
A Resource and QoS Management Framework for a Real-Time Event
System in Mobile Ad Hoc Environments

Hector A. Duran-Limon1, Gordon S. Blair1, Adrian Friday1, Thirunavukkarasu Sivaharan2,
George Samartzidis1

Computing Department, Lancaster University, Bailrigg, Lancaster LA1 4YR, UK.

{duranlim,gordon,gs,adrian}@comp.lancs.ac.uk1,
t.sivaharan@lancaster.ac.uk2

Abstract

 A new class of applications can now be envisaged with the

emergence of both mobile ad hoc computing and ubiquitous
computing. Applications of such kind are characterised by being
largely distributed and proactive, i.e. able to operate without human
intervention. The anonymous and asynchronous paradigm, which is
advocated by event models, has shown to be well-suited for this kind
of applications. However, current real-time event-oriented
middleware technologies do not provide a complete solution for the
requirements of mobile ad hoc environments. In this paper, we
present the research carried out on both a resource and a QoS
management framework to achieve real-time support for an event
system operating in mobile ad hoc environments. The framework
makes use of both reflection and component technology. The
implementation of our resource system is developed in OpenCOM,
which is a lightweight, efficient and reflective model based on
Microsoft’s COM.

1. Introduction

Over the last few years we have seen the proliferation of
embedded mobile systems such as mobile phones and PDAs.
Ubiquitous computing is also taking off in which multiple
cooperating possibly embedded controllers are used. A new
kind of applications can now be envisaged with the
emergence of both mobile ad hoc computing and ubiquitous
computing. Applications of such kind are characterised by
being largely distributed and proactive, i.e. able to operate
without human intervention. A set of further characteristics
are also involved such as context awareness as a means to
sense the surrounding environment. Examples of these
applications include automatic car control systems in which
cars are able to operate independently and cooperate with
each other to avoid collisions. Another example is an air
traffic control system whereby thousands of aircraft are
proactively coordinated to keep them at safe distances from
each other, direct them during takeoff and landing from
airports and ensure that traffic congestion is avoided. Smart
room systems can also be foreseen in which the intensity of
light, room temperature and some other features are
automatically tuned according to the user preferences of the
persons present in the room.

The CORTEX Project1 is examining fundamental
issues relating to the support of such applications,
including the development of middleware for this domain.
The CORTEX approach is based on anonymous and
asynchronous event models. Such models are well-suited
to ad hoc environments including a large number of
autonomous processing units. These many-to-many
communication scenarios are well supported by the
anonymous dissemination of information. In addition,
asynchronous communication is well-suited to systems
where frequent disconnection is anticipated as blocking
conditions are avoided. Further requirements include
support for mobility and non-functional properties such as
timeliness and reliability since some of these applications
are time- and safety-critical. However, current event-
oriented middleware technologies do not provide a
solution for all the challenges imposed by these
applications. A higher-level programming model is also
needed to deal with the complexity of multiple event
interactions with different QoS demands. In addition,
current programming models do not generally differentiate
between functional and non-functional properties. The
result of this is a code tangled with different aspects which
is more difficult to write, read and reuse.

As regards timeliness requirements, we believe that
resource management plays an important role in providing
support for real-time applications. In particular, the
mechanism that allocates resources in the system should
ensure that critical activities will be provided with enough
resources to carry out their tasks in a predictable way.
Changes in the availability of network resources and
periods of disconnection are frequently experienced as
mobile computing environments are highly dynamic.
Furthermore, mobile applications typically operate on
devices with scarce resources, e.g. CPU capacity, system
memory and battery life. Therefore, support for the
predictable and efficient management of the system
resources as well as resource reconfiguration capabilities
for achieving adaptation are required. An example of the
latter is a redistribution of both CPU-time and memory to

1 This work is supported by the EC, through project IST-FET-2000-

26031 (CORTEX). http://cortex.di.fc.ul.pt

the set of activities that the system performs, thus, ensuring
that time-critical activities are not disturbed.

In this paper, we present both a resource management
framework and a quality of service (QoS) management
framework for the real-time support of an event system in
mobile ad hoc environments. A higher-level programming
model for the resource management of event systems is
introduced. In addition, aspect-oriented techniques [1] are
used for separating out non-functional aspects from
functional aspects. This practice reduces the complexity of
programming real-time event systems.

The paper is structured as follows. Section 2 introduces
some background on the CORTEX architecture and
associated middleware. Section 3 presents the approach for
resource management and QoS management support. The
implementation of the system’s prototype is then described in
section 4. Section 5 draws some concluding remarks.

2. Background on the CORTEX architecture

Central to the CORTEX architecture is the notion of a
sentient object [2] which is defined as an entity that is able to
both consume and produce events. That is, sentient objects
are entities that receive events, process them and generate
further events. Input events are received either from sensors
or from other sentient objects. Similarly, output events are
sent either to actuators or other sentient objects. Sentient
objects are autonomous entities that are able to sense their
environment. Interestingly, sentient objects have a proactive
role in that they are capable of taking decisions and
performing some actions (i.e. generate further events) based
on the information sensed. Hence, sentient objects include a
control logic which realises the decision-making mechanism.

We are building a middleware platform in order to
provide support for CORTEX applications and hence to
support the sentient object abstraction described above. In
order to tackle the requirements imposed by ad hoc
environments, configuration and reconfiguration capabilities
are introduced in the middleware architecture. Based on
previous experience in the construction of reflective
middleware [3], we make use of reflection, component
technology and component frameworks (CFs). Reflection is a
means by which a system is able to inspect and change its
internals in a principled way [4]. A reflective system is able
to perform both self-inspection and self-adaptation. To
accomplish this, a reflective system has a representation of
itself. This representation is causally connected to its domain,
i.e. any change in the domain must have an effect in the
system, and vice versa. On the other hand, component
technology introduces more configuration and
reconfiguration capabilities into distributed applications and
increases the level of reuse. Within the context of CORTEX a
component is basically “a unit of composition with
contractually specified interfaces and explicit dependencies
only” [5]. The granularity of a component may be diverse

ranging from components that realise only a part of the
machinery of a single sentient object to components that
encompass two or more sentient objects.

The environment support for the interaction of sentient
objects is also conceptualised as a componentised
middleware platform. In fact, the middleware is structured
in terms of component frameworks [5] as shown in figure
1. Essentially, component frameworks are “collections of
rules and interfaces that govern the interaction of
components ‘plugged into’ them” [5]. In other words, a
component framework is a reusable architectural design
targeting a specific domain whereby desired architectural
properties and invariants are enforced. The
publish/subscribe CF realises the CORTEX event model
[6]. The functionality of the control engine of a sentient
object is provided by the context CF. Services can be
dynamically discovered by the use of the service
discovery CF [7]. Facilities for multicast in ad hoc
environments are then provided by the multicast CF. The
QoS management CF arbitrates the allocation of resources
and provides facilities for monitoring and adaptation of
QoS. Lastly, the resource management CF controls the
resources used by all the CFs. Central to this paper are the
resource management CF and the QoS management CF
which are presented in the following sections. Some
essential details of the publish/subscribe model are also
presented below.

Figure 1. The middleware architecture of

CORTEX

The publish/subscribe CF is based on an event model
called STEAM [6] that allows for the dissemination of
events in an ad hoc network environment. Producers
publish events and consumers subscribe to event types to
be able to receive events. An implicit event model is
followed in which there is not an event broker or
mediator; instead brokering functions are implemented at
both the consumer and the producer side. This is useful in
an ad hoc environment where permanent communication
with a broker is unlikely to be maintained. An event type,

Network Infrastructure

Context
CF

Publish/
Subscribe

CF

Application

Middleware

Sentient
Object CF

Operating System

Multicast
CF

Service
Discovery CF

from which events are instantiated, is basically characterised
by a subject, data information, context information (e.g.
location, time, etc) and is associated with QoS properties (e.g.
timeliness). Interestingly, event filtering is achieved by
performing both subject-based and proximity filtering at the
producer side. The former describes the particular event types
that the consumer is interested in. The latter specifies the
geographical area within which event types are valid. The
consumer uses content-based filtering in which an expression
is evaluated against a set of values included in an event.

3. Real-time support

3.1. Motivation

Several middleware services using the publish/subscribe
communication model have been developed such as the
OMG’s CORBA Event service specification [8] , Sun
Microsystems’s Java distributed event specification [9],
TIBCO’s TIB/RendezvousTM, SIENA [10] (a wide area event
notification service), Gryphon [11] (a distributed content
based notification service), and JEDI [12] (a Java event based
distributed infrastructure). However, most of them assume a
fixed network infrastructure and require the use of stationary
event brokers. Furthermore, most existing platforms have
limited support for the negotiation or enforcement of QoS
requirements. Some research has been carried out to
overcome this situation, for example TAO’s Event service
[13] and the CORBA Notification Service [14]. However,
these systems still require the existence of a fixed
infrastructure. In addition, current approaches to QoS
management in mobile ad hoc networks [15, 16, 17] only
provide support for a limited number of service classes
(usually two) and the effect of hidden terminals is generally
not addressed. Other approaches such as the one described in
[18] provide further support for service differentiation but
operate at the MAC layer which makes the system
deployment more difficult.

Real-time event systems in mobile ad hoc environments
impose a number of new unsolved challenges. Such
environments are characterised by being highly
unpredictable. A peer-to-peer communication model is
generally used in ad hoc networks. Importantly, nodes act as
routers to reach nodes that are out of the transmission range.
Communication delays between nodes may vary
unexpectedly as the number of hops to reach the destination
changes. In addition, a geographical area may unexpectedly
become congested, resulting in the lack of communication
resources. Moreover, periods of disconnection are likely to
happen at any time due to the conditions of the geographical
area. The transmission signal can be severely affected by bad
weather conditions and obstacles such as trees, hills and
buildings. In the worse case, there may be a network partition
whereby one or more nodes are unreachable. In addition,
unpredictability in ad hoc environments is also dictated by

the fact that new event types with different QoS demands
may be dynamically discovered, e.g. new event types are
advertised at various locations. In this situation, no a priori
resource consumption assumptions can be made.

Further challenges include the development of suitable
mechanisms and protocols for the resource management of
resource constrained devices such as PDAs and sensors.
This kind of device has a limited battery life, hence, power
management is needed to make an efficient use of the
energy. Memory and CPU resources are also limited,
therefore, suitable resource management mechanisms are
required. As any node may be a router, resource scarce
devices need to evaluate the amount of traffic they are
able to route without having a negative impact in pursuing
their main goal.

A considerable amount of event types with different
QoS requirements may be involved in a real-time event
system. This fact makes the programming of real-time
event systems tedious and error-prone. Importantly, there
is a lack of programming abstractions able to present a
global view of how resource management is performed
along multiple nodes to pursue common goals.
Furthermore, resource management of complex
relationships among event types are usually not
represented by current event programming models. That
is, there are not programming abstractions capturing the
resource management of event flows across the network.

Under the current state of the art in mobile ad hoc
network technologies, it is not feasible to offer hard real-
time guarantees for communication resources except in
special cases. Such guarantees can only be offered if
certain specific conditions are met such as a scenario
whereby a limited number of nodes are moving in an
obstacle-free area at the same speed and direction.
Although, hard real-time guarantees can still be provided
for local resources such as CPU, only soft real-time
guarantees can be offered for communication resources in
most cases whereby these resources are dynamically
allocated according to deadlines.

Another tough challenge arises here: how can we deal
with applications demanding hard real-time guarantees
when the underlying infrastructure is only capable of
offering soft real-time guarantees. A number of issues
have to be considered to address this problem. A high
probability of meeting deadlines has to be offered. We
also believe that such infrastructure has to be adaptable
and flexible to deal with the highly dynamic and
unpredictable nature of the environment. Resource
management plays an important role in this adaptation
process in terms of both resource awareness and dynamic
reallocation of resources. Crucially, fail-safe mechanisms
are needed to bring the application to a safe state when
timing failures are detected. Therefore, QoS management
support is required for monitoring QoS violations and
triggering both adaptation and fail-safe procedures when
required. In addition, QoS management is required to

arbitrate the allocation of network resources whereby
admission control tests are performed and more resources are
conceded to events with shorter deadlines and higher
criticality.

This paper does not intend to provide solutions for all the
problems outlined above. Rather, the paper focuses in
providing a) a higher-level programming model for resource
management, b) support for resource awareness and resource
adaptation, and c) QoS management support. The first two
are addressed by the resource management CF, i.e. the task
model and resource model, respectively. The last one is
tackled by the QoS management component framework.

3.2. Resource management component framework

3.2.1. Overview. The resource management CF encompasses
both a task model and a resource model. The task model
permits the user to model resource management of both
coarse- and fine-grained interactions. Hence, the task model
allows for the high-level analysis and design of resource
management for event systems. There is a close relationship
between the task model and the resource model. Tasks have
an associated pool of resources which is defined by the
resource model. More specifically, the resource model allows
us to model different types of resources at multiple levels of
abstraction. Both coarse- and fine-grained resource
configuration and reconfiguration are feasible. Further details
of the task and resource models are introduced in turn below.

3.2.2. The task model. From the programmatic point of
view, a task may involve either a single invocation sequence
or multiple invocation sequences. The simplest case for a
sequence is where only one operation is invoked. A task is
defined as a logical unit of computation which has an amount
of resources allocated. Examples of tasks are activities
performed by the system such as transmitting audio over the
network or compressing a video image, which has an amount
of resources assigned for its execution. The task model is
concerned with both application services and middleware
services. Thus, we take a task-oriented approach for
managing resources in which services are broken into tasks
and are accommodated in a task hierarchy. Top-level tasks
are directly associated with the services provided by a
distributed system. Lower-levels of this hierarchy include the
partition of such services into smaller activities, i.e. sub-
tasks. Sub-tasks are denoted as follows:

task.sub-task.sub-sub-task…

This approach offers resource management modelling of

both coarse- and fine-grained interactions. The former is
achieved by defining coarse-grained tasks (i.e. tasks spanning
components and address spaces boundaries) and the latter is
done by using task partitioning. A task may span the
boundaries of a component, an address space and even those
of a node. Composite tasks include two or more sub-tasks and

may involve either a single or multiple operation
invocation sequences. In the former case, sub-tasks are
interleaved whereas in the latter case sub-tasks are
disjoint. Sub-tasks that are not further partitioned are
called primitive tasks and are only related to a single
operation invocation sequence. However, distributed tasks
involve two or more nodes. It should be noted that sub-
tasks may also be composite and even distributed.

 Finally, different tasks may be interconnected. For
instance, a component running one task may invoke
another component concerned with a different task. Such a
method invocation represents a task switching point. Thus,
a task switching point corresponds to a change in the
associated resource pool to support the execution of the
task that has come into play.

3.2.3. Resource model. The most important elements of
the resource model are abstract resources, resource
factories and resource managers [19]. Abstract resources
explicitly represent system resources. In addition, there
may be various levels of abstraction in which higher-level
resources are constructed on top of lower-level resources.
Resource managers are responsible for managing passive
resources such as memory or disk. Furthermore, resource
schedulers are a specialisation of managers and are in
charge of managing processing resources such as threads
or virtual processors (or kernel threads). Lastly, the main
duty of resource factories is to create abstract resources.
For this purpose, higher-level factories make use of lower-
level factories to construct higher-level resources. The
resource model then consists of three complementary
hierarchies corresponding to the main elements of the
resource model. Importantly, virtual task machines
(VTMs) are top-level resource abstractions and they may
encompass several kinds of resources (e.g. CPU, memory
and network resources). There is a one-to-one mapping
between tasks and VTMs. Hence, a VTM represents a
virtual machine in charge of supporting the execution of
its associated task.

Figure 2. A Particular Instantiation of the
resource model

As an example, a particular instantiation of the

framework is shown in figure 2 (note, however, that the
framework does not prescribe any restriction in the
number of abstraction levels nor the type of resources

team memory

physical
memory

VPi VPj

CPU

 thread k thread l
memory
 Fact

 thread
 Fact

VPFact

VTM

team
Fact

memory
 Mgr

thread
Sched

VPSched

VTMSched

team
Sched

(a) A hierarchy

of abstract resources

(b) A factory

 hierarchy

(c) A manager

hierarchy

modelled). At the top-level of the resource hierarchy is
placed a VTM, as shown in figure 2 (a), which encompasses
both memory buffer and a team abstraction. The team
abstraction in turn includes two or more user level threads.
Moreover, a user level thread is supported by one or more
virtual processors (VPs), i.e. kernel level threads. At the
bottom of the hierarchy are located physical resources. In
addition, a VTM factory is at the top of the factory hierarchy
and uses both a memory and a team factory. The team factory
then is supported by both the thread and the virtual processor
factory as depicted in figure 2 (b). Finally, the manager
hierarchy is shown in figure 2 (c). The team scheduler and
the memory manager support the VTM scheduler to suspend
a VTM by temporally freeing CPU and memory resources
respectively. The thread scheduler in turn allows the team
scheduler to suspend its threads. Finally, the VP scheduler
supports the pre-emption of virtual processors. Conversely,
this hierarchy also provides support for resuming suspended
VTMs. Further details of the resource model and details of
how dynamic resource reconfiguration is achieved can be
found in [19].

3.3. Resource management support

Our general approach for resource management involves

providing hard, soft and non real-time guarantees for local
resources such as CPU and memory. In contrast, soft and non
real-time guarantees are provided for communication
resources. A static analysis is carried out for the hard
guarantees which takes into account even the most rare event
with a hard deadline. In the case of soft guarantees, most of
the analysis is carried out at run-time. More specifically,
events disseminated in the system can be periodic, aperiodic
and sporadic. In fact, it is anticipated that there is a
substantial share of aperiodic and sporadic traffic in the
targeted applications. Using a pessimistic approach for
resource reservation of sporadic events negatively impacts
the utilisation of the resources system. Notably, the approach
presented in [20] achieves a more efficient utilisation of the
resources whereby network bandwidth is reserved for hard
real-time events whereas no resource reservation is made for
soft and non real-time events. As there is a risk of soft real-
time tasks to become overloaded, we additionally define
reservations for soft real-time tasks obtained from two
sources. Firstly, resources are obtained from those that were
not reserved by hard real-time tasks. The second source is a
bounded overlapping region with the resources assigned to
hard real-time tasks. As a result, some soft real-time events
will miss their deadlines when hard real-time events use this
region but the probability of meeting their deadlines will
increase. We then have the best effort soft real-time and non
real-time class whereby no resource reservations are made.
Events belonging to the two soft real-time classes are
scheduled according to their deadlines and laxity values.
Criticality values are used to distinguish between soft real-
time tasks and best effort soft real-time tasks. Finally, non

real-time events are scheduled when no hard- and soft-real
time events are awaiting execution.

Table 1. Example of the mapping of tasks to

event types

The steps involved in the use of both the task and
resource models for the real-time support of the
publish/subscribe systems are listed below.

1. Task model design.
2. Resource requirements and schedulability

analysis.
3. Specification of resource and task model in a

description language.
4. The description language definitions are

processed. As result, both the application and the
middleware are configured.

Although we envisage the dynamic discovery of tasks

in the targeted applications, the first step involves
identifying the initial tasks that the system will encompass
along with their criticality, associated event types and task
graph configurations. One or more events can be
associated with a task. Table 1 shows an example of
mapping tasks to events. Task graph configurations
involve the definition of task switching points, sub-tasks
and of how tasks are interconnected. In addition, tasks are
defined at both the application and the middleware level.
As an example of application tasks consider a car control
application associated with the top-level task “carControl”
with a number of subtasks including
“carControl.carLocation” and “carControl.sportNews”.
The former task is more critical as it informs of the other
cars’ current position whereas the latter, in charge of
providing sport news information, is a non-critical task.
The task “carControl.emergencyStop”, however,
represents a higher critical task as it informs of cars
suddenly braking. Examples of middleware tasks include
“carControl.eventFiltering” and
“carControl.eventDispatching” which are in charge of the
filtering and dispatching of events, respectively. Finer
grained control can also be achieved by defining
middleware tasks on a per event type basis. For instance,
the task “carControl.emergencyStop.eventDispatching”
allocates specific resources for the dispatching of
emergency stop events.

The second step regards the mapping of application-
level QoS values to resource parameter values. This may
be achieved by mathematical translation or trial-and-error
estimations as described in [21]. The specific resource

Task Event Type

CarControl.emergencyStop EmergencyStop
CarControl.touristInfo restaurant, museum,

theatre, cinema,
map

requirements are then stored in a local repository. For this
purpose, distributed tasks are partitioned into primitive tasks
whereby each primitive task is related to a particular node
with specific needs. For instance, the distributed task
“carControl.carLocation” is divided in the primitive tasks
“carControl.carLocation.nodem” and
“carControl.carLocation.noden”. Hence, diverse resource
requirements may be needed for a distributed task in different
nodes, as shown in figure 3. Events carry their dynamic
scheduling parameters (such as deadlines) across the visited
nodes whereas other QoS parameters (such as priorities,
criticality, period, etc.) are locally obtained at the endpoints.
In a more dynamic scenario, however, new event types
associated with new tasks are discovered. The resource
requirements of the new task are obtained from a remote task
information repository. This repository is most likely to
reside in the site of the event advertiser which may be either a
mobile or fixed node. In case the information about such
requirements is not available, a profiling technique can be
used to obtain the requirements, i.e. resource usage is
dynamically measured by profilers [22]. The consumer
proceeds then to create at run-time a local subtask and an
associated VTM able to cover the QoS demands of the new
event type. Lastly, the schedulability analysis of the resources
allocated to the hard real-time and the soft real-time classes is
carried out off-line.

Figure 3. Example of task dissemination

Step 3 regards the use of an extension of the resource
configuration description language (RCDL) [23]. The RCDL
is a suite of aspect-oriented languages2 that allows us to
define a) the mapping between tasks and events, b) the
component interfaces in which a particular task is triggered or
switched, c) the system resources that are associated with
each task and d) the resource requirements of a task instance
for a particular deployment platform. The two former are
achieved by the task switch description language (TSDL)
whereas the last two are addressed by the task description
language (TDL) and the resource description language
(RDL), respectively.

2 Aspect-oriented programming [1] allows for the decomposition of a

program into aspects that cross-cut each other.

In the fourth step, RCDL definitions are processed by
an interpreter that is in charge of configuring both the
application and the middleware according to such
definitions. Code is generated for achieving task
switching. Generated code also includes a resource
initialisation component in charge of creating the defined
VTMs (i.e. resource reservation). A configuration file is
also produced which is used at the system’s load-time to
plug in the generated components.

3.4. QoS management support

The highly dynamic nature of ad hoc networks makes
the coordination of nodes competing for resources an
essential issue. Therefore, task managers are introduced to
control the allocation of resources according to both the
QoS demands and the criticality of the tasks. There is a
task manager per node. The resource management CF
provides important support for the task managers in terms
of resource awareness, resource reservation and resource
reallocation. Resources for hard and soft real-time classes
are statically reserved according to the defined tasks. Task
instances obtain dynamic reservations when task managers
receive requests from publishers (i.e. announce(),
publish()) and consumers (i.e. subscribe()). For instance,
when subscribing to a video on demand service supported
by task y, resources are allocated if no other video sessions
have been set up or enough resources are left for the new
session. The resource requirements of announced and
subscribed event types are obtained from a task
information repository. As a result, resource allocation is
granted for publishing and consuming events in the case of
hard and soft real-time tasks. For that purpose, the task
manager is in charge of requesting the appropriate
resource managers to perform both the admission control
tests and the reservation of resources when the test is
successful.

Monitoring of QoS violations and adaptation
procedures are carried out by the timely computing base
(TCB) [24]. TCB is a framework that provides crucial time
related services. More specifically, TCB supports the
detection of timing failures and enforces the timely
execution of safe-procedures and adaptation strategies.
Fail-safe procedures ensure that the system is taken to a
safe state when a critical failure is detected. In addition,
two possible forms of adaptation are considered: a) tuning
of application parameters and component reconfigurations
(of the application and the middleware) and b) a
redistribution of the resources used by tasks. The latter is
achieved by the use of the resource management CF. In
terms of monitoring, the TCB supports local
measurements (e.g. the time that an operation takes to
execute) and distributed measurements (e.g. the time taken
to transmit a message). A coverage stability facility is also
provided whereby the probability of meeting a deadline
can be defined. In case going below the specified value,

task x

task x task x

A’s transmission range B’s transmission range C’s transmission range

QoS req for task
x.l:
WCET= 5
period= 50
memory= 100
bandwidth= 200 event

producer
site
consumer

QoS req for task
x.m:
WCET= 10
period= 50
battery life= 1.5
screen power= 20

QoS req for task
x.n:
WCET= 8
period= 50
disk space= 5
bandwidth= 200

l
A

retransmit

task x

task x

task x
task x

task x
task x

task x

task x

retransmit
m

B
n

C

adaptation procedures are triggered. The TCB employs a
dedicated radio channel for the transmission of control
messages. Thus, the payload is not burdened with extra traffic
and TCB’s control channel will have plenty of bandwidth for
the timely transmission of its messages. Lastly, the TCB is
conceptualised as an extension of the operating system
services.

Network QoS management is achieved as follows. Firstly,
every node is able to listen to traffic as the dissemination of
packets is carried out by using an application level multicast
protocol. Secondly, available bandwidth is fairly distributed
among the nodes within a transmission area. For this purpose,
a fully distributed protocol is used. Thirdly, a weighted fair
scheduling policy [25] is used to allocate bandwidth within a
single node to multiple service classes, each one of them
associated with a particular task. A service class (i.e., a task)
can be partitioned into sub classes (i.e., subtasks). In addition,
classes and subclasses have a priority value. More critical
classes have a higher priority. Different policies can be
defined in case of resource contention. For example, critical
messages can be scheduled according to their priority and use
resources of lower level classes. Another example is a policy
whereby a service class is provided with an exclusive
bandwidth portion that is not shared even in resource
contention conditions to avoid starvation.

The general principles behind the QoS management
protocol are as follow. Every node is associated with a
supported transmission rate (Stx) and a downgraded
transmission rate (Dtx). The Stx defines the maximum rate at
which a node is able to receive messages. A node obtains this
value by fairly allocating a portion of the bandwidth
according to both the amount of traffic and the number of
nodes that are listened.

a) Initial settings b) A node arrives c) A node leaves

Figure 4. Example of a mobile ad hoc scenario

The Dtx determines the maximum rate at which a node

can transmit messages without negatively affecting the
neighbouring nodes. In addition, a node periodically
broadcasts its Stx and Dtx values to the neighbours (i.e., the
nodes located within the transmission range). As a
consequence, the Dtx is set to the lowest Stx received. As an
example consider the scenario depicted in figure 4 (a)

whereby node a is located in a highly populated area and
can receive packets at 700 kbs. Node b which is in a less
populated area, is unaware of the traffic behind node a.
Such a situation could negatively affect the availability of
network resources of node a. That is, node b could
transmit at a rate higher than 700 kbs considering it is
suitable to do so as the sensed traffic is low. However,
after exchanging a number of messages these two nodes,
node b becomes aware of the maximum supported rate of
node a. Similarly, node c sets its transmission values
according to the maximum supported values of the
vicinity. Furthermore, the bandwidth of a node is further
distributed among the node’s service classes. As a result,
each service class is also provided with their own Stx and
Dtx values.

Consider now the case of node d arriving to the
vicinity as shown figure 4 (b). After a period of time, this
node detects new traffic and request the QoS settings (i.e.,
the Stx and Dtx values) to the nearest nodes. As a
consequence, these values are provided and the QoS
settings of node d are updated. Node d then informs of its
new settings and the neighbouring nodes update their
settings by taking into account the bandwidth that the new
node will use. Figure 4 (c) shows the case of node c
leaving the area. After a timeout has expired, the
neighbouring nodes assume this node has left when
messages from this node are no longer received. As a
result, the bandwidth released by node c is fairly
distributed among the nodes within the vicinity. That is,
each node allocates itself a portion of the bandwidth
according to the QoS settings of the neighbouring nodes.

4. Implementation

An initial implementation effort has been carried out
using OpenCOM [26], a reflective component model
developed at Lancaster University. In addition, a prototype
of a STEAM-like publish/subscribe system has been
implemented on both Windows NT and Windows CE 3.0.
A particular instantiation of the resource framework was
also developed to extend the event system with resource
management capabilities. Support for the management of
CPU resources is provided at this stage. The resource
management system offers dispatching predictability of
real-time events. CPU reservations are organised in
rounds. A round (or dispatch table) contains a number of
time slots which are assigned to hard and soft real-time
tasks. The framework has been realised by a two-level
scheduling model implemented in Windows CE.

5. Conclusions

We have presented a novel approach for the real-time
support of event models in mobile ad hoc environments.
More concretely, we introduced both a resource

Stx.- 1.6 Mbs
Dtx.- 1.2 Mbs

Stx.- 1.2 Mbs
Dtx.- 700 kbs

Stx.- 700 kbs
Dtx.- 700 kbs

Stx.- 1.6 Mbs
Dtx.- 1.2 Mbs

a b

c c

b a

arrives
c

b a
d d

management framework and a QoS management framework
for the real-time support of a publish/subscribe system. The
presented task model allows for the high-level analysis and
design of the resources system whereby both coarse- and
fined-grained resource reconfiguration are feasible. The task
model considerably diminishes the complexity of
programming real-time event models. In addition, rather than
burdening the application programmer with the job of
defining the QoS requirements, these requirements are
defined in a series of aspect-oriented languages by a possible
different programmer, e.g. a QoS programmer.

QoS management support was also presented whereby
task managers arbitrate resource reservation. In addition, the
QoS management system makes use of the TCB services to
detect timing failures in which case adaptation and fail-safe
procedures are triggered. Also, a QoS management protocol
supporting multiple service classes was presented.

Ongoing work regards simulation of the QoS
management protocol and the experimental evaluation of the
thread scheduling system. Also an implementation of the QoS
management framework is underway. Furthermore, we are
working on the implementation of an automatic car control
application. The application includes a number of car robots
which are controlled by Pocket PC handheld devices running
Windows CE. Future work includes the development of an
RCDL processor tool.

References
[1] Kiczales, G., J. Lamping, et al. "Aspect-Oriented Programming."
Proc. 11th European Conference on Object-Oriented Programming
(ECOOP’97), Jyvaskila, Finland. June 1997. 220-241
[2] Verissimo, P. and A. Casimiro. "Event-Driven Support of Real-
Time Sentient Objects." Eighth IEEE International Workshop on
Object-oriented Realtime Dependable Systems (WORDS 2003),
Guadalajara, Mexico. January 2003.
[3] Blair, G. S., G. Coulson, et al. “The Design and Implementation
of Open ORB version 2.” IEEE Distributed Systems Online Journal
2(6): 2001.
[4] Maes, P. "Concepts and Experiments in Computational
Reflection." Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’87),
Orlando, FL USA. October 1987. 147-155
[5] Szyperski, C. "Component Software: Beyond Object-Oriented
Programming." Harlow, England, Addison-Wesley. 1998.
[6] Rene Meier, V. C. "Steam: Event-based Middleware for
Wireless Ad Hoc Networks." In Proceeding of the International
Workshop on Distributed Event-Based Systems (ICDSC/DEBS’02),
Vienna, Austria. 2002. pp. 639-644
[7] Grace, P., G. Blair, et al. "ReMMoC: A Reflective Middleware
to Support Mobile Client Interoperability." In proceedings of
International Symposium on Distributed Objects and Applications
(DOA 2003), Catania, Sicily, Italy. November 2003.
[8] Object Management Group, "CORBAServices: Common Object
Services Specification." 95-3-31, Dec 1998.
[9] Sun Microsystems, Inc, "Java Distributed Event Specification."
July 1998. http://www.javasoft.com/products/javaspaces/specs.
[10] Carzaniga, A., Rosenblum, D. and Wolf, A. “Design and
Evaluation of a Wide-Area Event Notification Service.” ACM
Transactions on Computer Systems 19(3): pp 332-383, 2001.

[11] IBM Research. "Gryphon: An Information Flow Based
Approach to Message Brokering." IBM Research. 1998.
http://researchweb.watson.ibm.com/gryphon/home.html
[12] Cugola, G., Di Nitto, E., and Fuggetta, A. “The JEDI event-
based infrastructure and its application to the development of the
OPSS WFMS.” IEEE Transactions on Software Engineering
9(27): pp 827-850, September 2001.
[13] Tim Harrison, D. L., Douglas C. Schmidt. "The Design and
Performance of a Real-time CORBA Event Service."
Proceedings of OOPSLA ’97, Atlanta, GA, ACM. October 1997.
[14] Object Management Group, "Notification Service
Specification." telecom/99-07-01, July 1999.
[15] Ahn, G.-S., A. T. Campbell, et al. “Supporting Service
Differentiation for Real-Time and Best-Effort Traffic in Sateless
Wireless Ad Hoc Networks (SWAN).” IEEE Transactions on
Mobile Computing 1(3): July-September 2002.
[16] Lee, S.-B. and A. T. Campbell. "Insignia: In-Band Signaling
Support for QoS in Mobile Ad Hoc Networks." Intl. Workshop
on Mobile Multimedia Communication (MoMuc’98), Berlin.
October 1998.
[17] Xue, J., P. Stuedi, et al. "ASAP: An Adaptive QoS Protocol
for Mobile Ad Hoc Networks." Procedings of the 14th IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Beijing, China. 2003.
[18] Veres, A., A. T. Campbell, et al. “Supporting Service
Differentiation in Wireless Packet Networks Using Distributed
Control.” IEEE Journal of Selected Areas in Communication
19(10): October 2001.
[19] Duran-Limon, H. A. and G. S. Blair. "Reconfiguration of
Resources in Middleware." Seventh IEEE International
Workshop on Object-oriented Real-time Dependable Systems
(WORDS 2002), San Diego, CA. January 2002.
[20] Kaiser, J., C. Brudna, et al. "A Real-Time Event Channel
Model for the CAN-Bus." 11th Annual Workshop on Parallel
and Distributed Real-Time Systems, held in conjunction with the
International Parallel and Distributed Processing Symposium
IPDPS, Nice, France. April 2003.
[21] Nahrstedt, K., H.-h. Chu, et al. “QoS-Aware Resource
Management for Distributed Multimedia Applications.” Journal
of High-Speed Networking, Special Issue on Multimedia
Networking 7: 227-255, 1998.
[22] Kalogeraki, V., P. M. Melliar-Smitm, et al. "Dynamic
Scheduling for Soft Real-Time Distributed Object Systems." In
Proc. of Third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), Newport
Beach, CA, USA. March 2000.
[23] Duran-Limon, H. A. and G. S. Blair. “QoS Management
Specification Support for Multimedia Middleware.” Accepted for
publication in The Journal of Systems and Software. Elsevier
Science Publisher.: 2003.
[24] Verissimo, P. and A. Casimiro. “The Timely Computing
Base Model and Architecture.” Transaction on Computers -
Special Issue on Asynchronous Real-Time Systems 51(8): August
2002.
[25] Demers, A., S. Keshav, et al. “Analysis and simulation of a
fair queueing algorithm.” Journal of Internetworking Research
and Experience: pp. 3-26, October 1990.
[26] Clarke, M., G. Coulson, et al. "An Efficient Component
Model for the Construction of Adaptive Middleware." IFIP/ACM
Middleware’2001, Heidelberg, Germany. November 2001.

