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Abstract 

 
 A new class of applications can now be envisaged with the 

emergence of both mobile ad hoc computing and ubiquitous 
computing. Applications of such kind are characterised by being 
largely distributed and proactive, i.e. able to operate without human 
intervention. The anonymous and asynchronous paradigm, which is 
advocated by event models, has shown to be well-suited for this kind 
of applications. However, current real-time event-oriented 
middleware technologies do not provide a complete solution for the 
requirements of mobile ad hoc environments. In this paper, we 
present the research carried out on both a resource and a QoS 
management framework to achieve real-time support for an event 
system operating in mobile ad hoc environments. The framework 
makes use of both reflection and component technology. The 
implementation of our resource system is developed in OpenCOM, 
which is a lightweight, efficient and reflective model based on 
Microsoft’s COM. 
 
1. Introduction 
 

Over the last few years we have seen the proliferation of 
embedded mobile systems such as mobile phones and PDAs. 
Ubiquitous computing is also taking off in which multiple 
cooperating possibly embedded controllers are used. A new 
kind of applications can now be envisaged with the 
emergence of both mobile ad hoc computing and ubiquitous 
computing. Applications of such kind are characterised by 
being largely distributed and proactive, i.e. able to operate 
without human intervention. A set of further characteristics 
are also involved such as context awareness as a means to 
sense the surrounding environment. Examples of these 
applications include automatic car control systems in which 
cars are able to operate independently and cooperate with 
each other to avoid collisions. Another example is an air 
traffic control system whereby thousands of aircraft are 
proactively coordinated to keep them at safe distances from 
each other, direct them during takeoff and landing from 
airports and ensure that traffic congestion is avoided. Smart 
room systems can also be foreseen in which the intensity of 
light, room temperature and some other features are 
automatically tuned according to the user preferences of the 
persons present in the room. 

The CORTEX Project1 is examining fundamental 
issues relating to the support of such applications, 
including the development of middleware for this domain. 
The CORTEX approach is based on anonymous and 
asynchronous event models. Such models are well-suited 
to ad hoc environments including a large number of 
autonomous processing units. These many-to-many 
communication scenarios are well supported by the 
anonymous dissemination of information. In addition, 
asynchronous communication is well-suited to systems 
where frequent disconnection is anticipated as blocking 
conditions are avoided. Further requirements include 
support for mobility and non-functional properties such as 
timeliness and reliability since some of these applications 
are time- and safety-critical. However, current event-
oriented middleware technologies do not provide a 
solution for all the challenges imposed by these 
applications. A higher-level programming model is also 
needed to deal with the complexity of multiple event 
interactions with different QoS demands. In addition, 
current programming models do not generally differentiate 
between functional and non-functional properties. The 
result of this is a code tangled with different aspects which 
is more difficult to write, read and reuse.  

As regards timeliness requirements, we believe that 
resource management plays an important role in providing 
support for real-time applications. In particular, the 
mechanism that allocates resources in the system should 
ensure that critical activities will be provided with enough 
resources to carry out their tasks in a predictable way. 
Changes in the availability of network resources and 
periods of disconnection are frequently experienced as 
mobile computing environments are highly dynamic. 
Furthermore, mobile applications typically operate on 
devices with scarce resources, e.g. CPU capacity, system 
memory and battery life. Therefore, support for the 
predictable and efficient management of the system 
resources as well as resource reconfiguration capabilities 
for achieving adaptation are required. An example of the 
latter is a redistribution of both CPU-time and memory to 
                                                           
1 This work is supported by the EC, through project IST-FET-2000-
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the set of activities that the system performs, thus, ensuring 
that time-critical activities are not disturbed.  

In this paper, we present both a resource management 
framework and a quality of service (QoS) management 
framework for the real-time support of an event system in 
mobile ad hoc environments. A higher-level programming 
model for the resource management of event systems is 
introduced. In addition, aspect-oriented techniques [1] are 
used for separating out non-functional aspects from 
functional aspects. This practice reduces the complexity of 
programming real-time event systems. 

The paper is structured as follows. Section 2 introduces 
some background on the CORTEX architecture and 
associated middleware. Section 3 presents the approach for 
resource management and QoS management support. The 
implementation of the system’s prototype is then described in 
section 4. Section 5 draws some concluding remarks. 
 
 
2. Background on the CORTEX architecture 
 

Central to the CORTEX architecture is the notion of a 
sentient object [2] which is defined as an entity that is able to 
both consume and produce events. That is, sentient objects 
are entities that receive events, process them and generate 
further events. Input events are received either from sensors 
or from other sentient objects. Similarly, output events are 
sent either to actuators or other sentient objects. Sentient 
objects are autonomous entities that are able to sense their 
environment. Interestingly, sentient objects have a proactive 
role in that they are capable of taking decisions and 
performing some actions (i.e. generate further events) based 
on the information sensed. Hence, sentient objects include a 
control logic which realises the decision-making mechanism.  

We are building a middleware platform in order to 
provide support for CORTEX applications and hence to 
support the sentient object abstraction described above. In 
order to tackle the requirements imposed by ad hoc 
environments, configuration and reconfiguration capabilities 
are introduced in the middleware architecture. Based on 
previous experience in the construction of reflective 
middleware [3], we make use of reflection, component 
technology and component frameworks (CFs). Reflection is a 
means by which a system is able to inspect and change its 
internals in a principled way [4]. A reflective system is able 
to perform both self-inspection and self-adaptation. To 
accomplish this, a reflective system has a representation of 
itself. This representation is causally connected to its domain, 
i.e. any change in the domain must have an effect in the 
system, and vice versa. On the other hand, component 
technology introduces more configuration and 
reconfiguration capabilities into distributed applications and 
increases the level of reuse. Within the context of CORTEX a 
component is basically “a unit of composition with 
contractually specified interfaces and explicit dependencies 
only” [5]. The granularity of a component may be diverse 

ranging from components that realise only a part of the 
machinery of a single sentient object to components that 
encompass two or more sentient objects. 

The environment support for the interaction of sentient 
objects is also conceptualised as a componentised 
middleware platform. In fact, the middleware is structured 
in terms of component frameworks [5] as shown in figure 
1. Essentially, component frameworks are “collections of 
rules and interfaces that govern the interaction of 
components ‘plugged into’ them” [5]. In other words, a 
component framework is a reusable architectural design 
targeting a specific domain whereby desired architectural 
properties and invariants are enforced. The 
publish/subscribe CF realises the CORTEX event model 
[6]. The functionality of the control engine of a sentient 
object is provided by the context CF. Services can be 
dynamically discovered by the use of the service 
discovery CF [7]. Facilities for multicast in ad hoc 
environments are then provided by the multicast CF. The 
QoS management CF arbitrates the allocation of resources 
and provides facilities for monitoring and adaptation of 
QoS. Lastly, the resource management CF controls the 
resources used by all the CFs. Central to this paper are the 
resource management CF and the QoS management CF 
which are presented in the following sections. Some 
essential details of the publish/subscribe model are also 
presented below. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1. The middleware architecture of 

CORTEX 
 

The publish/subscribe CF is based on an event model 
called STEAM [6] that allows for the dissemination of 
events in an ad hoc network environment. Producers 
publish events and consumers subscribe to event types to 
be able to receive events. An implicit event model is 
followed in which there is not an event broker or 
mediator; instead brokering functions are implemented at 
both the consumer and the producer side. This is useful in 
an ad hoc environment where permanent communication 
with a broker is unlikely to be maintained. An event type, 

Network Infrastructure 

Context  
CF 

Publish/ 
Subscribe 

CF 

Application 

Middleware 

Sentient  
Object CF 

Operating System 

Multicast 
CF 

Service 
Discovery CF



 

from which events are instantiated, is basically characterised 
by a subject, data information, context information (e.g. 
location, time, etc) and is associated with QoS properties (e.g. 
timeliness). Interestingly, event filtering is achieved by 
performing both subject-based and proximity filtering at the 
producer side. The former describes the particular event types 
that the consumer is interested in. The latter specifies the 
geographical area within which event types are valid. The 
consumer uses content-based filtering in which an expression 
is evaluated against a set of values included in an event. 
 
3. Real-time support 
 
3.1. Motivation 
 

Several middleware services using the publish/subscribe 
communication model have been developed  such as the 
OMG’s CORBA Event service specification [8] , Sun 
Microsystems’s Java distributed event specification [9], 
TIBCO’s TIB/RendezvousTM, SIENA [10] (a wide area event 
notification service), Gryphon [11] (a distributed content 
based notification service), and JEDI [12] (a Java event based 
distributed infrastructure). However, most of them assume a 
fixed network infrastructure and require the use of stationary 
event brokers. Furthermore, most existing platforms have 
limited support for the negotiation or enforcement of QoS 
requirements. Some research has been carried out to 
overcome this situation, for example TAO’s Event service 
[13] and the CORBA Notification Service [14]. However, 
these systems still require the existence of a fixed 
infrastructure. In addition, current approaches to QoS 
management in mobile ad hoc networks [15, 16, 17] only 
provide support for a limited number of service classes 
(usually two) and the effect of hidden terminals is generally 
not addressed. Other approaches such as the one described in 
[18] provide further support for service differentiation but 
operate at the MAC layer which makes the system 
deployment more difficult.  

Real-time event systems in mobile ad hoc environments 
impose a number of new unsolved challenges. Such 
environments are characterised by being highly 
unpredictable. A peer-to-peer communication model is 
generally used in ad hoc networks. Importantly, nodes act as 
routers to reach nodes that are out of the transmission range. 
Communication delays between nodes may vary 
unexpectedly as the number of hops to reach the destination 
changes. In addition, a geographical area may unexpectedly 
become congested, resulting in the lack of communication 
resources. Moreover, periods of disconnection are likely to 
happen at any time due to the conditions of the geographical 
area. The transmission signal can be severely affected by bad 
weather conditions and obstacles such as trees, hills and 
buildings. In the worse case, there may be a network partition 
whereby one or more nodes are unreachable. In addition, 
unpredictability in ad hoc environments is also dictated by 

the fact that new event types with different QoS demands 
may be dynamically discovered, e.g. new event types are 
advertised at various locations. In this situation, no a priori 
resource consumption assumptions can be made. 

Further challenges include the development of suitable 
mechanisms and protocols for the resource management of 
resource constrained devices such as PDAs and sensors. 
This kind of device has a limited battery life, hence, power 
management is needed to make an efficient use of the 
energy. Memory and CPU resources are also limited, 
therefore, suitable resource management mechanisms are 
required. As any node may be a router, resource scarce 
devices need to evaluate the amount of traffic they are 
able to route without having a negative impact in pursuing 
their main goal. 

A considerable amount of event types with different 
QoS requirements may be involved in a real-time event 
system. This fact makes the programming of real-time 
event systems tedious and error-prone. Importantly, there 
is a lack of programming abstractions able to present a 
global view of how resource management is performed 
along multiple nodes to pursue common goals. 
Furthermore, resource management of complex 
relationships among event types are usually not 
represented by current event programming models. That 
is, there are not programming abstractions capturing the 
resource management of event flows across the network.  

Under the current state of the art in mobile ad hoc 
network technologies, it is not feasible to offer hard real-
time guarantees for communication resources except in 
special cases. Such guarantees can only be offered if 
certain specific conditions are met such as a scenario 
whereby a limited number of nodes are moving in an 
obstacle-free area at the same speed and direction. 
Although, hard real-time guarantees can still be provided 
for local resources such as CPU, only soft real-time 
guarantees can be offered for communication resources in 
most cases whereby these resources are dynamically 
allocated according to deadlines. 

Another tough challenge arises here: how can we deal 
with applications demanding hard real-time guarantees 
when the underlying infrastructure is only capable of 
offering soft real-time guarantees. A number of issues 
have to be considered to address this problem. A high 
probability of meeting deadlines has to be offered. We 
also believe that such infrastructure has to be adaptable 
and flexible to deal with the highly dynamic and 
unpredictable nature of the environment. Resource 
management plays an important role in this adaptation 
process in terms of both resource awareness and dynamic 
reallocation of resources. Crucially, fail-safe mechanisms 
are needed to bring the application to a safe state when 
timing failures are detected. Therefore, QoS management 
support is required for monitoring QoS violations and 
triggering both adaptation and fail-safe procedures when 
required. In addition, QoS management is required to 



 

arbitrate the allocation of network resources whereby 
admission control tests are performed and more resources are 
conceded to events with shorter deadlines and higher 
criticality.  

This paper does not intend to provide solutions for all the 
problems outlined above. Rather, the paper focuses in 
providing a) a higher-level programming model for resource 
management, b) support for resource awareness and resource 
adaptation, and c) QoS management support. The first two 
are addressed by the resource management CF, i.e. the task 
model and resource model, respectively. The last one is 
tackled by the QoS management component framework. 
 
3.2. Resource management component framework 
 
3.2.1. Overview. The resource management CF encompasses 
both a task model and a resource model.  The task model 
permits the user to model resource management of both 
coarse- and fine-grained interactions. Hence, the task model 
allows for the high-level analysis and design of resource 
management for event systems. There is a close relationship 
between the task model and the resource model. Tasks have 
an associated pool of resources which is defined by the 
resource model. More specifically, the resource model allows 
us to model different types of resources at multiple levels of 
abstraction. Both coarse- and fine-grained resource 
configuration and reconfiguration are feasible. Further details 
of the task and resource models are introduced in turn below. 
 
3.2.2. The task model. From the programmatic point of 
view, a task may involve either a single invocation sequence 
or multiple invocation sequences. The simplest case for a 
sequence is where only one operation is invoked. A task is 
defined as a logical unit of computation which has an amount 
of resources allocated. Examples of tasks are activities 
performed by the system such as transmitting audio over the 
network or compressing a video image, which has an amount 
of resources assigned for its execution. The task model is 
concerned with both application services and middleware 
services. Thus, we take a task-oriented approach for 
managing resources in which services are broken into tasks 
and are accommodated in a task hierarchy. Top-level tasks 
are directly associated with the services provided by a 
distributed system. Lower-levels of this hierarchy include the 
partition of such services into smaller activities, i.e. sub-
tasks. Sub-tasks are denoted as follows: 

 
task.sub-task.sub-sub-task… 

 
This approach offers resource management modelling of 

both coarse- and fine-grained interactions. The former is 
achieved by defining coarse-grained tasks (i.e. tasks spanning 
components and address spaces boundaries) and the latter is 
done by using task partitioning. A task may span the 
boundaries of a component, an address space and even those 
of a node. Composite tasks include two or more sub-tasks and 

may involve either a single or multiple operation 
invocation sequences. In the former case, sub-tasks are 
interleaved whereas in the latter case sub-tasks are 
disjoint. Sub-tasks that are not further partitioned are 
called primitive tasks and are only related to a single 
operation invocation sequence. However, distributed tasks 
involve two or more nodes. It should be noted that sub-
tasks may also be composite and even distributed. 

 Finally, different tasks may be interconnected. For 
instance, a component running one task may invoke 
another component concerned with a different task. Such a 
method invocation represents a task switching point. Thus, 
a task switching point corresponds to a change in the 
associated resource pool to support the execution of the 
task that has come into play.  
 
3.2.3. Resource model. The most important elements of 
the resource model are abstract resources, resource 
factories and resource managers [19]. Abstract resources 
explicitly represent system resources. In addition, there 
may be various levels of abstraction in which higher-level 
resources are constructed on top of lower-level resources. 
Resource managers are responsible for managing passive 
resources such as memory or disk. Furthermore, resource 
schedulers are a specialisation of managers and are in 
charge of managing processing resources such as threads 
or virtual processors (or kernel threads). Lastly, the main 
duty of resource factories is to create abstract resources. 
For this purpose, higher-level factories make use of lower-
level factories to construct higher-level resources. The 
resource model then consists of three complementary 
hierarchies corresponding to the main elements of the 
resource model. Importantly, virtual task machines 
(VTMs) are top-level resource abstractions and they may 
encompass several kinds of resources (e.g. CPU, memory 
and network resources). There is a one-to-one mapping 
between tasks and VTMs. Hence, a VTM represents a 
virtual machine in charge of supporting the execution of 
its associated task.  
 
 

 
 
 
 
 

 
 
 

Figure 2. A Particular Instantiation of the 
resource model 

 
As an example, a particular instantiation of the 

framework is shown in figure 2 (note, however, that the 
framework does not prescribe any restriction in the 
number of abstraction levels nor the type of resources 
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modelled). At the top-level of the resource hierarchy is 
placed a VTM, as shown in figure 2 (a), which encompasses 
both memory buffer and a team abstraction. The team 
abstraction in turn includes two or more user level threads. 
Moreover, a user level thread is supported by one or more 
virtual processors (VPs), i.e. kernel level threads. At the 
bottom of the hierarchy are located physical resources. In 
addition, a VTM factory is at the top of the factory hierarchy 
and uses both a memory and a team factory. The team factory 
then is supported by both the thread and the virtual processor 
factory as depicted in figure 2 (b). Finally, the manager 
hierarchy is shown in figure 2 (c). The team scheduler and 
the memory manager support the VTM scheduler to suspend 
a VTM by temporally freeing CPU and memory resources 
respectively. The thread scheduler in turn allows the team 
scheduler to suspend its threads. Finally, the VP scheduler 
supports the pre-emption of virtual processors. Conversely, 
this hierarchy also provides support for resuming suspended 
VTMs. Further details of the resource model and details of 
how dynamic resource reconfiguration is achieved can be 
found in [19]. 
 
3.3. Resource management support 

 
Our general approach for resource management involves 

providing hard, soft and non real-time guarantees for local 
resources such as CPU and memory. In contrast, soft and non 
real-time guarantees are provided for communication 
resources. A static analysis is carried out for the hard 
guarantees which takes into account even the most rare event 
with a hard deadline. In the case of soft guarantees, most of 
the analysis is carried out at run-time. More specifically, 
events disseminated in the system can be periodic, aperiodic 
and sporadic. In fact, it is anticipated that there is a 
substantial share of aperiodic and sporadic traffic in the 
targeted applications. Using a pessimistic approach for 
resource reservation of sporadic events negatively impacts 
the utilisation of the resources system. Notably, the approach 
presented in [20] achieves a more efficient utilisation of the 
resources whereby network bandwidth is reserved for hard 
real-time events whereas no resource reservation is made for 
soft and non real-time events. As there is a risk of soft real-
time tasks to become overloaded, we additionally define 
reservations for soft real-time tasks obtained from two 
sources. Firstly, resources are obtained from those that were 
not reserved by hard real-time tasks. The second source is a 
bounded overlapping region with the resources assigned to 
hard real-time tasks. As a result, some soft real-time events 
will miss their deadlines when hard real-time events use this 
region but the probability of meeting their deadlines will 
increase. We then have the best effort soft real-time and non 
real-time class whereby no resource reservations are made. 
Events belonging to the two soft real-time classes are 
scheduled according to their deadlines and laxity values. 
Criticality values are used to distinguish between soft real-
time tasks and best effort soft real-time tasks. Finally, non 

real-time events are scheduled when no hard- and soft-real 
time events are awaiting execution. 

 
Table 1. Example of the mapping of tasks to 

event types 
 

 
 
 

 
 

The steps involved in the use of both the task and 
resource models for the real-time support of the 
publish/subscribe systems are listed below. 
 

1. Task model design. 
2. Resource requirements and schedulability 

analysis. 
3. Specification of resource and task model in a 

description language. 
4. The description language definitions are 

processed. As result, both the application and the 
middleware are configured.  

 
Although we envisage the dynamic discovery of tasks 

in the targeted applications, the first step involves 
identifying the initial tasks that the system will encompass 
along with their criticality, associated event types and task 
graph configurations. One or more events can be 
associated with a task. Table 1 shows an example of 
mapping tasks to events. Task graph configurations 
involve the definition of task switching points, sub-tasks 
and of how tasks are interconnected. In addition, tasks are 
defined at both the application and the middleware level. 
As an example of application tasks consider a car control 
application associated with the top-level task “carControl” 
with a number of subtasks including 
“carControl.carLocation” and “carControl.sportNews”. 
The former task is more critical as it informs of the other 
cars’ current position whereas the latter, in charge of 
providing sport news information, is a non-critical task. 
The task “carControl.emergencyStop”, however, 
represents a higher critical task as it informs of cars 
suddenly braking. Examples of middleware tasks include 
“carControl.eventFiltering” and 
“carControl.eventDispatching” which are in charge of the 
filtering and dispatching of events, respectively. Finer 
grained control can also be achieved by defining 
middleware tasks on a per event type basis. For instance, 
the task “carControl.emergencyStop.eventDispatching” 
allocates specific resources for the dispatching of 
emergency stop events. 

The second step regards the mapping of application-
level QoS values to resource parameter values. This may 
be achieved by mathematical translation or trial-and-error 
estimations as described in [21]. The specific resource 

Task Event Type 

CarControl.emergencyStop EmergencyStop 
CarControl.touristInfo restaurant, museum, 

theatre, cinema, 
map 



 

requirements are then stored in a local repository. For this 
purpose, distributed tasks are partitioned into primitive tasks 
whereby each primitive task is related to a particular node 
with specific needs. For instance, the distributed task 
“carControl.carLocation” is divided in the primitive tasks 
“carControl.carLocation.nodem” and 
“carControl.carLocation.noden”. Hence, diverse resource 
requirements may be needed for a distributed task in different 
nodes, as shown in figure 3. Events carry their dynamic 
scheduling parameters (such as deadlines) across the visited 
nodes whereas other QoS parameters (such as priorities, 
criticality, period, etc.) are locally obtained at the endpoints. 
In a more dynamic scenario, however, new event types 
associated with new tasks are discovered. The resource 
requirements of the new task are obtained from a remote task 
information repository. This repository is most likely to 
reside in the site of the event advertiser which may be either a 
mobile or fixed node. In case the information about such 
requirements is not available, a profiling technique can be 
used to obtain the requirements, i.e. resource usage is 
dynamically measured by profilers [22]. The consumer 
proceeds then to create at run-time a local subtask and an 
associated VTM able to cover the QoS demands of the new 
event type. Lastly, the schedulability analysis of the resources 
allocated to the hard real-time and the soft real-time classes is 
carried out off-line. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Example of task dissemination 
 

Step 3 regards the use of an extension of the resource 
configuration description language (RCDL) [23]. The RCDL 
is a suite of aspect-oriented languages2 that allows us to 
define a) the mapping between tasks and events, b) the 
component interfaces in which a particular task is triggered or 
switched, c) the system resources that are associated with 
each task and d) the resource requirements of a task instance 
for a particular deployment platform. The two former are 
achieved by the task switch description language (TSDL) 
whereas the last two are addressed by the task description 
language (TDL) and the resource description language 
(RDL), respectively.  

                                                           
2 Aspect-oriented programming [1] allows for the decomposition of a 

program into aspects that cross-cut each other. 

In the fourth step, RCDL definitions are processed by 
an interpreter that is in charge of configuring both the 
application and the middleware according to such 
definitions. Code is generated for achieving task 
switching. Generated code also includes a resource 
initialisation component in charge of creating the defined 
VTMs (i.e. resource reservation). A configuration file is 
also produced which is used at the system’s load-time to 
plug in the generated components. 

 
3.4. QoS management support 
 

The highly dynamic nature of ad hoc networks makes 
the coordination of nodes competing for resources an 
essential issue. Therefore, task managers are introduced to 
control the allocation of resources according to both the 
QoS demands and the criticality of the tasks. There is a 
task manager per node. The resource management CF 
provides important support for the task managers in terms 
of resource awareness, resource reservation and resource 
reallocation. Resources for hard and soft real-time classes 
are statically reserved according to the defined tasks. Task 
instances obtain dynamic reservations when task managers 
receive requests from publishers (i.e. announce(), 
publish()) and consumers (i.e. subscribe()). For instance, 
when subscribing to a video on demand service supported 
by task y, resources are allocated if no other video sessions 
have been set up or enough resources are left for the new 
session. The resource requirements of announced and 
subscribed event types are obtained from a task 
information repository. As a result, resource allocation is 
granted for publishing and consuming events in the case of 
hard and soft real-time tasks. For that purpose, the task 
manager is in charge of requesting the appropriate 
resource managers to perform both the admission control 
tests and the reservation of resources when the test is 
successful. 

Monitoring of QoS violations and adaptation 
procedures are carried out by the timely computing base 
(TCB) [24]. TCB is a framework that provides crucial time 
related services. More specifically, TCB supports the 
detection of timing failures and enforces the timely 
execution of safe-procedures and adaptation strategies. 
Fail-safe procedures ensure that the system is taken to a 
safe state when a critical failure is detected. In addition, 
two possible forms of adaptation are considered: a) tuning 
of application parameters and component reconfigurations 
(of the application and the middleware) and b) a 
redistribution of the resources used by tasks. The latter is 
achieved by the use of the resource management CF. In 
terms of monitoring, the TCB supports local 
measurements (e.g. the time that an operation takes to 
execute) and distributed measurements (e.g. the time taken 
to transmit a message). A coverage stability facility is also 
provided whereby the probability of meeting a deadline 
can be defined. In case going below the specified value, 

task x 
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adaptation procedures are triggered. The TCB employs a 
dedicated radio channel for the transmission of control 
messages. Thus, the payload is not burdened with extra traffic 
and TCB’s control channel will have plenty of bandwidth for 
the timely transmission of its messages. Lastly, the TCB is 
conceptualised as an extension of the operating system 
services. 

Network QoS management is achieved as follows. Firstly, 
every node is able to listen to traffic as the dissemination of 
packets is carried out by using an application level multicast 
protocol. Secondly, available bandwidth is fairly distributed 
among the nodes within a transmission area. For this purpose, 
a fully distributed protocol is used. Thirdly, a weighted fair 
scheduling policy [25] is used to allocate bandwidth within a 
single node to multiple service classes, each one of them 
associated with a particular task. A service class (i.e., a task) 
can be partitioned into sub classes (i.e., subtasks). In addition, 
classes and subclasses have a priority value. More critical 
classes have a higher priority. Different policies can be 
defined in case of resource contention. For example, critical 
messages can be scheduled according to their priority and use 
resources of lower level classes. Another example is a policy 
whereby a service class is provided with an exclusive 
bandwidth portion that is not shared even in resource 
contention conditions to avoid starvation. 

The general principles behind the QoS management 
protocol are as follow. Every node is associated with a 
supported transmission rate (Stx) and a downgraded 
transmission rate (Dtx). The Stx defines the maximum rate at 
which a node is able to receive messages. A node obtains this 
value by fairly allocating a portion of the bandwidth 
according to both the amount of traffic and the number of 
nodes that are listened. 
 
 
 
 
 
 
 
 
 
 
 

a) Initial settings     b) A node arrives          c) A node leaves 

 
Figure 4. Example of a mobile ad hoc scenario 
 
The Dtx determines the maximum rate at which a node 

can transmit messages without  negatively affecting the 
neighbouring nodes. In addition, a node periodically 
broadcasts its Stx and Dtx values to the neighbours (i.e., the 
nodes located within the transmission range). As a 
consequence, the Dtx is set to the lowest Stx received. As an 
example consider the scenario depicted in figure 4 (a) 

whereby node a is located in a highly populated area and 
can receive packets at 700 kbs. Node b which is in a less 
populated area, is unaware of the traffic behind node a. 
Such a situation could negatively affect the availability of 
network resources of node a. That is, node b could 
transmit at a rate higher than 700 kbs considering it is 
suitable to do so as the sensed traffic is low. However, 
after exchanging a number of messages these two nodes, 
node b becomes aware of the maximum supported rate of 
node a. Similarly, node c sets its transmission values 
according to the maximum supported values of the 
vicinity. Furthermore, the bandwidth of a node is further 
distributed among the node’s service classes. As a result, 
each service class is also provided with their own Stx and 
Dtx values.  

Consider now the case of node d arriving to the 
vicinity as shown figure 4 (b). After a period of time, this 
node detects new traffic and request the QoS settings (i.e., 
the Stx and Dtx values) to the nearest nodes. As a 
consequence, these values are provided and the QoS 
settings of node d are updated. Node d then informs of its 
new settings and the neighbouring nodes update their 
settings by taking into account the bandwidth that the new 
node will use. Figure 4 (c) shows the case of node c 
leaving the area. After a timeout has expired, the 
neighbouring nodes assume this node has left when 
messages from this node are no longer received. As a 
result, the bandwidth released by node c is fairly 
distributed among the nodes within the vicinity. That is, 
each node allocates itself a portion of the bandwidth 
according to the QoS settings of the neighbouring nodes. 
 
4. Implementation 
 

An initial implementation effort has been carried out 
using OpenCOM [26], a reflective component model 
developed at Lancaster University. In addition, a prototype 
of a STEAM-like publish/subscribe system has been 
implemented on both Windows NT and Windows CE 3.0. 
A particular instantiation of the resource framework was 
also developed to extend the event system with resource 
management capabilities. Support for the management of 
CPU resources is provided at this stage. The resource 
management system offers dispatching predictability of 
real-time events. CPU reservations are organised in 
rounds. A round (or dispatch table) contains a number of 
time slots which are assigned to hard and soft real-time 
tasks. The framework has been realised by a two-level 
scheduling model implemented in Windows CE. 

 
5. Conclusions 
 

We have presented a novel approach for the real-time 
support of event models in mobile ad hoc environments. 
More concretely, we introduced both a resource 
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management framework and a QoS management framework 
for the real-time support of a publish/subscribe system. The 
presented task model allows for the high-level analysis and 
design of the resources system whereby both coarse- and 
fined-grained resource reconfiguration are feasible. The task 
model considerably diminishes the complexity of 
programming real-time event models. In addition, rather than 
burdening the application programmer with the job of 
defining the QoS requirements, these requirements are 
defined in a series of aspect-oriented languages by a possible 
different programmer, e.g. a QoS programmer. 

QoS management support was also presented whereby 
task managers arbitrate resource reservation. In addition, the 
QoS management system makes use of the TCB services to 
detect timing failures in which case adaptation and fail-safe 
procedures are triggered.  Also, a QoS management protocol 
supporting multiple service classes was presented. 

Ongoing work regards simulation of the QoS 
management protocol and the experimental evaluation of the 
thread scheduling system. Also an implementation of the QoS 
management framework is underway. Furthermore, we are 
working on the implementation of an automatic car control 
application. The application includes a number of car robots 
which are controlled by Pocket PC handheld devices running 
Windows CE. Future work includes the development of an 
RCDL processor tool. 
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