

A Framework for P2P Application Development

James Walkerdine, Lee Melville, Ian Sommerville
Computing Department, Lancaster University, Lancaster, UK

 {walkerdi, l.melville, is} @comp.lancs.ac.uk

ABSTRACT
Although Peer-to-Peer (P2P) computing has become
increasingly popular over recent years, there still exist
only a very small number of application domains that
have exploited it. This can be attributed to a number of
reasons including the rapid evolution of P2P
technologies, coupled with their often-complex nature.
This paper describes a framework that has been
developed that seeks to aid developers in building P2P
applications and therefore cut short development time.

1. Introduction

There is no denying that P2P has become an
increasingly popular technology over the last decade.
As well as the development of well known P2P
applications such as Napster [1], ICQ [2] and MSN
Messenger [3], there has also been considerable
research within the area. In particular, research has
focused on aspects such as improving routing strategies,
new overlay structures, and tackling quality of service
issues.

Despite these many developments the actual number
of application domains that have exploited this
technology has remained a niche technology, typically
focusing on groupware such as instant messaging,
forums, shared workspaces and file sharing. Although
P2P technology can obviously provide significant
benefits to such domains, it does seem that the potential
of P2P is not being fully utilised.

Why P2P technology has not been so readily adopted
is most likely due to a number of reasons, in particular
the lack of design support for developers of P2P
applications and the complexity of the underlying P2P
technology. The vast majority of P2P research has
focused on the low level aspects of P2P technology.
Little work has been carried out on the actual design
process for P2P application development. To an extent
this has been addressed within the EC funded P2P
ARCHITECT [4] project that has developed a
methodology, reference architectures, notations and

guidelines for P2P application development, with a
particular focus on business environments.

Although there has been and continues to be P2P
technological developments, they often evolve rapidly
or require sufficient understanding of their workings
before they can be successfully applied. In our own
experiences with Sun's JXTA API [5], we found we
needed to gain a clear understanding of the JXTA
concepts and workings before we could successfully
build a P2P application - a task that involved several
months of effort. Similar experiences have also been
reported by others [6].

It is not surprising that given the complexity of
existing P2P technology and the lack of support for the
design process, developers can find the prospect of
building P2P applications a daunting task. Ultimately
this not only has a detrimental effect on the research
area as a whole with its potential exploitation being
reduced, but also on its uptake within industrial
domains with businesses being less likely to commit the
money and effort in order to utilise it.

This paper presents the P2P Application Framework,
a model and implementation that seeks to reduce the
overhead in developing P2P applications by providing a
set of generic and protocol dependant application
orientated services. As a result it is hoped that this will
encourage the rapid development of more applications
(potentially in different application domains), and also
make the use of P2P technologies more feasible within
business environments.

The paper begins by providing an overview of the
P2P Application Framework, describing its overall
structure and key concepts. A publicly available Java
based implementation of the framework is then
presented, before finally ending with a discussion of
developer's experiences in using the framework. This
discussion also demonstrates the framework in use.

 1

P2P Application Framework

P2P Protocol/Substrate

Physical Network

Interface Layer

Plug-insResource
Types

Resources

User

Figure 1 - The P2P Application Framework model

2. The P2P Application Framework
The P2P Application Framework is intended as a

mechanism to help developers in building P2P
applications. It achieves this by providing in-between
layers that further removes the developer from the
underlying P2P technology. A consequence of this is
that the developers who use the framework do not need
to understand how the P2P technology functions, and
instead they can focus their time purely on building the
applications (referred to as plug-ins) that will utilise it.
Furthermore, the additional abstraction means that
developed plug-ins are independent of the underlying
P2P protocol/substrate that is used. So for example,
using the framework the same Instant Messenger plug-
in could operate over Pastry [7] or JXTA without being
changed.

To assist the developer the framework provides a set
of commonly used and generically accessible services,
for example message communication or resource
searching. However, unlike typical middleware that
tends to operate at a low level, these services operate at
a higher level and are provided specifically for use by
GUI styled applications.

The design of the P2P Application Framework is
structured around a semi-centralised P2P network
model, in that there exists one or more peers within the
system that have an increased role and capabilities.
Within the P2P Application Framework these nodes
essentially act as index peers in a similar vein to those
that exist in P2P applications such as Napster or ICQ.
Their objective is to support the running of the network
(by providing look-up styled services), rather than to
control it.

A semi-centralised structure was chosen as it was
deemed to be better suited for providing many of the
framework services [8]. There is no reason, however,
why the framework could not be modified so that it
could operate over a fully decentralised approach. It
would simply mean that such functionality would have
to be spread over all the peers within the network.

Figure 1 shows the structure of an individual peer
within the P2P Application Framework model. It should
be noted that both standard and index peers possess this
structure. A breakdown of this model will now be
provided.

P2P Protocol/Substrate - this layer within the model
represents the underlying P2P technology that is being
used within the system. This could be, for example,
JXTA, Pastry or Gnutella [9].

Interface Layer - a key characteristic of the P2P
Application Framework is that it is sufficiently generic
and abstract that it can be utilised on top of different
types of P2P system. In order for the framework to
communicate with the underlying technology there
needs be a special interface layer that translates the
communication between the two. For example, if it is
desired for the framework to be built on top of Pastry
then an interface layer that is tailored for Pastry would
be required to allow the framework to make use of the
protocol. The difficulty in building interface layers will
be dependent on the individual protocol/substrate,
however existing work has already shown such layers
can be created for a number of protocol types [10]. As
will be discussed later, the implementation of the
framework that we have developed is based on JXTA

 2

and so in this case the interface layer supports the
communication between the framework and JXTA.

P2P Application Framework - the framework itself
sits on top of the Interface Layer and provides the
foundation for application development. The framework
provides a number of generic services that are
accessible to developers.
• Message Communication - the framework handles

all communication aspects within the P2P system.
Developers do not need to worry about how to
construct messages specific to the underlying P2P
technology or how peers within the network are
addressed. Instead messages are simply comprised
of attribute name: value pairs (e.g., 'Message: Hello
there'), and are sent to targets based on their User
ID. If a sending peer does not know the location of
a target peer a look up request is made with the
index peers. The framework can also deal with
communication with a user/peer that is off-line. In
this case the message is stored by an index peer and
forwarded on the next time the target user/peer
comes back on-line.

• File Sharing - the framework provides generic
facilities for file sharing between peers. Obviously
the capabilities of the file sharing support will be
dependent on the underlying P2P technology that is
used. This means that, depending on the
technology, NAT and firewalls may be an issue.

• Search - the framework provides generic search
facilities that allow plug-ins and users to search the
network for resources and other users. These search
facilities are tied in with the index peers that exist
within the network and operate in a manner similar
to applications such as Napster. The index peers
maintain a catalogue of the users/resources within
the network, and individual peers can interrogate it.

• Awareness - the framework provides awareness
facilities that allow peers and their respective plug-
ins to stay up to date on the status of users and
resources they have an interest in [11]. Again this is
tied in with the index peers, and can operate in bi-
directional manner - the index peers can inform
interested peers of status changes, and the peers can
also interrogate the index peers.

• Monitoring - the framework provides support for
monitoring capabilities which allows users/plug-ins
to access information about the P2P system. This
could, for example, be information about peer
communication, peer resources, peer availability or
peer location. The network monitoring information
is collected by and stored on the index peers, and
can be interrogated by individual peers.

• Favourites List - the framework is able to maintain
a favourites list for each user. This can be used to
capture favourite/interested users and also
potentially some types of resources (for example,
shared disk space). Users can use the contents of
the favourites list as shortcuts or as reminders. As
well as being held locally a copy of a user's
favourites list can also be stored on the index peers.

• Front-end - the framework provides a general
front-end in which the user is able to manage and
activate developed plug-ins, access the frameworks
search service, and manage their user details
(including favourites list).

User - as with some existing P2P systems such as
Instant Messengers (ICQ, MSN Messenger, etc), within
the framework it is the user rather than the peer that is
the unique identity within the system. This means that a
user can switch between different peers whilst still
maintaining their customisations (such as favourites list,
plug-in settings, etc). All users are assigned a unique ID
by the index peer, which identifies them within the
network

Plug-ins - a key concept within the framework is that
of plug-ins. A plug-in can essentially be thought of as a
P2P application (such as an instant messenger, file
sharing tool, etc) that is built to make use of the P2P
Application Framework. Plug-ins draw upon the
services provided by the framework in order to carry
out their operation. Because a significant amount of the
required functionality is already catered for, plug-ins
can be developed quickly and typically require less code
than their standalone equivalents.

A flexible and independent relationship exists
between the plug-ins and framework as a result of a
standardised two-stranded communication protocol.
This is comprised of a:

• Common Plug-in Interface - All plug-ins that
wish to be apart of the framework must conform
to a specified interface. This ensures that
suitable access points exist through which the
framework can interrogate the plug-in.
Information that the framework may want to
have access to could range from the plug-in's
name through to what resources it contributes to
the network. These access points also provide
the means in which the framework passes along
messages relevant to the plug-in that it has
received. Implementing the interface would
typically involve the plug-in providing a set of
publicly accessible methods. An example of this
is provided later in the paper.

• P2P Application Framework API - In order to
provide a means for the plug-ins to access the

 3

services that are provided, the framework
possess an API. This API provides plug-ins (and
their developers) with a simple way to access the
frameworks functionality. The scope of the API
is obviously dependent on the implementation of
the framework but would typically include
access to aforementioned services and possibly
utility methods to help plug-in developers (for
example, Byte to Object conversion methods).
Again an example of our implementation's API
is provided later in the paper.

Because the relationship between the plug-ins and
framework is quite generic and loosely coupled, a fair
degree of adaptability is provided for (as will be
discussed later).

Plug-ins possess a unique ID that is consistent across
the whole system. These IDs are assigned by the index
peer during the plug-in's creation and help to determine
where messages are from and where they should be
routed. For example, a message could be sent to a plug-
in (Plug-in ID:2) on a users machine (User ID: 5).

Resources - as with many existing P2P applications,
plug-ins are able to contribute resources to the network.
For example, a file sharing plug-in may contribute MP3
files to the network. The term 'resource' is used in a
very broad sense in that a resource could be, in theory,
anything that a plug-in can contribute. Furthermore a
contribution does not necessarily need to be a physical
entity (for example, a file), but could, for example, also
represent the willingness for that peer/user to take part
in an activity. For example, the willingness for the user
of a peer to take part in a P2P based game. Contributed
resources are registered with the index peer so that a
consistent and easily searchable network wide catalogue
is maintained (c.f. Napster).

Resource Types - to help identify resources within
the network, they can be assigned a Resource Type. A
Resource Type essentially represents a broad
classification of the resource. For example, an MP3
resource could be assigned an 'Audio' Resource Type.
In a sense they are similar to Mime Types, although
they are not just restricted to file based resources and
are more open ended.

By semantically classifying resources in this way it
becomes easier for the framework and other plug-ins to
identify and utilise the resources that exist within the
network. One of the key advantages of such an
approach is that it allows the possibility of a resource
that is being made available by one plug-in to be then
utilised by another plug-in. For example, a file sharing
plug-in contributes 'Audio' Resource Type resources
and an audio player plug-in plays them.

In order to keep aware of what plug-in:resource type
relationships exist, the framework interrogates each
plug-in to discover what Resource Types it is interested
in. For example, the audio player plug-in would inform
the framework that it is interested in 'Audio' Resource
Types. Again this provides the framework with a degree
of flexibility.

A key factor with the relationships that exists
between the plug-ins, its resources and the framework is
that of adaptability. Because there exists a generic and
loosely coupled connection between these three entities
it means that plug-ins and resources can be added and
removed from the system at will, with the framework
being able to adjust itself accordingly. For example, a
user may have located a resource on the network of
'Audio' Resource Type. However, they do not possess a
suitable plug-in to handle that type and the framework
indicates this to them. After installing the audio player
plug-in, the framework will now highlight that this can
handle the particular resource.

Our implementation for the framework highlights
other ways in which this adaptability can be utilised,
and this will be discussed in the following section.

3. Implementing the P2P Application
Framework

This section provides a brief overview of our
implementation of the P2P Application Framework.
Fully working releases have been made publicly
available and have been used within a number of
projects. Experiences in using the P2P Application
Framework are provided later in this paper.

Implementation development work has been spread
over a year, building on our existing developments as
part of the P2P ARCHITECT project. Within this
project we built a simple instant messenger application
that ran on top of Sun's JXTA P2P API, in order to gain
experience in P2P application development.

Based on our somewhat frustrating experiences with
JXTA and the need for an interface layer for the P2P
Application Framework, an abstraction was then
developed. This captured the commonly used
functionality of JXTA, provided support for a semi-
centralised architecture structure, and acted as a bridge
between the framework and JXTA.

The framework itself was written in Java and makes
use of reflection to interrogate the available plug-ins.
Again this reinforces an adaptable nature by ensuring
that no plug-ins or resources are hardwired into the
framework itself. Developed plug-ins are stored within
a directory structure that is searched by the framework
on initialisation. Any plug-ins it finds are loaded and
instantiated via reflection. Currently there exists a single

 4

index peer that makes use of a MySQL database in
order to capture details about the state of the network.
There is no reason why additional index peers could not
be used, although important decisions would need to be
made with regards to ensuring database consistency.
The incorporation of multiple index peers into our
implementation is an area we intend to examine in the
future.

The current stable release of the framework
possesses all the services that have been previously
described, apart from the monitoring support that is to
be incorporated into the next release. A number of plug-
ins have been developed to test the framework, with
more still in development. A summary of these plug-ins
will be provided later in the paper.

User ID

Favourites
List

P2P Application Framework Front-end
Installed
Plug-ins

It was desired to develop a front-end for the
framework that was similar in appearance to many
existing instant messenger applications, primarily
focusing around a buddy list (a favourites list), but with
buttons to access the framework's functionality and
installed plug-ins. Figure 2 provides a screenshot of the
framework implementation's front-end.

In addition to the features common to instant
messenger applications (for example, user awareness
within the favourites list), the screenshot also illustrates
the plug-ins that have been loaded into the framework,
as well as showing one way in which the framework
implementation can adapt to the plug-ins. In this

instance the options that appear in the pop-up menu
reflect what is specified by the plug-ins (i.e., whether or
not the individual plug-ins desire to add a menu entry).
As new plug-ins are added or old ones removed the
options within the pop-up menu adapt accordingly.

Figure 2 - Front-end of the framework
implementation

Figure 3 - Searching with the framework

 5

Searching with the framework
Our implementation allows both plug-ins and users

to search the network for other users and available
resources. As previously discussed, when a search is
performed a query is sent to the index peer, which
interrogates its associated database. Figure 3 provides a
screenshot of the implementations search facilities. In
this example the user has performed a general resource
search and so a list of all currently available resources is
returned. As can be seen, the Resource Type for each
resource is displayed, along with an indication of the
plug-in that is providing the resource (if it is known by
the user's framework installation). By selecting a
resource the user can bring up a menu that displays all
the plug-ins that can access this resource (based on
which plug-ins have registered an interest in that
Resource Type). Selecting a plug-in would then invoke
it with the selected resource. In this example, by
selecting the File Sharing plug-in the user can download
the file to their peer.

The implementation's API also provides a search
method that allows plug-ins to access the frameworks
search service transparently to the user.

4. Using the P2P Application Framework
A pre-release of the implemented framework was

released to developers in early 2004. This allowed for
testing, refinement of the framework API and
development to begin on an initial set of plug-ins.

The first full release was made publicly available in
April 2004, accompanied with API documentation, user
guide and examples. To date six plug-ins have been
developed for use with it, with four more currently in
development. Not only has the framework been used by
colleagues within the department, but also as part of a
number of BSc and MSc student projects. Furthermore
there has also been interest expressed from external
institutions, although currently we are only able to
provide limited support. Table 1 summarises (a)
currently completed and ongoing plug-in developments,
and (b) the Resource Types that have so far been
created.

After initial bugs were fixed, feedback from users
and plug-in developers' has been particularly positive.
Developers have commented that once they have
understood how the framework functions, plug-in
development has been quick and straightforward. In
general developers have found the framework to
considerably reduce development time (weeks rather
than months). We intend to perform a more quantitative
analysis in due course.

In order to demonstrate the use of the framework
from the developers' perspective, we will now provide a
simple breakdown of the developed Instant Messenger

plug-in. This will focus on highlighting the aspects in
which the plug-in and framework interact.

Table 1 - (a) Completed and ongoing plug-ins (b)
Current Resource Types

Icon Plug-in Description

Instant
Messenger

A typical instant messenger
application similar to ICQ

File Sharing Napster styled file sharing

application

Network Mood Simple visualisation of overall

user 'mood' within the network

O's and X's
Game

Simple P2P based Noughts and
Crosses game (or Tic-Tac-Toe)

Distributed
Video Encoder

P2P based video encoding
application

Digital Library P2P based Digital Library with

natural language processing
facilities

N/A Network
Visualiser

Provides various types of 2D/3D
visualisations of the system

N/A Intelligent Video
Streaming

Streaming video between peers
with video quality determined by
peer resources (CPU, etc)

N/A RADP2P An adaptable P2P system

N/A Requirements
Analysis

A P2P based system for
designers to capture and analyse
requirements
(a)

Icon Resource
Type

Description

Video Encoding Donating CPU resources for video

encoding

Audio Audio Files

Compressed Compressed Files

Document Document Files

Program Program Files

Picture Picture Files

Video Video Files

Unknown Unrecognised Files

0's and X's Availability for a Noughts and

Crosses game
(b)

Case Study: Instant Messenger Plug-in
The Instant Messenger plug-in was the first plug-in

to be developed for use within the P2P Application
Framework. It was intended that it would provide
simple text based instant messaging support, though
over time this has been extended. The current version of
the plug-in allows images and sounds to be also sent
within a message (as illustrated in figure 4).

The plug-in interacts with the framework in a
number of ways:

 6

• Plug-in activation
• Sending of a message
• Receiving of a message
• User status changes

Activating the plug-in
Although a plug-in can be activated in a number of

ways it was decided that it would only be possible to
initialise an instant message conversation with users
who were currently on your favourites list.
Consequently when the plug-in is first initialised and
the framework interrogates it, the plug-in informs the
framework to add a 'Send Message' entry to the pop-up
menu (as illustrated in figure 2). When a user selects
this menu entry the framework informs the plug-in
which displays a messaging window similar to that
shown in figure 4. As this plug-in is not interested in
any resources around the network it does not register
any Resource Type/Plug-in relationships with the
framework.

Sending a message
When a user wishes to send a message the plug-in

takes the message contents (text, image, sound) and
wraps it up within a Java HashMap object. The
HashMap also contains additional details about the
sender and target of the message (for example, the plug-
ins involved). A method within the framework API is
then called passing the HashMap message and User ID
of the target as parameters.

framework.sendMessage(targetID,
hashMapMessage);

The framework then sends the message to the target.

Figure 4 - The Instant Messenger Plug-in

Receiving a message
When the framework of a peer receives a message it

first determines the destination plug-in by looking at the
relevant name:value pair within the HashMap message.
In this case the framework routes forward any messages
containing the ID for the Instant Messenger plug-in.
The framework uses reflection to achieve this, as
illustrated in Figure 5. The method 'messageArrived' is
part of the common plug-in interface that all plug-ins
must implement.

When the Instant Messenger plug-in receives a
message it deconstructs it and acts accordingly based on
its content. Typically this would involve taking the
contents of the message and displaying it within the
relevant messaging window.

// Obtain Plug-in Class
Class pluginClass = pluginInstance.getClass();

// Specify class of parameters
Class param[] = {java.util.HashMap.class};

// Obtain MessageArrived method from class
Method m = pluginClass.getMethod
("MessageArrived", param);

// Invoke method within plug-in, passing the
message as a parameter
m.invoke(pluginInstance, (Object)
HashMapMessage);

Figure 5 - The framework routing a message to the
plug-in

Reacting to user status changes
Obviously a user's state can change and other users

need to be kept informed of this. When the framework
of a peer receives a user status change message (from
the index peer) it alerts all installed plug-ins. Again
reflection is used to call the 'changeOfPeerStatus'
method within each plug-in.

When this method is called within the Instant
Messenger plug-in it updates the status within the
relevant messaging window (the status is shown in the
top right hand corner).

As can be seen, although the Instant Messenger plug-
in and P2P Application Framework only communicate
with each other for a few operations, these operations
represent a significant part of the plug-ins overall
functionality. Because the framework takes care of this
functionality the developer's time can instead be spent
on developing the higher-level application functionality
of the plug-in (such as GUI or providing additional
features). The other plug-ins that have so far been
developed are similar in structure, using the framework
to perform operations where required.

 7

5. Future work
The P2P Application Framework is a work in

progress and will continue to be further developed and
refined.

An important addition will be the completion of the
monitoring support. This is ongoing and is being
developed alongside a number of plug-ins that utilise
this functionality (the distributed video encoder,
network visualiser and the intelligent video streaming
plug-ins). Methods to grant plug-ins access to
monitoring information will be incorporated into the
framework's API.

As has been discussed, there are already a number of
ongoing plug-in developments. It is hoped that as the
framework matures and is further used, such
developments will continue resulting in a broad range
of P2P applications. Future possible plug-ins include
P2P based database systems and dependability tools that
can draw upon monitoring information.

It would also be beneficial to carry out detailed
evaluations and testing of the framework. Such
evaluations would most likely be qualitative in nature,
with user feedback also helping to further refine the
framework.

Finally, we shall continue to encourage the uptake of
the P2P Application Framework as a general resource
for P2P application development. Not only will this be
internally as part of research and student projects, but
also externally with interested third parties.

6. Conclusions
This paper has presented the P2P Application

Framework, a generic and flexible mechanism to assist
developers in the building of P2P applications. The
framework focuses on lowering development time and
seeks to achieve this by reducing the amount of effort
developers need to spend on comprehending the
underlying P2P technology. Essentially the framework
wraps around the underlying technology and provides
the developers with a set of generic application centric
services. A consequence of the framework is that P2P
applications can be more readily developed and, in turn,
this will hopefully encourage expansion into new
application domains. Furthermore, the additional
abstraction allows for applications that have been
developed using the framework to be utilised over
different underlying P2P protocols/substrates.

Initial releases of the framework's implementation
have been made publicly available and have been used
within a number of P2P application developments.
Currently the framework has and still is being tested
and used within a number of research and student
projects, covering a number of application domains.
Initial experiences have shown that the framework has

provided significant benefits to the P2P application
development process.

To help illustrate the simple operation of the
framework, the paper has also provided a brief
breakdown of how the developed Instant Messenger
plug-in and framework liases with each other.

The P2P Application Framework is available for
download, along with documentation, from our
departmental P2P website - http://polo.lancs.ac.uk/p2p

7. Acknowledgements
This work has been funded by the European

Commission within the P2P ARCHITECT project (IST-
2001-32708). We would also like to acknowledge John
Mariani for his valuable advice during the development of
this paper.

8. References
[1] Napster. MP3 file sharing application. More information at

the URL http://www.napster.com
[2] ICQ. Instant Messenger Application. More information at

the URL http://www.iqc.com
[3] MSN Messenger. Instant Messenger Application. More

information at http://specials.msn.com/ms/default.asp
[4] P2P ARCHITECT: Ensuring dependability of P2P

applications at architectural level, EU Project IST-2001-
32708. More information at http://www.atc.gr/p2p_architect

[5] Project JXTA, P2P API, Sun Microsystems Inc. More
information can be found at http://www.jxta.org/

[6] Halepovic, E., Deters, R., Building a P2P Forum System
with JXTA. In the proceedings of P2P 2002, Linkoping,
Sweden, 2002.

[7] Rowstron, A., Druschel, P., Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany,
November, 2001, pp. 329-35

[8] Walkerdine, J., Melville, I., Sommervile, I., Dependability
Properties of P2P Architectures. In the proceedings of P2P
2002, Linkoping, Sweden, 2002.

[9] The Gnutella protocol specification v0.4. Clip2 Distributed
Search Services. Available from
http://www9.limewire.com/developer/gnutella protocol
0.4.pdf

[10] Coulson, G., Grace, P., Blair, G., Mathy, L., Duce, D.,
Cooper, C., Yeung, W. K., Cai, W., Towards a component-
based middleware framework for configurable and
reconfigurable grid computing. To be presented at
ETNGRID-2004, Italy, June 2004.

[11] Walkerdine, J., Melville, I., Sommerville, I., Designing for
Presence within P2P Systems. Technical Report COMP-003-
2004, Computing Department, Lancaster University, 2004

 8

