
Compositional Correctness in Multiagent Interactions

274
ABSTRACT
An interaction protocol specifies the constraints on commu-
nication between agents in a multiagent system. Ideally, we
would like to be able to treat protocols as modules and com-
pose them in a declarative manner to systematically build
more complex protocols. Supporting composition correctly
requires taking into account the causal dependencies between
protocols. One particular problem that may arise from in-
adequate consideration of causal dependencies is that the
enactment of a composite protocol may violate atomicity ;
that is, some components may be initiated but prevented
from completing. We use this all or nothing principle as the
basis for formalizing atomicity as a novel correctness property
for protocols.

Our contributions are the following. One, we motivate and
formalize atomicity and highlight its distinctiveness from re-
lated correctness notions. Two, we give a decision procedure
for verifying atomicity and report results from an implemen-
tation. For concreteness of exposition and technical develop-
ment, we adopt BSPL as an exemplar of information-based
approaches.

KEYWORDS
Communication protocols; Engineering multiagent systems

1 INTRODUCTION
An interaction protocol specifies the rules of encounter be-
tween autonomous agents in a multiagent system. In this
paper, we are primarily concerned operational protocols, that
is, protocols where the purpose of the rules of encounter is
to capture the constraints on the enactment of messages and,5

more generally, protocols. UML interaction diagrams and
its variants for multiagent systems such as AUML [18] are
among several languages developed to specify operational
protocols. Meaning-based protocols, as exemplified by work
on commitment protocols [5, 8, 28], are outside the present10

scope.
A protocol encapsulates a group of related interactions.

Ideally, we would like to be able to treat a protocol as a
module, analogous to the way a program may be treated
as a module, and compose it with other protocols in order15

to obtain more complex protocols. Further, we would like
to be able to compose protocols declaratively on the basis
of causality as reflected in the relevant causal dependencies
[23, 25]. Such dependencies capture what an agent must know
(or not know) to produce a new piece of information.20

Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), M. Dastani, G. Sukthankar,
E. Andre, S. Koenig (eds.), July 2018, Stockholm, Sweden
© 2018 International Foundation for Autonomous Agents and Multia-
gent Systems (www.ifaamas.org). All rights reserved.
https://doi.org/doi

For example, we may imagine a message specification Fil-
lOrder that cannot be sent by the seller until it has received
an order to be filled from the buyer. Because of this depen-
dency, a seller enacting a Purchase protocol composed of
FillOrder and a message specification PlaceOrder that binds25

order must receive PlaceOrder before it can send FillOrder.
Although the foregoing example composes message spec-

ifications, note that a message specification is an elemen-
tary protocol and the ideas of causality-based composition
applies to protocols in general. Thus we can describe enact-30

ments in terms of causal dependencies between information
parameters. We refer to this approach as being information-
based. The Blindindly Simple Protocol Language (BSPL) [22]
and its extensions such Splee [7] are early exemplars of the
information-based approach.35

Compositions based on causality yield declarative speci-
fications and support flexible enactments in completely de-
centralized settings over a fully asynchronous infrastructure
[23]. However, because some compositions may undesirable,
we propose atomicity as a correctness criterion for protocols.40

The basis is the observation that a message schema is de facto
atomic: either its enactment occurs completely or not at all.
A composed protocol is atomic if and only if the completion
of one of its components implies that the composition can
complete, and all of its constituent components are atomic45

in the context of the composition. Informally, our notion of
atomic protocols is analogous to the notion of atomic pro-
grams [10] and transactions [9] in that it captures a notion
of all or nothing, the difference being that the above are
shared memory approaches whereas we address decentralized50

settings with no shared memory.
An example helps for concreteness. Take the above Pur-

chase protocol, extended with Transfer and Credit protocols
intended to offer a choice between two payment methods.
The specification would be incorrect if both Transfer and55

Credit could be enacted in the same enactment of Purchase.
More interestingly, Purchase would be nonatomic if there
were enactments wherein Transfer had been partially enacted
but could not be completed because Credit had completed. In
such cases the enactment of Transfer is left dangling, indicat-60

ing unfinished business. The enactment of Transfer may have
set up commitments that cannot be discharged because it
cannot complete. A violation of atomicity is thus potentially
indicative of semantic errors.

Clearly, the problem in the foregoing example could be65

avoided if the buyer prudently enacts either Transfer or
Credit but not both. Ideally, we would like to guarantee
atomicity from the protocol specification alone, without resort
to agent specifications. This reflects the essential motivation
for protocols: capturing the interaction logic and presenting70

it in a reusable form [4, 17, 20].

https://doi.org/doi

AAMAS’18, July 2018, Stockholm, Sweden 274

For concreteness, we adopt BSPL as our information-based
protocol language (Section 2). Our contributions are the
following.
∙ We motivate atomicity for information-based proto-75

cols and provide examples and patterns of atomicity
violations and their corrections (Section 3).
∙ We formalize atomicity and distinguish it from liveness

and safety of information-based protocols (Section 4).
∙ We give a decision procedure for verifying atomicity80

and describe an implementation of the decision proce-
dures (Section 5). We report results from running the
implementation on examples in the present paper.

Finally, Section 6 discusses related work and future direc-
tions.85

2 BSPL
BSPL [22] specifies protocol constraints in terms of causality,
as described above, and integrity based on key constraints [9]
on the information model. The key constraints capture the
idea that in any protocol enactment a role may not send or
receive conflicting information. Listing 1 illustrates BSPL’s90

main concepts via a simple protocol.

Listing 1: Purchase with payment options
Purchase {

roles B, S // Buyer, Seller
parameters out order key, out product
B ↦→ S: PlaceOrder [out order]
B ↦→ S: Transfer [in order , out payment]
B ↦→ S: Credit [in order , out payment]
S ↦→ B: FillOrder [in order , in payment, out product]

}

The listing declares Purchase as the name of the protocol;
two public roles S (seller) and B (buyer); and two public
parameters order and product. Parameter order is annotated
key, meaning that order functionally determines the other pa-95

rameters. Both parameters are adorned ⌜out⌝, meaning that
their bindings are generated by enacting the protocol, i.e.,
enacting the messages declared in it. The public parameters
of a protocol serve as its interface and facilitate composition.
Purchase declares four message schemas (the order of their100

listing is irrelevant). By convention, any key parameter of the
protocol is a key parameter for any message in which it ap-
pears, though a message may have additional key parameters.
Thus, PlaceOrder is from the buyer to the seller and its key
is order. The message PlaceOrder has order as a parameters105

annotated ⌜out⌝, meaning that a buyer can generate bindings
for it when sending an instance of PlaceOrder. In FillOrder,
order, and payment are ⌜in⌝, meaning that a seller may send
an instance of FillOrder with some bindings for order and pay-
ment only if it has received an instance of Transfer or Credit110

with those bindings. Bindings for order identify enactments
of Purchase. That is, distinct tuples of bindings as allowed
by the key constraints correspond to distinct enactments. A
complete enactment of Purchase corresponds to a tuple of
bindings for all its public parameters.115

Singh [24] formalizes BSPL and properties and gives veri-
fication techniques. Informally, protocol is enactable iff there
is a complete enactment; i.e. a set of message instances that
yields bindings for all of its public parameters. Request Quote
is enactable, because the enactment PlaceOrder → Trans-120

fer → FillOrder is valid and binds all public parameters of
Purchase.

A protocol is live iff any enactment can progress to comple-
tion. Purchase is live: for any value of order, PlaceOrder may
be sent followed by Transfer or Credit and then FillOrder,125

which would complete the Purchase enactment. Imagine an
alternative specification of Purchase, say Purchase Alt, with-
out either Transfer or Credit. This would mean that no
enactment of Purchase Alt would bind payment, preventing
FillOrder from being sent and completing the enactment.130

Purchase Alt therefore would not be live.
Informally, a protocol is safe iff it is impossible to produce

conflicting bindings for a parameter in any enactment. A po-
tential safety violation would be if a buyer sent two instances
of Transfer for the same order, one with a payment of $10 and135

one with a payment of $20. Such a violation can be easily
avoided by the buyer based solely on its local knowledge. A
real safety violation occurs when two agents may produce
conflicting bindings in an enactment. Purchase is safe. If
the message Gift in Listing 2 were added to Purchase, it140

would become unsafe. Both seller and buyer can concurrently
produce bindings for payment; that is, a nonlocal conflict
exists.

Listing 2: An unsafe extension to Purchase.
S ↦→ B: Gift [in order , out payment, out product]

BSPL supports composition in a natural manner. A single145

message is an elementary protocol in BSPL. Thus, Place-
Order, Transfer, and Credit, and FillOrder are all elementary
protocols. Purchase composes these messages by referring
to them. A BSPL protocol may have references to one or
more protocols. Protocol RefinedPurchase (Listing 3) replaces150

Transfer and Credit with composite protocols serving the
same purpose.

Listing 3: Refined purchase protocol
RefinedPurchase {

roles Buyer, S // Buyer, Seller
parameters out order key, out payment, out product
B ↦→ S: PlaceOrder [out order]
Transfer(B, S, in order , out payment)
Credit(B, S, in order , out payment)
S ↦→ B: FillOrder [in order , in payment, out product]

}

2.1 Formalization
We adopt Singh’s [24] formal framework. Definitions 1–15
are taken from there.155

For convenience, we fix the symbols by which we refer to
finite lists of roles (⃗𝑡), public roles (𝑥⃗), private roles (𝑦⃗), public
parameters (𝑝), key parameters (𝑘⃗ ⊆ 𝑝), ⌜in⌝ parameters

2

Compositional Correctness in Multiagent Interactions AAMAS’18, July 2018, Stockholm, Sweden

(𝑝𝐼 ⊆ 𝑝), ⌜out⌝ parameters (𝑝𝑂 ⊆ 𝑝), ⌜nil⌝ parameters (𝑝𝑁 ⊆
𝑝), private parameters (𝑞⃗), and parameter bindings (𝑣⃗, 𝑤⃗).160

Here, 𝑝 = 𝑝𝐼∪𝑝𝑂∪𝑝𝑁 , 𝑝𝐼∩𝑝𝑂 = ∅, 𝑝𝐼∩𝑝𝑁 = ∅, and 𝑝𝑁∩𝑝𝑂 =
∅. Also, 𝑡 and 𝑝 refer to an individual role and parameter,
respectively. To reduce notation, we rename private roles and
parameters to be distinct in each protocol, and the public
roles and parameters of a reference to match the declaration165

in which they occur. Throughout, we use ↓𝑥 to project a list
to those of its elements that belong to 𝑥.

Definition 1 captures BSPL protocols. A protocol may
reference another protocol. The references bottom out at
message schemas. Above, Purchase references Transfer. And,170

if a protocol were to reference Purchase, it would be able
to reference (from its public or private parameters) only the
public parameters of Purchase, not payment.

Definition 1: A protocol 𝒫 is a tuple ⟨𝑛, 𝑥⃗, 𝑦⃗, 𝑝, 𝑘⃗, 𝑞⃗, 𝐹 ⟩, where
𝑛 is a name; 𝑥⃗, 𝑦⃗, 𝑝, 𝑘⃗, and 𝑞⃗ are as above; and 𝐹 is a finite175

set of 𝑓 references, {𝐹1, . . . , 𝐹𝑓}. (∀𝑖 : 1 ≤ 𝑖 ≤ 𝑓 ⇒ 𝐹𝑖 =

⟨𝑛𝑖, 𝑥𝑖, 𝑝𝑖, 𝑘𝑖⟩, where 𝑥𝑖 ⊆ 𝑥⃗∪ 𝑦⃗, 𝑝𝑖 ⊆ 𝑝∪ 𝑞⃗), 𝑘𝑖 = 𝑝𝑖 ∩ 𝑘⃗, and
⟨𝑛𝑖, 𝑥𝑖, 𝑝𝑖, 𝑘𝑖⟩ is the public projection of a protocol 𝒫𝑖 (with
roles and parameters renamed).

Definition 2: The public projection of a protocol 𝒫 =180

⟨𝑛, 𝑥⃗, 𝑦⃗, 𝑝, 𝑘⃗, 𝑞⃗, 𝐹 ⟩ is given by the tuple ⟨𝑛, 𝑥⃗, 𝑝, 𝑘⃗⟩.
We treat a message schema ⌜𝑠 ↦→ 𝑟 : 𝑚 𝑝(𝑘⃗)⌝ as an atomic

protocol with exactly two roles (sender and receiver) and
no references: ⟨𝑚, {𝑠, 𝑟}, ∅, 𝑝, 𝑘⃗, ∅, ∅⟩. Here 𝑘⃗ is the set of key
parameters of the message schema. Usually, 𝑘⃗ is understood185

from the protocol in which the schema is referenced: 𝑘⃗ equals
the intersection of 𝑝 with the key parameters of the protocol
declaration.

Below, let roles(𝒫) = 𝑥⃗ ∪ 𝑦⃗ ∪
⋃︀

𝑖 roles(𝐹𝑖); params(𝒫) =
𝑝∪ 𝑞⃗∪

⋃︀
𝑖 params(𝐹𝑖); msgs(𝒫) =

⋃︀
𝑖 msgs(𝐹𝑖) and msgs(𝑠 ↦→190

𝑟 : 𝑚 𝑝) = {𝑚}. Definition 3 assumes that the message
instances are unique up to the key specified in their schema.

Definition 3: A message instance 𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗] associates a
message schema ⌜𝑠 ↦→ 𝑟 : 𝑚 𝑝(𝑘⃗)⌝ with a list of values, where
|𝑣⃗| = |𝑝|, where 𝑣⃗ ↓𝑝= ⌜nil⌝ iff 𝑝 ∈ 𝑝𝑁 .195

Definition 4 introduces a universe of discourse (UoD).
Definition 5 captures the idea of a history of a role as a
sequence (equivalent to a set in our approach) of all and
only the messages the role either emits or receives. Thus 𝐻𝜌

captures the local view of an agent who might adopt role 𝜌200

during the enactment of a protocol. A history may be infinite
in general but we assume each enactment in which a tuple of
parameter bindings is generated is finite.

Definition 4: A UoD is a pair ⟨R ,M ⟩, where R is a set of
roles, M is a set of message names; each message specifies205

its parameters along with its sender and receiver from R .

Definition 5: A history of a role 𝜌, 𝐻𝜌, is given by a sequence
of zero or more message instances 𝑚1 ∘𝑚2 ∘ Each 𝑚𝑖 is
of the form 𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗] where 𝜌 = 𝑠 or 𝜌 = 𝑟, and ∘ means
sequencing.210

Definition 6 captures the idea that what a role knows at a
history is exactly given by what the role has seen so far in
terms of incoming and outgoing messages. Here, 2(i) ensures
that 𝑚[𝑠, 𝑟, 𝑝(𝑘⃗), 𝑣⃗], the message under consideration, does
not violate the uniqueness of the bindings. And, 2(ii) ensures215

that 𝜌 knows the binding for each ⌜in⌝ parameter and not
for any ⌜out⌝ or ⌜nil⌝ parameter.

Definition 6: A message instance 𝑚[𝑠, 𝑟, 𝑝(𝑘⃗), 𝑣⃗] is viable at
role 𝜌’s history 𝐻𝜌 iff (1) 𝑟 = 𝜌 (reception) or (2) 𝑠 = 𝜌

(emission) and (i) (∀𝑚𝑖[𝑠𝑖, 𝑟𝑖, 𝑝𝑖, 𝑣𝑖] ∈ 𝐻𝜌 if 𝑘⃗ ⊆ 𝑝𝑖 and220

𝑣𝑖 ↓𝑘⃗= 𝑣⃗ ↓𝑘⃗ then 𝑣𝑖 ↓𝑝∩𝑝𝑖= 𝑣⃗ ↓𝑝∩𝑝𝑖) and (ii) (∀𝑝 ∈ 𝑝 : 𝑝 ∈ 𝑝𝐼

iff (∃𝑚𝑖[𝑠𝑖, 𝑟𝑖, 𝑝𝑖, 𝑣𝑖] ∈ 𝐻𝜌 and 𝑝 ∈ 𝑝𝑖 and 𝑘⃗ ⊆ 𝑝𝑖)).
Definition 7 captures that a history vector for a protocol is

a vector of histories of role that together are causally sound:
a message is received only if it has been emitted [14].225

Definition 7: Let ⟨R ,M ⟩ be a UoD. We define a history vector
for ⟨R ,M ⟩ as a vector [𝐻1, . . . , 𝐻 |R |], such that (∀𝑠, 𝑟 : 1 ≤
𝑠, 𝑟 ≤ |R | : 𝐻𝑠 is a history and (∀𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗] ∈ 𝐻𝑟 : 𝑚 ∈M
and 𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗] ∈ 𝐻𝑠)).

The progression of a history vector records the progression230

of an enactment of a multiagent system. Under the above
causality restriction, a vector that includes a reception must
have progressed from a vector that includes the correspond-
ing emission. Further, we make no FIFO assumption about
message delivery. The viability of the messages emitted by235

any role ensures that the progression is epistemically correct
with respect to each role.

Definition 8: A history vector over ⟨R ,M ⟩, [𝐻1, . . . , 𝐻 |R |],
is viable iff either (1) each of its element histories is empty
or (2) it arises from the progression of a viable history vec-240

tor through the emission or the reception of a viable mes-
sage by one of the roles, i.e., (∃𝑖,𝑚𝑗 : 𝐻𝑖 = 𝐻 ′𝑖 ∘𝑚𝑗 and
[𝐻1, . . . , 𝐻 ′𝑖, 𝐻 |R |] is viable).

The heart of our formal semantics is the intension of a
protocol, defined relative to a UoD, and given by the set of245

viable history vectors, each corresponding to its successful
enactment. Given a UoD, Definition 9 specifies a universe
of enactments, based on which we express the intension of a
protocol. We restrict attention to viable vectors because those
are the only ones that can be realized. We include private250

roles and parameters in the intension so that compositionality
works out. In the last stage of the semantics, we project the
intension to the public roles and parameters.

Definition 9: Given a UoD ⟨R ,M ⟩, the universe of enact-
ments for that UoD, UR ,M , is the set of viable history vectors,255

each of which has exactly |R | dimensions and each of whose
messages instantiates a schema in M .

Definition 10 states that the intension of a message schema
is given by the set of viable history vectors on which that
schema is instantiated, i.e., an appropriate message instance260

occurs in the histories of both its sender and its receiver.

Definition 10: The intension of a message schema is given
by:

3

AAMAS’18, July 2018, Stockholm, Sweden 274

[[𝑚(𝑠, 𝑟, 𝑝)]]R ,M = {𝐻|𝐻 ∈ UR ,M and (∃𝑣⃗, 𝑖, 𝑗 : 𝐻𝑠
𝑖 =

𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗] and 𝐻𝑟
𝑗 = 𝑚[𝑠, 𝑟, 𝑝, 𝑣⃗])}.265

A (composite) protocol completes if one or more of subsets
of its references completes. For example, Purchase yields
two such subsets, namely, {PlaceOrder, Transfer, FillOrder}
and {PlaceOrder, Credit, FillOrder}. Informally, each such
subset contributes all the viable interleavings of the enact-270

ments of its members, i.e., the intersection of their intensions.
Definition 11 captures the cover as an adequate subset of
references of a protocol, and states that the intension of a
protocol equals the union of the contributions of each of its
covers.275

Definition 11: Let 𝒫 = ⟨𝑛, 𝑥⃗, 𝑦⃗, 𝑝, 𝑘⃗, 𝑞⃗, 𝐹 ⟩ be a protocol.
Let 𝑐𝑜𝑣𝑒𝑟(𝒫, 𝐺) ≡ 𝐺 ⊆ 𝐹 | (∀𝑝 ∈ 𝑝 : (∃𝐺𝑖 ∈ 𝐺 : 𝐺𝑖 =
⟨𝑛𝑖, 𝑥𝑖, 𝑝𝑖⟩ and 𝑝 ∈ 𝑝𝑖)) and 𝒫’s intension, [[𝒫]]R ,M =

(
⋃︀

cover(𝒫,𝐺)(
⋂︀

𝐺𝑖∈𝐺[[𝐺𝑖]]R ,M))
⎮⌄

𝑥⃗
.

The UoD of protocol 𝒫 consists of 𝒫’s roles and messages280

including its references recursively. For example, Purchase’s
UoD 𝑈 = ⟨{b, s}, {PlaceOrder, Transfer, Credit, FillOrder}⟩.
Definition 12: The UoD of a protocol 𝒫, UoD(𝒫) =
⟨roles(𝒫),msgs(𝒫)⟩.
Definition 13: A protocol 𝒫 is enactable iff [[𝒫]]UoD(𝒫) ̸= ∅.285

Definition 14: A protocol 𝒫 is safe iff each history vector in
[[𝒫]]UoD(𝒫) is safe. A history vector is safe iff all key uniqueness
constraints apply across all histories in the vector.

Definition 15: A protocol 𝒫 is live iff each history vector in
the universe of enactments UoD(𝒫) can be extended through290

a finite number of message emissions and receptions to a
history vector in UoD(𝒫) that is complete.

3 ATOMICITY CONCEPTS
We now motivate atomicity informally with the help of pro-
tocol specifications in BSPL.

Consider again the protocol Purchase in Listing 1. In Pur-295

chase, a buyer places an order and then tenders payment via
either wire transfer or credit. Transfer and Credit conflict
because both produce a binding for payment. The conflict
makes them mutually exclusive: either B can send Transfer
or Credit but not both. Purchase is both live and safe. It300

is atomic too. To see why, recall the intuition behind atom-
icity from Section 1: (1) a protocol is atomic if each of its
constituent protocols is atomic in the context of the com-
position and (2) the completion of a component implies the
composition can complete.305

Let’s apply this concept to Purchase. In Purchase, Place-
Order, Transfer, Credit, and FillOrder are atomic by virtue
of being message schemas, thus satisfying (1) above. Further,
any enactment where any of them occurs can be completed,
thus satisfying (2) above. For example, consider an enactment310

where Transfer has occurred for some values of order and
payment; order must already have been bound by an instance
of PlaceOrder. Now FillOrder can occur in the enactment,
which produces a binding for product. Thus, all of Purchase’s
parameters are bound and the enactment is complete.315

However, some conflicts violate atomicity if they occur
between protocols after they have both been initiated and
prevent one of them from completing. Consider the refinement
of Purchase in Listing 3, in conjunction with the following
definitions for RefinedTransfer and RefinedCredit.320

Listing 4: Refined payment protocols
RefinedTransfer {

roles B, S
parameters in order key, out payment
B ↦→ S: OfferTransfer [in order , out transferOffer]
S ↦→ B: AcceptTransfer [in order , in transferOffer ,

out transferAccepted]
B ↦→ S: InitiateTransfer [in order , in

transferAccepted , out payment]
}
RefinedCredit {

roles B, S
parameters in order key, out payment
B ↦→ S: OfferCredit [in order , out creditOffer]
S ↦→ B: AcceptCredit [in order , in creditOffer , out

accept]
B ↦→ S: PayCredit [in order , in accept , out payment]

}

In Listing 4 the OfferTransfer and OfferCredit messages
do not have any prerequisites or conflicts with each other.
This means the buyer may send both and so initiate both
RefinedTransfer and RefinedCredit at the same time. The
seller may also accept both offers without conflict. Yet a325

conflict between the two protocols arises when the buyer
makes the payments—both protocols cannot be completed
without producing conflicting bindings for payment, leaving
one of the two dangling.

This violation of atomicity shows that the specification330

is flawed. Perhaps the RefinedTransfer and RefinedCredit
protocols should be mutually exclusive as in the original
protocol, and the buyer should be required to initiate only
one of them. Alternatively, some mechanism for canceling one
of the two should be added, or the protocols should not be335

conflicting with each other, as would be the case if the buyer
is allowed to split the payment across multiple methods.

For example, Listing ?? adds the offer parameter to Offer-
Transfer and OfferCredit messages, so that the buyer may
initiate only one of the two payment protocols.340

Listing 5: Explicit choice
B ↦→ S: OfferTransfer [in order , out offer , out

transferOffer]
B ↦→ S: OfferCredit [in order , out offer , out

creditOffer]

Not all atomicity violations require mutual exclusion. Some345

can be resolved by an alternative path to completion that
avoids the conflict. For example, consider AccessData in
Listing 6.

4

Compositional Correctness in Multiagent Interactions AAMAS’18, July 2018, Stockholm, Sweden

Listing 6: Sharing private health records
ShareHealthRecords {

roles P, R, C // patient , researcher , c l inic
parameters out ID key, out record , out revoked
P ↦→ C: Authorize [out ID, out record]
P ↦→ C: Revoke[in ID, out revoked]

}
AccessData {

roles R, C // researcher , c l inic
parameters in ID key, in record , out req key, out data
ShareHealthRecords(P, R, C, out ID, out record , out

revoked)
R ↦→ C: Request [in ID, in record , out req , nil

revoked]
C ↦→ R: Provide [in ID, in record , in req , out data ,

ni l revoked]
}

In the AccessData protocol in Listing 6 the patient must
authorize the sharing of their health records before a re-350

searcher can access the data. Until the access is revoked, the
researcher may request the data at any time. An atomicity
violation occurs if a patient revokes access to the data after
the researcher has made a request, but before the data is
provided. In that scenario, the clinic is no longer allowed to355

Provide the data, so AccessData will be left dangling.
Messages containing a ⌜nil⌝ parameter cannot be sent

after it is bound, but may be sent before. The conflict be-
tween ⌜out⌝ and ⌜nil⌝ parameters causes the protocols to be
partially ordered rather than mutually exclusive: the Share-360

HealthRecords component can be enacted completely as long
as actions are performed in the correct sequence.

The patient should be able to revoke access even if there is
a pending request. To enable this possibility without violating
atomicity, the clinic should be able to complete AccessData365

without sending Provide, such as by rejecting the request.
Listing 7 adds a reject message to AccessData to restore
atomicity.

Listing 7: Alternative path to complete AccessData
C ↦→ R: Reject [in ID, in record , in req , out data , in

revoked]370

Based on the kinds of conflicts that are possible with simple
causal relationships as expressed in BSPL, we have identified
several kinds of atomicity violations, illustrated by the above
examples and summarized in Table 1. Exclusive conflicts,
such as that in RefinedPurchase, can be resolved by only375

enabling one of the conflicting protocols. Ordering conflicts,
such as that in AccessData, can be resolved by adding an
alternate path to completion. Indirect conflicts between an
⌜in⌝ parameter and an ⌜out⌝ or ⌜nil⌝ parameter are resolved
in the same way; they simply go through more steps from380

when the parameter is initially bound before the conflict
occurs.

Violation Cause Resolution

Mutual Exclusion ⌜out⌝&⌜out⌝ }︁
Enable only oneIndirect Exclusion ⌜in⌝&⌜out⌝

Partial Ordering ⌜out⌝&⌜nil⌝ }︁ Provide other means
of completionIndirect Ordering ⌜in⌝&⌜nil⌝

Table 1: Atomicity violations and their resolutions.

4 ATOMICITY FORMALIZATION
We define ref (𝒫) as the set of references of 𝒫.

Additionally, we use 𝜏 ⪯ 𝜏 ′ to mean that the history vector
𝜏 ′ is an extension of 𝜏 obtained by appending at most a finite385

number emissions and receptions.
[[ℛ]] ⊑ [[𝒬]] means ∀𝜏 ∈ [[ℛ]], ∃𝜏 ′ ∈ [[𝒬]] such that 𝜏 ⪯ 𝜏 ′.

Definition 16: A protocol 𝒬 is atomic in the context of
𝑈𝑜𝐷(𝒫) iff ∀ℛ ∈ ref (𝒬),

(1) ℛ is atomic in the context of 𝑈𝑜𝐷(𝒫), and390

(2) [[ℛ]]𝑈𝑜𝐷(𝒫) ⊑ [[𝒬]]𝑈𝑜𝐷(𝒫)

“𝒫 is atomic” or “the atomicity of 𝒫” are shorthand for the
atomicity of 𝒫 in the context of its own universe of discourse.

Although the definition considers only direct references,
its recursive nature means that if any message is sent, every395

composition containing it must eventually complete. This
definition captures our intuition that initiating a component
protocol should result in its eventual completion, all the way
from the leaf messages to the highest level composition.

The intension [[𝒬]] of protocol 𝒬 is the set of enactments400

that complete 𝒬 by the emission of at least one message from
the cover of each of its ⌜out⌝ parameters. The universe of
discourse specifies which roles and messages are involved in
the enactments. Using the roles and messages of the root com-
position 𝒫 for the universe of discourse means that conflicts405

can occur between messages anywhere in the composition,
rather than just within the one component protocol.

For example, [[Transfer]]𝑈𝑜𝐷(Purchase) projected to just the
history vector of 𝐵 is:
{[PlaceOrder,Transfer], [PlaceOrder,Transfer,FillOrder]}410

For this intension, each history vector in [[Transfer]]𝑈𝑜𝐷(Purchase)

can be extended by a message reception to a history vector
that completes Purchase, and the same is true for the other
roles and components of Purchase, so it is atomic.

Conversely, [[OfferTransfer]]𝑈𝑜𝐷(RefinedPurchase) contains the415

enactment
[PlaceOrder,OfferCredit,OfferTransfer,AcceptCredit,PayCredit]

which cannot be extended to an enactment that completes
Transfer, so RefinedPurchase is not atomic.

Because the cover of a protocol contains only messages420

within the protocol, each component protocol must be com-
pleted by its own messages to be atomic. Even if an enactment
produces the same parameters via messages from another
component 𝒬′, it is not in the intension of 𝒬 because its
cover is not complete. Thus Credit is not completed by the425

binding of payment produced by InitiateTransfer because that
message is not in the cover of Credit.

5

AAMAS’18, July 2018, Stockholm, Sweden 274

Theorem 1: Any protocol containing no enactable messages
is atomic.

Proof 1 (Proof): Let 𝒫 be a protocol such that none of its430

messages is enactable. Then the intension of each message,
[[ℳ]]𝑈𝑜𝐷(𝒫) is empty.

Now consider some reference ℛ ∈ ref (𝒫). Either ℛ is a
message, and so its intension is empty, or it is a compos-
ite protocol. If it is a composite protocol, then it also has435

references ref (ℛ) and [[ℛ]]𝑈𝑜𝐷(𝒫) ⊆
⋃︀

ℛ′∈ref (ℛ)[[ℛ
′]]𝑈𝑜𝐷(𝑃)

So the intension of each ℛ from ref (𝒫) is either empty,
or a subset of a union of other intensions. By induction,
[[ℛ]]𝑈𝑜𝐷(𝒫) is empty. The definition of atomicity requires
that [[ℛ]]𝑈𝑜𝐷(𝒫) ⊑ [[𝒫]]𝑈𝑜𝐷(𝒫) but [[ℛ]]𝑈𝑜𝐷(𝒫) is empty, so the440

statement is vacuously true and the protocol is atomic.

Theorem 2: Any protocol that is enactable and atomic is live.

Proof 2 (Proof): A protocol 𝒫 is live if for each 𝜏 ∈ 𝑈𝑜𝐷(𝒫),
∃𝜏 ′ ∈ [[𝒫]]𝑈𝑜𝐷(𝒫) such that 𝜏 ⪯ 𝜏 ′.

Suppose protocol 𝒫 is enactable. Then ∃𝜏 ∈ [[𝒫]]𝑈𝑜𝐷(𝒫).445

Suppose 𝜐 is a history vector in 𝑈𝑜𝐷(𝒫). Then either 𝜐 is
empty, or 𝜐 ∈ [[ℳ]]𝑈𝑜𝐷(𝒫) for some messageℳ∈ 𝒫.

If 𝜐 is empty, then 𝜐 ⪯ 𝜏 ∈ [[𝒫]]𝑈𝑜𝐷(𝒫).
Ifℳ∈ ref (𝒫), then by the definition of atomicity ∃𝜐′ ∈

[[𝒫]]𝑈𝑜𝐷(𝒫) such that 𝜐 ⪯ 𝜐′.450

If ℳ ̸∈ ref (𝒫), then ∃𝒬 ∈ ref (𝒫) such that ℳ ∈ 𝒬
and by atomicity [[𝒬]]𝑈𝑜𝐷(𝒫) ⊑ [[𝒫]]𝑈𝑜𝐷(𝒫). By induction
[[ℳ]]𝑈𝑜𝐷(𝒫) ⊑ [[𝒫]]𝑈𝑜𝐷(𝒫). Then by the definition of atomicity
∃𝜐′ ∈ [[𝒫]]𝑈𝑜𝐷(𝒫) such that 𝜐 ⪯ 𝜐′.

Thus in each case 𝜐 can be extended to a history vector455

in [[𝒫]]𝑈𝑜𝐷(𝒫), so 𝒫 is live.

4.1 Distinction from existing properties
In some sense all protocol faults can be interpreted as vi-
olations of either liveness or safety [2], but atomicity is a
useful property not trivially related to either as defined for460

protocols in BSPL.
Because there are protocols that exemplify every combina-

tion of atomicity and safety or liveness, as shown in Table 2,
atomicity is orthogonal to both.

Atomic Non-atomic

Safe Purchase AccessData
Unsafe Purchase+Gift RefinedPurchase
Live Purchase RefinedPurchase
Non-live Transfer Stuck

Table 2: Protocols demonstrating orthogonality of
properties.

For completeness a trivially nonlive, nonatomic protocol465

Stuck is provided in Listing 8

Listing 8: Trivially nonlive and nonatomic protocol
Stuck {

roles A, B
parameters out begin key, out end
A ↦→ B: Start [out begin]470

}

Also, though the techniques used are similar, the procedure
for verifying atomicity also differs from that used for verifying
liveness by Singh [24]. Liveness concerns the protocol as a
whole and guarantees it can always complete, while atom-475

icity concerns compositions of self-contained components,
recursively checking that each will complete if initiated.

5 VERIFICATION
We have built a tool for checking whether or not a protocol
specification is atomic, to demonstrate that protocol atomic-
ity is not just a theoretical property of protocols.480

This implementation was written from scratch for this
project, but the verification process is similar to the method
used by Singh [24]. We used a simple temporal logic to rep-
resent the definitions and constraints required for atomicity.
The temporal logic itself was then implemented on top of a485

boolean logic solving library.
In this approach, each event is represented as a boolean

variable. These events are then combined into expressions
representing the integrity constraints and desired properties
of the protocol. The expressions are then evaluated using the490

boolexpr SAT solving library for Python.

5.1 Logic Semantics
The temporal logic language we adopt, Precedence, was used
by Singh to verify the BSPL correctness properties of en-
actability, safety, and liveness [21, 24].495

The atoms of Precedence are events. Below, 𝑒 and 𝑓 are
events. If 𝑒 is an event, its complement 𝑒 is also an event. 𝑒 is
not the simple negation or non-occurrence of 𝑒, but an event
indicating that 𝑒 can never occur in the future. The terms
𝑒 ·𝑓 and 𝑒⋆𝑓 , respectively, mean that 𝑒 occurs prior to 𝑓 and500

𝑒 and 𝑓 occur simultaneously. The Boolean operators: ‘∨’ and
‘∧’ have the usual meanings. The syntax follows conjunctive
normal form:
L1. I −→ clause | clause ∧ I
L2. clause −→ term | term ∨ clause505

L3. term −→ event | event · event| event ⋆ event
The semantics of Precedence is given by pseudolinear runs

of events (instances): “pseudo” because several events may
occur together though there is no branching. Let Γ be a set of
events where 𝑒 ∈ Γ iff 𝑒 ∈ Γ. A run is a function from natural510

numbers to the power set of Γ, i.e., 𝜏 : N ↦→ 2Γ. The 𝑖th index
of 𝜏 , 𝜏𝑖 = 𝜏(𝑖). The length of 𝜏 is the first index 𝑖 at which
𝜏(𝑖) = ∅ (after which all indices are empty sets). We say 𝜏 is
empty if |𝜏 | = 0. The subrun from 𝑖 to 𝑗 of 𝜏 is notated 𝜏[𝑖,𝑗].
Its first 𝑗 − 𝑖+1 values are extracted from 𝜏 and the rest are515

empty, i.e., 𝜏[𝑖,𝑗] = ⟨𝜏𝑖, 𝜏𝑖+1 . . . 𝜏𝑗−𝑖+1 . . . ∅ . . .⟩. On any run,
𝑒 or 𝑒 may not both occur. Events are nonrepeating.

𝜏 |=𝑖 𝐸 means that 𝜏 satisfies 𝐸 at 𝑖 or later. We say 𝜏 is
a model of expression 𝐸 iff 𝜏 |=0 𝐸. 𝐸 is satisfiable iff it has
a model.520

M1. 𝜏 |=𝑖 𝑒 iff (∃𝑗 ≥ 𝑖 : 𝑒 ∈ 𝜏𝑗)
M2. 𝜏 |=𝑖 𝑒 ⋆ 𝑓 iff (∃𝑗 ≥ 𝑖 : {𝑒, 𝑓} ⊆ 𝜏𝑗)
M3. 𝜏 |=𝑖 𝑟 ∨ 𝑢 iff 𝜏 |=𝑖 𝑟 or 𝜏 |=𝑖 𝑢
M4. 𝜏 |=𝑖 𝑟 ∧ 𝑢 iff 𝜏 |=𝑖 𝑟 and 𝜏 |=𝑖 𝑢

6

Compositional Correctness in Multiagent Interactions AAMAS’18, July 2018, Stockholm, Sweden

M5. 𝜏 |=𝑖 𝑒 · 𝑓 iff (∃𝑗 ≥ 𝑖 : 𝜏[𝑖,𝑗] |=0 𝑒 and 𝜏[𝑗+1,|𝜏 |] |=0 𝑓)525

5.2 Causality
We first define a set of clauses, 𝒞𝑃 , representing the funda-
mental causal semantics of BSPL enactments. Let 𝒞𝑃 be the
conjunction of all clauses of the following types, illustrated
with examples from Listing 1.530

(1) Transmission: Each message must be sent to be received.
(4 clauses)
S:PlaceOrder ∨ B:PlaceOrder

(2) Emission: A message cannot be sent if its ⌜out⌝ or ⌜nil⌝
parameters have already been observed or if its ⌜in⌝535

parameters are not observed. (4 clauses)
S:FillOrder ∨ (S:order ∧ S:payment ∧ S:product)

(3) Reception: Either a message is not received or its ⌜out⌝
and ∈ parameters are observed no later than the mes-
sage. (4 clauses)540

S:PlaceOrder∨S:order·S:PlaceOrder∨S:order⋆S:PlaceOrder
(4) Minimality: For any role, if a parameter occurs, it

occurs simultaneously with some message emitted or
received. No role observes a parameter noncausally. (6
clauses)545

S:product ∨ S:product ⋆ S:FillOrder
(5) Nonsimultaneity: A role cannot emit messages simulta-

neously; they are sent in some order. (4 clauses)
B:Transfer∨B:Credit∨B:Transfer·B:Credit∨B:Credit·B:Transfer

Based on the semantics of BSPL, an enactment of a proto-550

col is valid if and only if it satisfies 𝒞𝑃 . According to Singh
[24], given a well-formed protocol 𝒫, for every viable history
vector, there is a model of 𝒞𝑃 and vice versa.

5.3 Maximality
To support unbounded enactments and exclude failure caused555

by non-compliant agent behavior or transmission failure,
we assume that each enactment is maximal. That is, every
message will be sent and received unless it is prevented by
an unmet precondition, such as an unavailable ⌜in⌝, or an
observed ⌜out⌝ or ⌜nil⌝. The clause generated for the Transfer560

message is (B:Transfer ∨ B:order ∨ B:payment). We label the
conjunction of these clauses for each message in protocol 𝒫
asℳ𝑃 . By definition, an enactment is maximal if and only
if it satisfies ℳ𝑃 .

If an enactment satisfies maximality yet is still incomplete,565

then it truly cannot be completed; there must be something
other than intransigent agents or network failure preventing
completion. This is also the basis of the liveness verification
technique used by Singh [24].

5.4 Enactability570

We also construct clauses representing the enactability of a
protocol 𝒫, labeled ℰ𝑃 .

An enactment satisfies ℰ𝑃 if and only if it completes pro-
tocol 𝒫. A protocol is complete when each of its ⌜out⌝ pa-
rameters is produced by one of its messages, as outlined in575

Figure 1. For Purchase, the set of messages covering order is

{PlaceOrder}, and the cover of product is {FillOrder}. Thus
the resulting clause ℰPurchase is (S:PlaceOrder ∧ B:FillOrder).

An algorithm generating ℰ𝑃 is given in Figure 1. The algo-
rithm iterates over each ⌜out⌝ parameter 𝑝 of some protocol580

𝑄. The occurrance of any message 𝑚 in 𝑄 that contains 𝑝 as
an ⌜out⌝ parameter produces a binding for 𝑝, so the disjunc-
tion of all such occurrences (here labeled cover𝑝) accounts for
all ways to bind 𝑝. As an enactment of 𝑄 is complete when all
of its ⌜out⌝ parameters is bound, we return the conjunction585

of all cover𝑝 as ℰ𝑄.

1: procedure ℰ(𝑄)
2: for all 𝑝 ∈ out(𝑄) do
3: cover𝑝 ←

⋁︀
{𝑚 ∈ 𝑄 | 𝑝 ∈ out(𝑚)}

4: return
⋀︀

𝑝∈out(𝑄) cover𝑝

Figure 1: Algorithm generating ℰ𝑄.

5.5 Atomicity
Atomicity of a composition requires both that each of its
references be atomic, and that if the reference completes the
composition can also complete. Using the definition for ℰ𝑃590

given above, this can be written as ℰ𝑅 ⇒ ℰ𝑄 for protocol
𝒬 with reference ℛ. Thus if 𝒬 is atomic in the context
of 𝒫, any valid enactment of 𝒬 will satisfy the formula
𝒞𝑃 ∧ℳ𝑃 ∧ (¬ℰ𝑅 ∨ ℰ𝑄) for all 𝑅 ∈ ref (𝑄).

To prove that a composition is atomic, we verify that there595

are no valid nonatomic enactments by inverting the atomicity
clause. This gives the following formula: 𝒞𝑃 ∧ℳ𝑃 ∧ℰ𝑅∧¬ℰ𝑄.
If this formula cannot be satisfied for any 𝑅, then there are
no valid, maximal, nonatomic enactments, and the protocol
must be atomic.600

With this formula, we can recursively verify the atomic-
ity of every component in a protocol 𝒫, as shown by the
algorithm in Figure 2.

In the base case, messages are always atomic, and do not
have any components for further recursion. The algorithm605

then iterates across each reference ℛ in 𝒬, recursively testing
for atomicity. If the reference is atomic in the context of 𝒫,
the formula given above is used to prove that there are no
enactments in which ℛ can complete but 𝒬 cannot. If no
such enactment exists for any reference, the protocol 𝒬 is610

proven atomic in the context of 𝒫.

1: procedure atomic(Q, P)
2: if Q is a message then return True
3: for all R ∈ ref (𝑄) do
4: if ¬atomic(R, P) then return False
5: if SAT(𝒞𝑃 ∧ℳ𝑃 ∧ ℰ𝑅 ∧ ¬ℰ𝑄) then
6: return False
7: return True

Figure 2: Atomicity verification process.

Having designed a verification procedure, we now prove it
correctly verifies that a protocol 𝒬 is atomic in the context

7

AAMAS’18, July 2018, Stockholm, Sweden 274

of 𝒫, assuming that the clauses 𝒞𝑃 , ℳ𝑃 , and ℰ𝑃 correctly
capture correctness, maximality, and enactability.615

Theorem 3: A protocol 𝒬 is atomic in the context of 𝒫 if
and only if, for all ℛ in ref (𝑄), ℛ is atomic and there is no
enactment 𝜏 which satisfies 𝒞𝑃 ∧ℳ𝑃 ∧ ℰ𝑅 ∧ ¬ℰ𝑄.

Proof 3 (Proof): Let the atomicity of 𝒬 be denoted 𝐴𝑄.
We desire to prove ∀ℛ ∈ ref (𝑄) : atomic(ℛ,𝒫) ⇒ 𝐴𝑄 ⇔620

¬(𝒞𝑃 ∧ℳ𝑃 ∧ℰ𝑅∧¬ℰ𝑄). First, we assume from the definition
that ℛ is atomic, and consider only enactments that satisfy
𝒞𝑃 ∧ℳ𝑃 (that is, are correct and maximal), leaving 𝐴𝑄 ⇔
¬(ℰ𝑅∧¬ℰ𝑄). Distributing the negation reduces the statement
to ∀ℛ ∈ ref (𝑄) : 𝐴𝑄 ⇔ ¬ℰ𝑅 ∨ ℰ𝑄.625

Suppose protocol 𝒬 is atomic in the context of 𝒫. By the
definition of atomicity we know that for all ℛ ∈ ref (𝒬), any
enactment 𝜏 in intension [[ℛ]]𝑈𝑜𝐷(𝒫) can be extended with a
finite number of message transmissions to some enactment 𝜏 ′

in intension [[𝒬]]𝑈𝑜𝐷(𝒫). That is, by assuming maximality, if630

it completes ℛ it also completes 𝒬. So enactment 𝜏 ′ satisfies
ℰℛ ∧ ℰ𝒬, and 𝐴𝒬 ⇒ ¬ℰ𝑅 ∨ ℰ𝒬.

Conversely, suppose for protocol 𝒬 and all ℛ ∈ ref (𝒬),
enactment 𝜏 satisfies ¬ℰℛ ∨ ℰ𝒬. By the definition of ℰ𝒫 ,
either 𝜏 completes 𝒬 or it does not complete ℛ. Thus, it635

is in the intension [[𝒬]]𝑈𝑜𝐷(𝒫) or it is not in the intension
[[ℛ]]𝑈𝑜𝐷(𝒫). Furthermore, by the assumption of maximality
̸ ∃𝜏 ′ ∈ [[ℛ]] ∋ 𝜏 ⪯ 𝜏 ′, the definition of atomicity is vacuously
satisfied, and ¬ℰℛ ∨ ℰ𝒬 ⇒ 𝐴𝒬. □

5.6 Results640

After creating the above implementation, we ran it against
each of the example protocols, producing the results in Table 3
below.

Protocol (Listing) Atomic? Clauses

Purchase (1) True 92
RefinedPurchase (3) False 156
FixedPurchase (5) True 390
AccessData (6) False 75
CreateOrder False 690

Table 3: Protocheck results for example protocols.

Table 3 contains an an overview of the results of running
Protocheck on each of the example protocols in this paper.645

The second column shows whether the protocol was veri-
fied as atomic or not. The third column shows how many
clauses were generated according to the clause definitions
given above. Note that the number of clauses varies be-
cause of the short-circuit nature of the recursive algorithm;650

FixedPurchase recurses through all of its components, while
RefinedPurchase exits at the first violation.

The last entry, CreateOrder, is a specification of the Cre-
ate Laboratory Order workflow defined by HL7 [12]. A naïve
specification leaves several choices enabled when they should655

be mutually exclusive, as in the RefinedPurchase example,
such as whether the physician should collect a sample them-
selves or send the patient to a specialist. After fixing the first

obvious problem the tool still reported failure, revealing a
second such point in the protocol that had been overlooked.660

6 DISCUSSION
The idea of atomic action, e.g., as in [6, 19] and planning [1]
has a long history in multiagent systems. However, existing
works either assume a shared memory or address a single-
agent setting. The idea of atomic interaction in the context
of composition is however a novel one.665

To discuss atomicity in the context of protocol composition
requires the specifications to support meaningful interaction
between components. That is, instead of simply performing
the component protocols sequentially or concatenating their
contents, they should remain distinct yet capable of affecting670

each other. If the components are not kept distinct, there
is no way to apply the “all or nothing” concept to them;
we are left with liveness of the composition alone. Similarly,
if the components cannot meaningfully interact with each
other, they will behave in composition exactly as they do in675

isolation—no interference capable of causing a violation is
possible.

Notably, several diverse approaches for specifying proto-
cols, including AUML [18], message sequence charts (MSCs)
[13], choreography languages such as WS-CDL [27], and pro-680

cess calculii-inspired languages [3, 11] ignore information
altogether and instead use control flow-based abstractions
such as sequence, choice, and so on, to compose and constrain
the enactment of protocols. However, specifying protocols in
terms of control flow leads to regimented enactments, lim-685

iting interaction between components. This is true even of
approaches such as RASA [16] and HAPN [26] which support
declarative constraints on information values. Because the
protocol enactments are guided by control flow constructs
rather than information parameters, there is little meaning-690

ful interaction between components, just as the addition of
states and transitions to a state machine does not affect the
operation of other portions. For this reason we focus on the
application of atomicity to the information-based approach
exemplified by BSPL.695

One direction for future work is to explore the value of
atomicity in the context of step-wise refinements of protocols.
Ideally, step-wise refinement would preserve the liveness and
safety of the protocol under consideration. Another direction
is to add support for relative atomicity [15] by identifying700

critical subsets of protocols. Instead of requiring an entire
protocol to complete when any of its references are completed,
it may only need to be completed after some critical sub-
set has completed. Adding higher level concepts will enable
more robust and sensitive guarantees of atomicity. Identifying705

which messages create or discharge commitments would allow
the discharging of all commitments to be used as a more pre-
cise criterion for the correctness of an enactment. Similarly,
identifying relationships between actions in a protocol might
enable reverting them, and thus support a wider variety of710

ways to resolve conflicts.

8

Compositional Correctness in Multiagent Interactions AAMAS’18, July 2018, Stockholm, Sweden

REFERENCES
[1] Natasha Alechina, Mehdi Dastani, and Brian Logan. 2012. Pro-

gramming norm-aware agents. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS’12). IFAAMAS, Valencia, 1057–1064.715

[2] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness.
Inform. Process. Lett. 21, 4 (October 1985), 181–185.

[3] Davide Ancona, Daniela Briola, Angelo Ferrando, and Viviana
Mascardi. 2015. Global protocols as first class entities for self-
adaptive agents. In Proceedings of the Fourteenth International720

Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, Istanbul, 1019–1029.

[4] Farhad Arbab. 2011. Puff, The Magic Protocol. In Formal
Modeling: Actors, Open Systems, Biological Systems. Springer,
169–206.725

[5] Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti,
and Federico Capuzzimati. 2014. Engineering Commitment-Based
Business Protocols with the 2CL Methodology. Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 28, 4
(July 2014), 519–557.730

[6] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro
Ricci, and Andrea Santi. 2013. Multi-agent oriented programming
with JaCaMo. Science of Computer Programming 78, 6 (June
2013), 747–761.

[7] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh.735

2017. Splee: A Declarative Information-Based Language for Mul-
tiagent Interaction Protocols. In Proceedings of the 16th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). IFAAMAS, São Paulo, 1054–1063.

[8] Nicoletta Fornara and Marco Colombetti. 2003. Defining Interac-740

tion Protocols using a Commitment-based Agent Communication
Language. In Proceedings of the 2nd International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS).
ACM Press, Melbourne, 520–527.

[9] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.745

2008. Database Systems: The Complete Book (2nd ed.). Pearson.
[10] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability:

A correctness condition for concurrent objects. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 12,
3 (1990), 463–492.750

[11] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multi-
party Asynchronous Session Types. In Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). ACM, 273–284.

[12] Health Level Seven International. 2013. Laboratory Order Concep-755

tual Specification. (2013). http://wiki.hl7.org/index.php?title=
Laboratory_Order_Conceptual_Specification

[13] ITU. 2004. Message Sequence Chart (MSC). (April 2004). http:
//www.itu.int/ITU-T/2005-2008/com17/languages/Z120.pdf.

[14] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events760

in a Distributed System. Communications of the ACM (CACM)
21, 7 (July 1978), 558–565.

[15] Nancy Lynch. 1983. Multilevel Atomicity—A New Correctness
Criterion for Database Concurrency Control. ACM Transactions
on Database Systems 8, 4 (Dec. 1983), 484–502.765

[16] Tim Miller and Peter McBurney. 2011. Propositional Dynamic
Logic for Reasoning about First-Class Agent Interaction Protocols.
Computational Intelligence 27, 3 (2011), 422–457.

[17] Tim Miller and Jarred McGinnis. 2008. Amongst First-Class
Protocols. In Proceedings of the 8th International Workshop770

on Engineering Societies in the Agents World (ESAW 2007)
(Lecture Notes in Computer Science), Vol. 4995. Springer, Athens,
208–223.

[18] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. 2001.
Representing Agent Interaction Protocols in UML. In Proceedings775

of the 1st International Workshop on Agent-Oriented Software
Engineering (AOSE 2000) (Lecture Notes in Computer Science),
Vol. 1957. Springer, Toronto, 121–140.

[19] Andrea Omicini and Franco Zambonelli. 1999. Coordination for
Internet Application Development. Autonomous Agents and780

Multi-Agent Systems 2, 3 (Sept. 1999), 251–269.
[20] Munindar P. Singh. 1996. Toward Interaction-Oriented Pro-

gramming. TR 96-15. Department of Computer Science, North
Carolina State University, Raleigh. Available at http://www4.
ncsu.edu/eos/info/dblab/www/mpsingh/papers/mas/iop.ps.785

[21] Munindar P. Singh. 2003. Distributed Enactment of Multiagent
Workflows: Temporal Logic for Service Composition. In Proceed-
ings of the 2nd International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). ACM Press, Mel-
bourne, 907–914.790

[22] Munindar P. Singh. 2011. Information-Driven Interaction-
Oriented Programming: BSPL, the Blindingly Simple Protocol
Language. In Proceedings of the 10th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491–498.795

[23] Munindar P. Singh. 2011. LoST: Local State Transfer—An Archi-
tectural Style for the Distributed Enactment of Business Protocols.
In Proceedings of the 9th IEEE International Conference on
Web Services (ICWS). IEEE Computer Society, Washington, DC,
57–64.800

[24] Munindar P. Singh. 2012. Semantics and Verification of
Information-Based Protocols. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.

[25] Munindar P. Singh. 2014. Bliss: Specifying Declarative Service805

Protocols. In Proceedings of the 11th IEEE International Con-
ference on Services Computing (SCC). IEEE Computer Society,
Anchorage, Alaska, 235–242.

[26] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2017. A New
Hierarchical Agent Protocol Notation. Autonomous Agents and810

Multi-Agent Systems (July 2017).
[27] WS-CDL. 2005. Web Services Choreography Description Lan-

guage, Version 1.0. (Nov. 2005). http://www.w3.org/TR/
ws-cdl-10/.

[28] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol815

Specification and Execution: Applying Event Calculus Planning
using Commitments. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems.
ACM Press, 527–534.

9

http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification
http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification
http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification
http://www.itu.int/ITU-T/2005-2008/com17/languages/Z120.pdf
http://www.itu.int/ITU-T/2005-2008/com17/languages/Z120.pdf
http://www.itu.int/ITU-T/2005-2008/com17/languages/Z120.pdf
http://www4.ncsu.edu/eos/info/dblab/www/mpsingh/papers/mas/iop.ps
http://www4.ncsu.edu/eos/info/dblab/www/mpsingh/papers/mas/iop.ps
http://www4.ncsu.edu/eos/info/dblab/www/mpsingh/papers/mas/iop.ps
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

	Abstract
	1 Introduction
	2 BSPL
	2.1 Formalization

	3 Atomicity Concepts
	4 Atomicity Formalization
	4.1 Distinction from existing properties

	5 Verification
	5.1 Logic Semantics
	5.2 Causality
	5.3 Maximality
	5.4 Enactability
	5.5 Atomicity
	5.6 Results

	6 Discussion
	References

