 130.8 -0.09 

UK32 - - - - 209 0.07 0.05 0.47 168 6.80 15.78 0.29 173 9.94 2.10 0.11 115 743.4 37.60 -0.03 

UK33 - - - - - - - - - - - - 106 8.70 1.60 0.22 18 668.1 26.04 0.03 

UK34 20 0.03 0.01 -0.01 92 0.05 0.05 0.26 20 3.64 0.86 0.04 92 7.94 0.56 0.02 17 606.8 23.77 0.03 

UK35 - - - - 114 0.02 0.01 0.00 160 5.19 5.46 -0.03 85 8.87 1.19 0.07 28 543.9 93.23 -0.02 

UK36 - - - - 134 0.23 0.33 0.16 - - - - 107 7.22 3.77 0.36 - - - - 

UK37 - - - - 167 0.20 0.15 -0.42 159 11.54 18.13 0.40 202 6.52 3.21 0.25 89 777.1 223.3 -0.17 

UK38 - - - - 161 0.09 0.10 0.29 175 11.15 12.79 0.69 161 8.55 1.71 -0.02 68 735.9 107.6 -0.11 

UK39 - - - - 84 0.09 0.10 -0.02 60 12.58 12.96 0.17 84 7.90 1.93 0.18 80 586.1 53.22 0.02 

UK40 - - - - - - - - - - - - 104 9.04 1.96 -0.19 48 813.9 149.4 -0.18 

UK41 - - - - 144 0.39 0.21 -0.35 6 8.91 8.83 0.88 106 10.15 1.59 -0.05 51 645.4 120.6 -0.21 

UK42 - - - - 151 0.01 0.01 0.32 141 3.84 0.45 0.15 152 0.47 0.31 0.03 95 154.4 47.60 -0.24 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST2 Relative error (mean μ, standard deviation δ, minimum Min and maximum Max) in 

mean concentrations estimated from resampled water quality datasets based on 10,000 Monte Carlo iterations 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) Daily 0.2 3.7 -16.5 12.1 0.7 3.2 -9.6 10.4 

Weekly 0.3 14.7 -73.7 35.7 0.1 10.1 -63.5 22.2 

Fortnightly 0.3 23.0 -113.7 47.4 -0.1 16.7 -116.2 28.2 

Monthly 1.9 34.4 -254.8 59.7 3.2 26.1 -288.1 42.0 

          

TRP (mgl-1) Daily 6.6 1.6 -0.5 11.4 0.5 2.1 -7.7 8.6 

Weekly 6.2 5.5 -25.9 21.4 2.0 6.3 -21.1 25.0 

Fortnightly 6.2 8.4 -50.0 30.3 -0.3 10.4 -42.3 34.5 

Monthly 6.6 13.0 -99.4 45.9 5.9 19.7 -55.3 74.8 

          

TURB (NTU) Daily 4.6 4.2 -19.3 17.1 1.1 5.9 -28.6 15.7 

Weekly 3.2 14.3 -87.0 34.0 -4.7 19.3 -156.2 30.6 

Fortnightly 3.7 20.4 -185.7 39.1 -1.5 29.6 -250.3 44.0 

Monthly 4.2 30.4 -304.8 47.3 0.7 45.1 -440.9 54.6 

          

NO3-N (mgl-1) Daily -5.4 0.3 -6.5 -4.4 -0.1 2.4 -8.2 7.5 

Weekly -5.5 1.3 -11.3 -0.8 -4.7 14.5 -58.2 22.4 

Fortnightly -5.6 2.0 -13.7 2.7 -1.6 22.3 -85.9 36.9 

Monthly -5.7 3.2 -21.4 11.1 0.6 34.2 -304.6 48.7 

          

COND/DOC 

(μSm-1/mgl-1) 

Daily -2.3 0.2 -2.9 -1.6 0.3 0.9 -2.8 4.2 

Weekly -2.2 0.8 -6.0 0.9 -2.2 4.6 -20.3 13.8 

Fortnightly -2.3 1.3 -7.5 2.7 0.5 8.5 -31.9 27.3 

Monthly -2.4 2.0 -11.1 7.0 0.4 12.5 -51.5 32.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST3 Relative error (mean μ, standard deviation δ, minimum Min and maximum Max) in 

standard deviation of the concentrations estimated from resampled water quality datasets based on 10,000 

Monte Carlo iterations 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) Daily 0.9 12.0 -50.0 27.5 3.6 24.9 -63.3 47.2 

Weekly 7.0 37.0 -181.4 74.6 17.8 46.5 -208.5 76.8 

Fortnightly 13.8 51.5 -275.9 82.3 21.9 57.8 -357.1 91.5 

Monthly 23.9 63.0 -386.0 90.5 28.0 72.1 -649.7 100.0 

          

TRP (mgl-1) Daily 4.5 13.9 -71.4 26.2 -0.3 5.1 -18.3 17.9 

Weekly 7.4 28.9 -216.2 43.7 5.7 18.0 -54.3 66.7 

Fortnightly 9.4 35.8 -296.4 53.4 3.8 28.5 -95.6 86.6 

Monthly 13.8 42.4 -466.6 67.7 7.2 53.4 -217.0 100.0 

          

TURB (NTU) Daily -6.0 21.7 -134.1 46.6 3.9 23.9 -133.7 46.8 

Weekly 1.6 52.9 -341.2 74.9 12.1 46.4 -373.1 71.9 

Fortnightly 9.2 62.2 -573.9 81.1 18.5 58.0 -521.6 82.3 

Monthly 20.4 75.6 -771.7 86.0 27.1 69.3 -815.3 90.9 

          

NO3-N (mgl-1) Daily -1.0 2.9 -12.9 8.5 0.0 7.1 -23.4 18.0 

Weekly -0.8 10.3 -54.2 26.0 6.2 31.5 -90.0 42.6 

Fortnightly -0.5 15.1 -94.1 36.3 7.2 42.4 -156.6 52.7 

Monthly 1.0 22.0 -147.2 48.6 10.3 53.4 -299.4 66.6 

          

COND/DOC 

(μSm-1/mgl-1) 

Daily 7.0 3.0 -2.6 16.3 0.3 2.7 -9.3 9.0 

Weekly 8.0 12.5 -47.3 38.4 -1.8 10.4 -40.9 35.6 

Fortnightly 9.0 18.3 -83.5 50.6 0.0 19.3 -75.5 61.7 

Monthly 11.2 26.2 -138.7 69.1 -2.8 29.7 -127.0 72.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST4 Relative error (mean μ, standard deviation δ, minimum Min and maximum Max) in 

maximum concentrations estimated from resampled water quality datasets based on 10,000 Monte Carlo 

iterations. Minimum error is 0 in all cases as at least one of the resampled datasets contains the absolute 

maximum value 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) Daily 39.2 17.6 0.0 61.5 37.3 20.9 0.0 70.7 

Weekly 63.5 17.1 0.0 94.5 64.6 15.0 0.0 80.7 

Fortnightly 74.1 17.7 0.0 96.6 70.2 12.4 0.0 82.9 

Monthly 83.0 15.3 0.0 97.7 75.6 10.1 0.0 88.6 

          

TRP (mgl-1) Daily 56.0 20.2 0.0 83.7 2.7 2.8 0.0 11.8 

Weekly 78.0 13.3 0.0 91.7 19.7 12.9 0.0 50.0 

Fortnightly 82.6 11.0 0.0 93.8 27.7 13.1 0.0 55.9 

Monthly 86.8 8.4 0.0 95.7 40.6 17.0 0.0 85.3 

          

TURB (NTU) Daily 61.1 14.7 0.0 89.6 62.5 15.0 0.0 87.4 

Weekly 80.6 13.1 0.0 97.6 81.6 11.1 0.0 94.8 

Fortnightly 86.3 10.8 0.0 98.3 86.5 9.5 0.0 96.5 

Monthly 91.1 9.3 0.0 98.8 90.6 7.7 0.0 97.2 

          

NO3-N (mgl-1) Daily 38.3 13.6 0.0 52.4 13.0 10.8 0.0 39.8 

Weekly 49.8 7.5 0.0 58.3 59.2 21.7 0.0 79.5 

Fortnightly 52.3 6.4 0.0 60.1 67.9 18.7 0.0 86.8 

Monthly 54.7 5.5 0.0 62.9 76.1 14.9 0.0 90.0 

          

COND/DOC 

(μSm-1/mgl-1) 

Daily 19.2 12.8 0.0 54.1 14.0 8.5 0.0 29.9 

Weekly 45.6 13.8 0.0 61.7 27.5 7.8 0.0 49.2 

Fortnightly 51.7 11.9 0.0 62.5 33.5 9.3 0.0 57.7 

Monthly 56.2 9.8 0.0 63.5 40.1 10.5 0.0 66.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST5 Relative error (mean μ, standard deviation δ, minimum Min and maximum Max) in 

95th percentile of the concentrations estimated from resampled water quality datasets based on 10,000 Monte 

Carlo iterations 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) Daily 0.0 6.0 -30.8 18.7 -2.7 6.3 -47.5 16.1 

Weekly -3.8 24.7 -272.3 44.9 -14.5 44.9 -221.0 35.8 

Fortnightly -10.8 47.9 -461.0 55.3 0.6 41.4 -233.1 42.9 

Monthly -35.6 94.9 -885.1 72.1 18.8 33.7 -233.1 61.9 

          

TRP (mgl-1) Daily 7.9 2.7 -5.6 18.0 -1.8 8.2 -21.7 16.6 

Weekly 6.0 10.1 -49.5 35.7 1.1 14.6 -25.2 37.0 

Fortnightly 5.8 15.0 -132.0 43.8 9.0 16.5 -25.9 44.4 

Monthly 4.5 26.0 -301.8 53.9 25.2 21.5 -25.9 81.5 

          

TURB (NTU) Daily -0.6 5.9 -34.4 15.8 1.1 11.1 -76.8 29.2 

Weekly -5.9 22.6 -203.5 35.4 -22.0 52.2 -533.7 54.4 

Fortnightly -11.8 39.1 -428.9 46.8 -18.6 81.8 -765.3 68.4 

Monthly -27.3 75.6 -1375.8 61.4 15.7 69.5 -799.7 74.5 

          

NO3-N (mgl-1) Daily -2.9 0.5 -5.2 -0.9 0.8 4.4 -12.6 15.6 

Weekly -2.9 1.9 -16.4 3.0 -18.0 37.2 -141.9 31.0 

Fortnightly -3.1 3.2 -30.6 5.8 -21.8 68.9 -272.5 49.0 

Monthly -3.6 5.9 -64.0 10.6 7.5 57.7 -286.6 61.4 

          

COND/DOC 

(μSm-1/mgl-1) 

Daily -0.9 0.3 -2.3 0.0 0.3 1.8 -4.7 7.3 

Weekly -0.9 1.1 -9.1 1.9 0.7 7.7 -27.5 26.6 

Fortnightly -1.1 1.8 -16.4 3.2 3.8 13.2 -44.2 39.0 

Monthly -1.7 3.6 -38.0 4.1 12.7 15.4 -45.8 50.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST6 Relative error (mean μ, standard deviation δ, minimum Min and maximum Max) in 

load estimated from resampled water quality datasets based on 10,000 Monte Carlo iterations 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) Daily 1.3 18.4 -62.9 43.5 9.4 34.4 -167.5 51.3 

Weekly 10.1 41.2 -196.0 76.1 26.1 30.6 -236.0 64.0 

Fortnightly 17.0 48.0 -266.7 80.7 29.1 30.0 -236.0 64.0 

Monthly 25.7 53.1 -464.4 88.9 32.6 28.8 -236.0 64.0 

          

TRP (mgl-1) Daily -2.3 12.0 -46.3 26.8 -3.1 14.1 -86.8 68.0 

Weekly 3.4 28.9 -135.4 48.2 -11.9 28.6 -153.0 91.2 

Fortnightly 7.9 33.6 -162.6 55.6 -19.0 38.7 -153.0 92.6 

Monthly 14.7 37.0 -196.8 69.5 -17.0 45.6 -153.0 92.6 

          

TURB (NTU) Daily -4.3 22.7 -121.9 51.8 12.6 44.5 -206.7 72.8 

Weekly 2.4 66.6 -556.1 78.3 40.6 44.9 -307.3 96.8 

Fortnightly 9.8 80.8 -1051.6 83.4 52.4 41.7 -509.3 96.2 

Monthly 22.6 98.0 -1642.3 87.4 60.1 38.8 -313.9 97.3 

          

NO3-N (mgl-1) Daily -4.1 3.1 -14.7 9.1 0.0 17.5 -131.8 47.3 

Weekly -4.7 7.9 -40.0 38.8 7.3 38.3 -359.5 96.6 

Fortnightly -5.0 10.0 -45.1 55.6 17.6 51.9 -414.7 117.3 

Monthly -5.3 11.7 -66.4 64.5 29.4 56.8 -414.7 117.3 

          

COND/DOC 

(μSm-1/mgl-1) 

Daily -1.0 4.1 -13.3 12.1 3.2 10.4 -39.9 40.9 

Weekly -4.0 11.3 -28.4 33.7 14.2 19.4 -62.1 81.3 

Fortnightly -6.6 13.9 -34.7 42.4 23.9 23.8 -63.5 81.3 

Monthly -10.0 15.9 -41.7 50.3 29.3 25.1 -63.5 81.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST7 c-q slope calculation (mean μ, standard deviation δ, minimum Min and maximum 

Max) from resampled water quality datasets based on 10,000 Monte Carlo iterations 

Determinand Sampling HF1    HF2    

  μ  δ Min Max  μ  δ   Min Max  

          

TP (mgl-1) HF 0.36    0.09    

LF 0.29    -0.09    

Daily 0.36 0.01 0.30 0.40 0.17 0.05 -0.24 0.42 

Weekly 0.35 0.05 0.15 0.55 0.18 0.32 -0.17 0.78 

Fortnightly 0.36 0.07 0.17 0.69 0.12 0.33 -0.25 0.81 

Monthly 0.42 0.10 0.19 1.03 0.20 0.34 -0.14 0.58 

          

TRP (mgl-1) HF  0.24    -0.13    

LF 0.17    -0.20    

Daily 0.26 0.01 0.22 0.29 -0.20 0.08 -0.81 -0.08 

Weekly 0.26 0.03 0.13 0.41 -0.25 0.48 -0.42 0.52 

Fortnightly 0.27 0.05 0.13 0.52 -0.27 0.76 -0.16 0.93 

Monthly 0.31 0.07 0.16 0.61 1.99 0.95 -0.92 1.63 

          

TURB (NTU) HF 0.32    0.27    

LF 0.35    0.36    

Daily 0.35 0.01 0.31 0.41 0.27 0.04 0.09 0.43 

Weekly 0.35 0.05 0.19 0.54 0.31 0.12 -0.24 0.94 

Fortnightly 0.35 0.07 0.13 0.61 0.33 0.15 -0.64 0.61 

Monthly 0.36 0.10 0.14 0.81 0.30 0.17 -0.75 0.58 

          

NO3-N (mgl-1) HF -0.04    0.42    

LF 0.01    0.30    

Daily -0.04 0.01 -0.08 -0.02 0.42 0.05 0.27 0.74 

Weekly -0.07 0.03 -0.26 0.05 0.49 0.16 0.08 0.49 

Fortnightly -0.10 0.06 -0.46 0.09 0.55 0.31 0.02 0.75 

Monthly -0.11 0.12 -0.85 0.32 0.54 0.28 0.12 1.37 

          

COND/DOC 

(μSm-1/mgl-1) 

HF -0.07    0.11    

LF -0.05    0.06    

Daily -0.06 0.00 -0.07 -0.04 0.11 0.02 0.05 0.20 

Weekly -0.06 0.01 -0.10 -0.02 0.15 0.08 -0.08 1.07 

Fortnightly -0.06 0.02 -0.12 -0.02 0.17 0.29 -0.40 0.37 

Monthly -0.07 0.02 -0.19 0.03 0.20 0.24 -0.02 0.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST8 Comparison between single linear (c-qQ<>) and two linear c-q slopes (c-qQ< for flows 

lower than the threshold value Q and c-qQ> for flows higher than the threshold value Q) for time series showing 

step changes in the c-q relationship. Slopes which are not significant at 0.05 level are marked with strikethrough. 

Flow-proportional datasets are marked with fp 

Dataset c-qQ<> c-qQ< c-qQ> Q (m3s-1) Q 

percentile 

TP p=0.03     

SE1 0.11 -0.10 0.53 0.30 44 

SE6 0.06 -0.16 0.28 0.10 53 

SE9 -0.06 -0.29 0.54 0.31 71 

NO5fp 0.74 0.75 1.00 0.05 91 

NO6fp 0.21 -0.05 0.34 0.32 53 

UK23 0.29 -0.07 0.22 0.25 40 

      

RP p=0.07     

SE9 -0.16 -0.29 0.31 0.27 71 

SE10 0.21 -0.02 0.46 0.10 47 

UK7 -0.10 -0.43 0.40 0.63 90 

UK13 -0.41 -0.66 0.21 0.30 82 

UK36 0.26 -0.16 0.50 0.29 64 

      

SS p=0.02     

NO3fp 0.56 0.36 0.73 0.06 77 

NO6fp 0.54 0.22 0.55 0.30 53 

NO9fp 0.53 0.36 0.58 0.10 80 

UK23 0.90 0.41 0.59 0.31 40 

      

NO3-N p=0.17     

HF2 0.42 0.10 0.28 0.01 62 

SE2 0.62 0.44 0.37 0.28 70 

UK16 0.50 0.84 0.00 0.03 22 

      

DOC -     

HF2 0.11 0.04 0.25 0.01 62 

      

COND p=0.10     

HF1 -0.07 -0.06 -0.26 10.0 98 

SE10 -0.18 -0.04 -0.28 0.10 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table ST9 Linear trends for flow and water quality time series in the study catchments. An 

annual change in flow and concentrations is given and expressed in percentage terms (annual change divided by 

the mean flow/concentration). Annual trends which are not significant at 0.05 level are marked with strikethrough. 

Flow-proportional datasets are marked with fp 

Dataset Q TP RP SS LF 

TURBHF 

NO3-N DOC COND 

HF1  -9.69 3.18 2.78 8.68 -6.72  - -2.13 

LF1 0.78 0.56 -0.72 1.73 -0.28 -2.26 0.13 

HF2 8.30 -2.20 -5.18 4.35 4.86 1.85  - 

LF2  - -2.24   - 5.31 -1.26   - 0.20 

        

SE1 0.53 -0.57 -3.61 2.67 0.45 1.04 -0.45 

SE2 1.17 -3.14 0.37 -1.60 -0.95 2.57 -0.11 

SE3 0.78 0.56 -0.72 1.73 -0.28 -2.26 0.13 

SE4 1.02 0.94 2.72 4.61 -2.95 2.54 -1.46 

SE5 -1.27 5.03 2.63 1.05 -3.56 2.29 0.99 

SE6 0.77 -4.07 -6.76 -2.34 -2.35 -2.38 0.08 

SE7 1.70 -5.00 -5.97 -4.00 -1.22 -2.32 -0.60 

SE8 0.52 -0.83 1.02 0.90 -3.20 0.87 -0.89 

SE9 0.64 -1.49 -4.24 5.15 -1.42 -10.05 -0.39 

SE10 0.00 -1.62 -12.79 4.65 -3.18 -0.74 1.07 

               

SE1fp 0.53 3.11 4.83 -0.37 2.44 -2.54 -0.66 

SE2fp 1.17 3.13 0.23 8.50 0.42 -3.35 1.18 

SE3fp 0.78 -4.06 -2.96 -10.67 -2.16 -2.48 2.48 

SE4fp 1.02 0.53 4.97 -7.23 1.11 -5.53 -2.31 

SE5fp -1.27 9.46 11.58 5.62 -1.93 -4.96 1.14 

SE6fp 0.77 4.24 3.84 0.79 0.76 -4.78 1.29 

SE7fp 1.70 10.50 16.72 1.29 1.60 -2.18 0.22 

SE8fp 0.52 2.17 -0.76 2.49 0.97 -3.73 0.65 

SE9fp 0.64 1.21 3.48 -3.27 -2.50 -3.78 1.84 

SE10fp 0.00 -4.66 0.71 -17.44 -8.00 -2.77 3.70 

               

NO1fp 0.13 -0.22 0.29 -4.55   -   -   - 

NO2fp -1.94 7.17 3.22 0.49 -1.03   -   - 

NO3fp 1.04 2.24 0.80 3.74 -0.98   -   - 

NO4fp 4.74 -2.44 5.75 -17.88 -7.79   -   - 

NO5fp 1.80 -3.65 1.11 -6.78 -0.35   -   - 

NO6fp 0.13 1.92 -10.57 2.31 1.12   -   - 

NO7fp 0.17 -1.81 -15.92 1.89 -0.63   -   - 

NO8fp 0.72 0.57 2.19 -2.01 -0.33   -   - 

NO9fp -1.66 -0.67 -1.64 1.24 -0.65   -   - 

NO10fp -1.87 -2.27 -5.23 1.23 -1.49   -   - 

               

UK1 1.40   - -1.15 -2.75 -3.77   - 2.19 

UK2 0.06 -3.25 3.99 6.77 0.51   - 0.53 

UK3 1.56   - -12.93 -7.14 -0.81   - 0.13 

UK4 1.28   - -9.38 0.52 1.15   - 0.86 

UK5 0.53   - -16.84   - -0.56   - -2.12 

UK6 -0.06 -6.77 -8.38 -3.22 0.14   - -3.76 

UK7 0.17   - -4.25   - 0.09   -   - 

UK8 -0.09   - -1.48 0.11 -0.73   - -0.48 

UK9 0.68   - -0.19 -1.28 -0.58   - -0.33 



UK10 -0.65   - -2.28   - -1.94   - 1.76 

UK11 -0.72 0.10 -0.82 -1.59 -1.55   - 0.17 

UK12 -1.26   - -0.02 -3.50 -2.03   - 0.78 

UK13 0.82   - -4.00   - 1.40   - 0.19 

UK14 0.40   - -14.34   - 0.84   - -2.08 

UK15 1.56   - 3.65 28.88 -4.38   - 0.03 

UK16 -0.05 -19.39 -3.90   - -1.49   - 0.19 

UK17 -0.11   - 0.18 2.91 -0.19   - 0.28 

UK18 0.19   - 1.81   - 2.53   - 0.13 

UK19 -0.26   - -1.25   - -0.36   - -0.08 

UK20 0.31   - -0.04 -0.55 0.21   - 0.32 

UK21 1.00   - -13.58 -9.29 -1.20   - -0.34 

UK22 0.50 -3.35 -0.87 -3.14 -3.33   - 0.07 

UK23 0.58 -7.00 -0.35 -11.45 -1.83   - 0.11 

UK24 0.42   - -5.50 -3.32 -1.24   - -0.21 

UK25 0.39   - 4.29   - -3.08   - 0.03 

UK26 0.74   - -1.58   - -0.37   - 0.02 

UK27 0.06   - -1.69   - -1.81   - 1.08 

UK28 0.64   - -1.65 -2.22 -0.03   - 0.34 

UK29 0.25   - -0.44 21.83 -1.02   - 0.25 

UK30 -0.10   - -1.09 2.52 -1.41   - 1.21 

UK31 0.74   - -0.22 -149.00 -1.17   - -1.54 

UK32 -0.52   - -4.56 -0.30 0.40   - 0.11 

UK33 0.56   -   -   - 0.87   - -1.42 

UK34 0.97 -3.53 -2.97 -12.09 0.21   - -0.34 

UK35 0.82   - -1.55 4.90 -3.64   - 8.00 

UK36 -0.20   - 0.91   - -5.84   - -2.98 

UK37 0.10   - -0.38 -4.78 -1.91   - 1.21 

UK38 0.41   - -1.42 -6.10 -1.38   - -1.29 

UK39 0.79   - 13.47 0.69 3.15   - 0.09 

UK40 2.00   -   -   - -1.28   - 0.65 

UK41 0.20   - 9.32 -2.67 -4.33   - -0.09 

UK42 0.15   - -2.09 7.92 -2.94   - 0.52 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure SF1 Relative errors in mean (top row), 95th percentile (second row), load estimation (third row) and c-q slope (bottom row) for HF1 for TP, TRP, 

TURB, NO3-N and COND. The central red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the most extreme data 

points and outliers are plotted as red crosses 

 

 



 

Supplementary Figure SF2 Relative errors in mean (top row), 95th percentile (second row), load estimation (third row) and c-q slope (bottom row) for HF2 for TP, TRP, 

TURB, NO3-N and COND. The central red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the most extreme data 

points. For better clarity the figure does not contain outliers (given in Supplementary Figure SF3) 

 

 



 

Supplementary Figure SF3 Relative errors in mean (top row), 95th percentile (second row), load estimation (third row) and c-q slope (bottom row) for HF2 for TP, TRP, 

TURB, NO3-N and COND. The central red mark is the median, the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the most extreme data 

points and outliers are plotted as red crosses 



 

Supplementary Figure SF4 Relationship between c-q slope b calculated from the grab (horizontal axes) and 

flow-proportional sampling (vertical axes) for determinands (a) and catchments (b) 

 

 

 



 

Supplementary Figure SF5 Analysis of variance (Kruskal-Wallis one-way ANOVA) for the c-q slopes b for 

annual linear trends >5%. For each determinand datasets showing >5% linear trends (as in Supplementary Table 

ST9), were divided into two sub-datasets and c-q slopes were calculated independently for each half. The central 

red mark is the mean, the edges of the box are the 25th and 75th percentiles, the black whiskers extend to the most 

extreme data points and outliers are plotted as red crosses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure SF6 The effect of linear trends on the c-q slopes b for TRP and NO3-N for the 

catchments UK6 (top figure) and NO4 (bottom figure). Both determinands for these catchments show significant 

annual linear trends of -8.38% and -7.79% respectively (Supplementary Table ST9). The time series were split in 

half (circles for the first half and squares for the second half) and c-q slopes were calculated independently for 

each half with the best fit line fitted. The dashed line indicates the best fit line fitted to the whole time series. All 

axes are in logarithmic scale 
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