
Private Collaborative Business
Benchmarking in the Cloud

Abstract—Collaborative business benchmarking helps orga-
nizations and businesses to evaluate current and future-state
goals. Cloud business benchmarking provides valuable insight
for organizations to understand and compare their efficiency and
effectiveness against peers. However, privacy is the most concerns.
We present a privacy-preserving prototype for collaborative
benchmarking in the cloud. Sensitive business’s data is encrypted
and can only be decrypted by a set of parties through a threshold
group decryption scheme.

I. INTRODUCTION

Nowadays, the value of merger & acquisition (M&A) has in-
creased significantly. For instance, in 2015, the value of global
M&A was 6,012 US billion dollar. Organizations involved in
M&A are usually operating within different economic juris-
dictions and they follow different standards and performance
measures. In such as scenario, information sharing increases
due to the need for streamlining standards and performance
measures between the companies and their peers, holding
umbrella company or subsidiary company. This became more
possible and much easier by considering emergent technology
such as the cloud computing, which appeals businesses and
organizations due to a wide variety of benefits. Cloud comput-
ing provides an opportunity for organizations and businesses
to share the expertise of their business via database services
and also cutting the cost of complex information infrastructure
and data management [1]. Beside the advantages such cost
saving and service benefits, cloud computing provides higher
availability, scalability and more effective disaster recovery
rather than in-house operations [2].

Benchmarking is an important process for companies and
businesses to stay competitive in the marketing [3], especially
during financial crisis businesses have to take their bearing
on the market [4]. Using targeted improvement measures,
businesses can evaluate their achievements and performance
against their competitors. Key Performance Indicator (KPI) is
a statistical quantity measuring that evaluates the success and
the performance of an organization or of a particular activity
in which it engages [5]. Small businesses might want to co-
operatively forecast the future of their business to make more
informed decisions [6]. Outsourcing business information to
the cloud and collaborative benchmarking would empower
smaller businesses to decision making via a valuable broader
information shared by largest businesses and organizations. As
a result, organizations and enterprises have great interest to
share their PKIs via the cloud to enhance collaborative bench-
marking and extract interesting knowledge [7]. Outsourcing
such data has some advantages in term of cost reducing and

using the benefits of cloud computing while extracting useful
business information using some evaluation functions (e.g. the
functions like SUM, AVERAGE, ...) over shared PKIs.

However, since business’s data is a very valuable asset
for many organizations and business, data confidentiality and
privacy is the most concern. Because organizations or indi-
viduals do not want to reveal their private data for various
legal and competitive reasons. Highly confidential data about
a company’s operations are sensitive and privacy should be
preserved. A trivial solution is to encrypt data before sending
them to the cloud.

Consider a scenario in which a group of companies U
that are interested in comparing their KPIs without revealing
sensitive data to others. Each company we call as a party,
Ui, has a set of KPIs, xi1, ..., xin that are encrypted and
sent to a cloud service provider (SP). Each party shares his
encrypted inputs and other parties including the SP will learn
nothing except what can be inferred from their inputs and
the final output [3]. In addition to eliminating storage and
computation at the party’s, the goal is to compute a selected
function over encrypted shared data at the SP ’s. Once a
function is commonly chosen, the SP computes the function
over encrypted data. The final result must be decrypted by a
set of parties, each of whom shared his private data [8] through
executing a privacy-preserving protocol. Data privacy should
be preserved in such a way that other parties and the SP learn
nothing about the shared data.

Data privacy can be preserved using Multi Party Computa-
tion (MPC). In MPC, computations are executed by the parties,
which induces computational overhead at the user’s and is not
compatible with cloud outsourcing scenarios. Several privacy-
preserving benchmarking have been proposed [9]–[11] but,
cannot fit privacy requirements in the cloud context. In this
paper, we introduce a prototype for collaborative evaluating
and benchmarking of businesses over encrypted data shared
in the cloud. Then, the encrypted result is sent back to a
trusted server called proxy server. A group of parties executes
a threshold group decryption scheme to decrypt the result. The
proxy server plays a role of dealer for key distribution and a
combiner in the threshold group decryption. We assume that it
does not maliciously collaborate with the SP [12]. We assume
that all parties are interested in obtaining the correct results,
thus they submit the correct data. Another important aspect of
this prototype is that the parties only communicate with the
SP, but never amongst them. Anonymity among the parties can
only be achieved, if they do not need to address messages to
others [12].
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The rest of this paper is structured as follows. In Section
II, we describe some preliminaries. In Section III we present
our privacy preserving benchmarking. We analyze the security
of our solution in Section IV and we conclude the paper in
Section V.

II. PRELIMINARIES

A. Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is an encryption
scheme enables performing arbitrary computations over en-
crypted data without decryption. The first FHE scheme in-
troduced by Gentry [13], which is intensive and inefficient
to implement. Partial Homomorphic Encryption (PHE) is
more efficient and closer to practical solution. PHE allows
computing addition or multiplication over encrypted data, but
not both.

The Paillier cryptosystem [14] is the most efficient PHE in
the literature. The Paillier cryptosystem provides homomor-
phic properties as follows [12], [15]:
For two plaintexts M1 and M2,

E(M1+M2) = E(M1)×E(M2) andE(k×M) = E(M)K

such properties enable computing over encrypted data without
decryption.

B. Threshold Group Decryption

A threshold group decryption scheme allows any subset of
t + 1 out of l parties to decrypt a ciphertext, but disallows
the decryption if less than t parties participate [16]. Threshold
group decryption may work when some parties are corrupted
and do not play according to their nominal behavior.

For a group of users U , a threshold group
decryption scheme TGD〈U〉, consists of four algorithms
(KG, En, parDec, Com) described below.

• Key generation KG: takes as input the number of parties
`, the threshold parameter t, and a random string w.
It outputs a public key PK and a list of private keys
sk1, ..., sk`.

• Encryption algorithm En: takes as input the public key
PK, a random string w and a cleartext M . It outputs a
ciphertext c.

• Partial decryption algorithm parDec: takes as input
the public key PK, an index i where 1 ≤ i ≤ `, the
private key ski and a ciphertext c. It outputs a decryption
share ci.

• Combining algorithm Com: takes as input a public key
PK, a ciphertext c, a list of partial decryption c1, .., ct+1

and outputs a cleartext M .

We can consider that up to t party could be corrupted by a
passive or active attack. In passive, an adversary eavesdrops

the parties. By contrast, an active adversary controls the be-
havior of corrupted party. A threshold decryption is t−robust
if the combiner (proxy) be able to decrypt any ciphertext even
if t parties corrupt [16].

C. Threshold Group Decryption of Paillier Cryptosystem

The threshold group decryption of Paillier cryptosystem is
defined as below [16]:
If ` in the number of parties then ∆ = `!

• KG:
Choose an integer n, product of two strong primes p
and q, such that p = 2p′ + 1 and q = 2q′ + 1 and
gcd(n, ϕ(n)) = 1, then set m = p′q′. Let β be a random
element in Z∗n. Then the proxy randomly chooses
(a, b) ∈ Z∗n × Z∗n and sets g = (1 + n)a × bn mod n2.
The secret key SK = βm is shared with Shamir’s secret
sharing scheme: let a0 = βm, t random values ai in

{0, ..., n×m− 1} are chosen and set f(x) =
t∑
i=0

aiX
i.

The secret key ski of ith party Ui is f(i) mod nm.
The public key PK consists of g, n and the value
θ = L(gmβ) = amβ mod n.

• En:
To encrypt a message M first a random element, x, is
chosen x ∈ Z∗n and compute c = gMxn mod n2.

• parDec:
The ith party Ui computes the decryption ci = c2Mski

mod n2 using his secret key ski.

• Com:
If less than t parties shares their partial decryption, this
step fails. Let S be a set of t + 1 partial decryption
shared, the plaintext computes as:

M = L

(
Πj∈Sc

2µS
0,j

j mod n2
)
× 1

4∆2θ
mod n

where
µS0,j = ∆×

∏
j′∈S\{j}

j′

j′ − j
∈ Z

III. PRIVACY PRESERVING BUSINESS BENCHMARKING
(PPBB)

Let consider the collaborative business benchmarking and
forecasting in which a set of parties denote by U =
〈U1, U2, ..., U`〉, want to store their data in a cloud and delegate
the administration of data, to a specialized SP. Ones they agree
to enhance an evaluation function, they execute PPBB to
send selected function and getting the result. In our setting,
a trusted proxy server plays the role of the dealer and the
combiner, which combines the partial results and broadcasts
the results to all parties.



PPBB executes in three different phases: Initialization
phase (A) for generating a public and a set of secret keys and
sending to the parties. Phase (B) for encrypting and storing
data at the SP side, and phase (C) for sending the selected
function and get the results. The parties are unaware of the
other parties or the number of all parties. The SP evaluates
an arbitrary function over encrypted data. In decryption
phase, minimum t number of parties and the proxy interact
and cooperate to decrypt the results. The parties need not
be online at all during the bulk of the computation, they are
online only when it’s the time to decrypt the results [17].
The parties do not interact between them, they send their
partial decryption to the proxy.

A Initialization: The proxy server executes the KG

algorithm and generates a public key PK and `
secret keys sk1, sk2, . . . , sk` and sends (PK, ski)
to party Ui , i = 1, . . . , `.

B Storing Data: In this phase, which is off-line [18],
a party sends and stores data at the SP side. Data
is encrypted using the public key PK and sent
to the SP. To simplicity, we write this phase as:
c← En(PK,M).

C Querying Data: In this phase,
which is online, a subset of parties
UT = 〈U1, U2, ..., Ut+1〉 first choose a query.

step1 : The proxy, encrypts the query using the
PK and sends the encrypted query to the
SP.

step2 : The SP performs the
query on the ciphertexts
encRes ← Qur(C), and sends the
results encRes to the proxy. The proxy
broadcasts to the parties the encRes

step3 : A set of parties UT =
〈U1, U2, ..., Ut+1〉 run parDec, via
their individual secret keys, compute
ci ← parDec(encRes, ski), and send their
partial results ci to the proxy.

step4 : The proxy combines the partial de-
cryption to compute the message M ←
Com(c1, c2, ..., ct, ct+1), then it broadcasts
M to all parties.

IV. SECURITY ANALYSIS

In PPBB, sensitive data is encrypted by a public key and
the SP never receives secret keys ski i = 1, . . . , `, so the SP
never sees sensitive data, ensuring data privacy. Similarly, only
a set of t parties along with the proxy server can run a partial
decryption algorithm to decrypt the result, which guarantees
data privacy even when t parties collude.

The Paillier cryptosystem provides strong security guaran-
tees, called semantic security [13]. Semantic security implies

that any adversary seeing ciphertexts cannot learn any in-
formation about the underlying plaintext. In the other word,
ciphertexts stored at the SP side leak no information about the
sensitive data.

V. CONCLUSION

This paper describes a privacy-preserving protocol for
collaborative benchmarking in the cloud. Data privacy is
guaranteed by computing over encrypted data. The result of
computation can be decrypted only when a group of parties
jointly compute a threshold group decryption. This work can
be extended in a number of ways. Future directions include:
• The proposed solution provides data privacy against

passive adversaries. It is necessary to improve security
against active adversaries by adding some authentica-
tion mechanisms such as Message authentication codes
(MAC) or digital signature. Such cryptographic schemes
are used to detect any changes that an active adversary
makes.

• We would like to implement the proposed solution and
compare with the state-of-the-art solutions in terms of
computational overhead and security guarantees.
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