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INTRODUCTION  

Urban freight distribution is essential for sustainable economic growth. However, it also 

contributes to problems such as traffic congestion and environmental pollution. At the same 

time, shippers are expected to continuously improve their service levels at lower costs (1). This 

situation calls for the development of multi-objective models that take into account those 

objectives and the real operating conditions of urban road networks.  

 

Fuel consumption is commonly used as a proxy for environmental performance of vehicle 

routing problems (VRPs). Several factors such as vehicle type, speed, and load that contribute to 

the amount of fuel consumed have already been considered in green extensions of the VRP. 

Early VRP studies with explicit environmental considerations only tried to incorporate the effect 

of the load carried by the vehicle on the fuel consumption level of routes (2; 3; 4); however, later 

research approached time-dependent variants of the VRP in order to incorporate the effects of 

time-varying congestion into a more accurate estimation model of fuel (5; 6; 7; 8; 9). Some of 

these studies also considered the possible benefits of waiting at the depot (3; 5; 7). The type and 

the number of the vehicles that are included in the fleet to execute the routes has also been 

recently considered (10), and few studies have focused on the trade-off between business and 

environmental performance of the routes through studying the problem as a bi-objective 

optimization problem (11; 7). The aim of this paper is to develop a variant of the pollution 

routing problem (PRP) on urban road networks that not only integrates all the afore-mentioned 

attributes, but also considers multiple trips in a multi-objective setting. 

 

The proposed extension is defined on a directed graph, representing a real road network which 

comprises a depot, a set of customers and other network nodes. There is a fleet of heterogeneous 

vehicles which is assumed to be composed of different types of vehicles. To each vehicle a 

maximum payload and a daily hiring fixed cost among other vehicle-specific factors is attributed. 

Each customer is associated with a certain demand to be delivered within its pre-determined hard 

time window, with a certain service time. The depot working hours is considered as the planning 

horizon, and reloading vehicles for operating a new tour takes a certain amount of time in the 

depot. To each road link in the geographical graph, a distance and a time-dependent travel time, 

depending on the time of the day that vehicles depart from the origin node is attributed. 

 

The aim of the problem is to determine an optimal composition of vehicles in the fleet to operate 

routes that start and finish at the depot and serve every customer exactly once within their pre-

defined time-windows, without violating vehicle capacities and working day limits, such that the 

vehicle cost, the total duration of the tours and the total amount of fuel consumed are minimized. 

 

To incorporate the effects of congestion, historical traffic speed recorded during the day for each 

road link in the network are used in order to estimate the time-dependent travel time of the link at 

each possible departure time. To do so, an enhanced extension of the work done in (12) and (13), 

which provides a FIFO-consistent non-linear travel-time function of the time, is used. 

 

Moreover, the comprehensive emissions model of (14) and (15) is used for the estimation of the 

time, load and vehicle type dependent fuel consumption. This model has already been applied 

successfully to the PRP (16) and all its variants (5; 11; 10), and is able to accommodate all 
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factors that are of interest to this paper (i.e. distance, load, speed, and vehicle characteristics) and 

could be simply extended to accommodate time-dependency.  

 

For experimental purposes, in this paper similar to (10), the fleet is considered to be composed of 

light, medium and heavy duty vehicles and the same values for the common and vehicular 

specific parameters which are obtained for the three main vehicle types of MAN Trucks by (10) 

are used. 

 

The contribution of this paper is on the modeling and solution of the multi-objective time and 

load dependent fleet size and mix PRP with multiple trips, time windows, and flexible departure 

times. In particular, the added value of this paper is in integrating all previously studied attributes 

contributing to fuel consumption, and other new important decisions such as multiple trips, into a 

single modelling and solution scheme. 

METHODOLOGY 

To solve the problem a multi-phase solution algorithm is developed (Fig. 1). In the first phase, in 

order to cope with the challenges in solving the problem on the original sparse geographical 

graph, the road network is first pre-processed to identify and discard all proven to be redundant 

paths between the pairs of the required nodes (i.e. depot and the customers) using a network 

reduction approach that basically works by identifying the time-dependent least fuel consuming 

path for a heavy duty truck (P1) at a given time instant, and comparing such path with the fastest 

path (P2) at the same time instant. This algorithm terminates immediately after it is verified that 

both of such paths are the same (i.e. P1 = P2); Otherwise, if the two paths are different (i.e. P1≠ 

P2), both of them are added to the set of the retained paths, and the algorithm in each iteration 

searches for the next fastest path and compares it with the paths which are already in the retained 

set to see if it is eligible to enter the set. Once the next fastest path fails the eligibility criteria, the 

algorithm terminates and outputs a set of retained paths between every pair of the required nodes 

on the geographical graph. 

 

 

 

FIGURE 1 The flowchart of the proposed multi-phase solution algorithm 

 



3 

 

Following the application of the proposed network reduction approach, instances of the problem 

are solved on the reduced network using a hybrid multi-objective evolutionary algorithm 

(HMOEA). The framework of the proposed HMOEA is comprised of the general steps of 

initialization, parent selection and crossover, education, intensification, and survivor selection. In 

general, at the beginning of each iteration of the algorithm, solutions are initially represented as 

giant TSP tours and then split into a set of feasible vehicle tours in terms of the problem of 

concern. The first population of the solutions in the algorithm is generated using a route 

construction and improvement heuristic, and a maximum number of iterations within a time limit 

is determined as the stopping criterion for the proposed algorithm. In each iteration of the 

algorithm parents are selected using the binary tournament method, and the classical OX 

crossover is used to generate two new offsprings. The education and the intensification phases 

are both based on the simulated annealing (SA) algorithm. In the intensification phase an elite 

solution is randomly selected from the top 1/3 of the population and is intensified using the SA 

algorithm. All offsprings and new solutions found through the education and the intensification 

phases are added to the population, and in the survivor selection phase only the best solutions are 

selected to survive. At each iteration of the algorithm, education and intensification are applied 

on a candidate chromosome (an offspring or/and elite solution) with certain probabilities. The 

proposed HMOEA uses the non-dominance sorting criterion of (17) in its global search MOEA. 

Based on this non-dominated (ND) sorting criterion the population is divided into ND fronts and 

all individuals on the same front are given a similar fitness value (normally a rank), such that the 

lower is the front, the fitter is the solution. At termination, the algorithm generates the 

approximated set of the ND solutions.  

FINDINGS 

A set of small and large time-dependent road networks (with 10% of their nodes required) were 

generated for computational experimentations. Several experiments were carried out, but here 

due to space limitation, only one set of results indicating partially the performance of the 

proposed HMOEA is presented in Table 1. In this table, the exact solutions to all small instances 

for the identification of extreme points were used as a benchmark against the extreme points 

found by the proposed HMOEA. Note that objective number one refers to the total vehicles cost 

(£), objective number two is the total fuel consumption (liter) and objective number three is the 

total travel time (minutes). According to this table the overall performance of the proposed 

algorithm seems to be quite satisfactory. 

 

In order to see the typical trade-off among the three objectives of the problem, in Fig. 2 the value 

path diagram for a selected 1000-node instance (with 100 customers) is illustrated. According to 

this figure, for this particular instance (and many other instances), it is observed that the greatest 

sacrifice in the other two objectives is usually made when travel time is minimized, while the 

minimization of the fuel consumption does not require a huge sacrifice in the other two 

objectives. 
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TABLE1 A Summary of the Performance of the Proposed HMOEA for 

Finding the Extreme Points of Small Size Test Instances 

Instance 

Sizes 

Extreme points comparison 

Average 

Runtime 

(seconds) 

Objective 

No. 
Exact HMOEA Deviation Exact HMOEA 

 1 42.00 42.00 0.00% 

840 480 <40 2 4.11 4.23 2.91% 

 3 26.60 27.40 3.00% 

       
 1 47.66 47.66 0.00% 

1740 480 40 2 4.87 4.96 1.84% 

 3 33.77 33.77 0.00% 

       

 
1 48.60 48.60 0.00% 

5760 600 50 2 6.38 6.43 0.78% 

 
3 43.17 43.17 0.00% 

       
 1 76.65 76.65 0.00% 

12500 600 100 2 13.42 13.57 1.11% 

 3 107.00 107.00 0.00% 

 

 

 

 
FIGURE 3 The value path diagram for a selected 1000-node instance 

 

CONCLUSIONS 

Business and environmental objectives should be considered simultaneously in urban freight 

distribution models in order to examine the trade-off between distribution cost and 

environmental pollution. In this paper a multi-objective variant of the PRP that not only 

considers both such objectives, but also takes several important characteristics of urban road 

networks into consideration was introduced and solved. Fuel consumption was used as a proxy 

for the environmental performance of the designed routes, and the effects of the load on the 

vehicle and its speed imposed by the time-varying congestion were incorporated into the fuel 

consumption estimation model. Due to the special characteristics of the problem, there is a need 
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to study it directly on the original road network, and to overcome the difficulties of such 

requirement a network reduction approach and an efficient HMOEA were introduced. The 

method can approximate the efficient frontier which can help the decision maker to select from a 

pool of ND solutions with regard to their criteria of interest. 
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