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Internet-of-Things: Coupling Of Device Energy
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Abstract—Audio/visual recognition and retrieval applications
have recently garnered significant attention within Internet-of-
Things (IoT) oriented services, given that video cameras and
audio processing chipsets are now ubiquitous even in low-end
embedded systems. In the most typical scenario for such services,
each device extracts audio/visual features and compacts them
into feature descriptors, which comprise media queries. These
queries are uploaded to a remote cloud computing service
that performs content matching for classification or retrieval
applications. Two of the most crucial aspects for such services
are: (i) controlling the device energy consumption when using
the service; (ii) reducing the billing cost incurred from the
cloud infrastructure provider. In this paper we derive analytic
conditions for the optimal coupling between the device energy
consumption and the incurred cloud infrastructure billing. Our
framework encapsulates: the energy consumption to produce
and transmit audio/visual queries, the billing rates of the cloud
infrastructure, the number of devices concurrently connected to
the same cloud server, the query volume constraint of each cluster
of devices, and the statistics of the query data production volume
per device. Our analytic results are validated via a deployment
with: (i) the device side comprising compact image descriptors
(queries) computed on Beaglebone Linux embedded platforms
and transmitted to Amazon Web Services (AWS) Simple Storage
Service; (ii) the cloud side carrying out image similarity detection
via AWS Elastic Compute Cloud (EC2) instances, with the
AWS Auto Scaling being used to control the number of instances
according to the demand.

Index Terms—visual search, internet-of-things, cloud comput-
ing, analytic modeling

I. INTRODUCTION

Most of the envisaged applications and services for wearable
sensors, smartphones, tablets or portable computers in the
next ten years will involve analysis of audio/visual streams
for event, action, object or user recognition, recommendation
services and context awareness, etc. [1]–[8]. Examples of
early commercial services in this domain include Google
Goggles, Google Glass object recognition, Facebook automatic
face tagging [9], Microsoft’s Photo Gallery face recognition,
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Figure 1. System hierarchy for a media search application within an IoT
context. Low-power devices send query data to an IoT aggregator using low-
power protocols for the physical, medium access control and network layer,
such as IEEE 802.15.4 MAC/PHY and 6LoWPAN. The IoT aggregator sends
aggregated query volumes to the cloud-computing service using TCP/IP.

as well as technology described in recent publications from
Google, Siemens and others 1.

Figure 1 presents an example of how such applications
can be deployed in practice within an Internet-of-Things
(IoT) context. Energy-constrained devices capture and extract
audio/visual features from audio and/or image streams and
compact such features into feature-descriptor vectors [8],
[14]–[16]. Such feature vectors can be seen as queries in a
multimedia search application [7], [14]. For example, Serra
et. al. [8] propose beat and tempo feature extraction for cover
song identification. A similar service is now widely deployed
by Shazam. In the visual search domain, several approaches
produce image salient points and then compact their associated
features into vectors of 64∼8192 elements [15], [16]. All such
feature vectors can be matched to equivalent vectors of very
large content libraries via a cloud-based deployment within the
context of classification, retrieval and similarity identification
for, so-called, “big data” applications. Devices of the same
type running the same application software can be partitioned
into “device clusters” (Fig. 1). Within each cluster, devices
can be further subdivided into several classes based on the
mean volume of query data produced within a certain time

1See “A Google Glass app knows what you’re looking at” MIT Tech.
Review (Sept. 30, 2013) and EU projects SecurePhone [10], [11] and MoBio
[12], [13].
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interval (e.g., “low”, “average” and “high” volume of queries
within a 24-hour interval). For instance, when cameras are
deployed in a broad square, the data generation volume for
some regions will be higher than others, depending on the
expected activity of each region [17]. An IoT aggregator can be
used to aggregate traffic from each device cluster and upload it
to a remote cloud computing service that carries out the search
operations for recognition and retrieval purposes [2]–[4], [18].

In this paper, we consider the energy consumption and
billing costs incurred by such IoT applications in a holistic,
system-oriented, manner. Specifically, we derive a parametric
model that allows for the coupling of the energy consumption
and cloud billing costs in function of the system and query
volume constraints for each cluster. A key aspect of our model
is the derivation of the optimal balancing between:

1) idle time, where device energy consumption or cloud
billing cost is incurred for no useful output, e.g., image
acquisition and processing or buffering/standby time on
the device that does not lead to query generation, or
cloud servers idling due to small volumes of queries
being submitted;

2) active time, where, despite resource consumption being
incurred for useful output, one does not want to exceed
certain limits in order not to cause excessive energy
consumption in the device or excessive billing costs from
the cloud infrastructure provider.

Another key aspect of our work in comparison to previous
work on optimal energy management [17]–[22] is that, beyond
establishing the configuration that minimizes the device energy
consumption metric of interest, we also derive closed-form
expressions for the corresponding minimum cloud billing cost,
as well as the corresponding number of devices that can be
admitted by the service.

In order to validate our analytic derivations, we utilize a
proof-of-concept image similarity identification application,
deployed via: (i) running the image feature extraction and
query generation and transmission on a Beaglebone Linux
embedded platform; (ii) implementing the back-end query pro-
cessing for similarity identification and retrieval on Amazon
Web Services Elastic Compute Cloud (AWS EC2) on-demand
instances. Our results illustrate how the proposed model can
be applied to real-world IoT-oriented media query retrieval
systems in order to establish the desired operational parameters
with respect to energy consumption and cloud infrastructure
billing. More broadly, the experimental results reported in this
paper exemplify the efficacy of our framework for feasibility
studies on energy consumption and billing cost provisioning in
cloud-based IoT query processing applications, prior to time-
consuming testing and deployment.

The remainder of the paper is organized as follows. In
Section II, we present the system model corresponding to
the application scenarios under consideration. The analytic
derivations characterizing energy-constrained feature extrac-
tion are presented in Section III, where we also derive the
optimal coupling with the utilized cloud-computing service
under four widely-used statistical characterizations for the
query production rate. Section IV presents experimental results
and Section V concludes the paper.

II. SYSTEM MODEL

Within the system hierarchy of Fig. 1, each device connects
to a “repository” service of a cloud provider, which represents
the collecting unit, i.e. a cloud storage service like AWS Sim-
ple Storage Service (S3). This is where all device queries are
uploaded to be processed by the back-end search mechanism
of the service. As shown in Fig. 1, an IoT aggregator can be
present in-between IoT clusters of the same type and the cloud
repository, in order to: (i) reshape the IoT query traffic volume
before uploading it to the cloud; (ii) carry out other device-
specific and service-specific operations2. The figure shows
that the essentials of the problem boil down to the analysis
of the interaction between each mobile device node and its
corresponding IoT aggregator and cloud computing service.

A. System Description

We assume that the mobile application is running continu-
ously for a “monitoring” interval of T seconds. This interval
corresponds to the typical device usage per day, or in-between
battery recharging periods, e.g., T ∈ [60,18000] seconds
per day. The activation, processing and transmission is either
triggered by the user, or by external events at irregular times
throughout the application’s running time T . Examples are:
user-triggered audio or visual feature extraction by recording
a particular content segment (e.g., as in the Shazam, Google
Voice or Google Goggles services), or motion-activated frame
capturing and processing within an audio/visual surveillance
application [23]–[26]. We therefore assume that the query data
volume during T seconds is modeled as a random variable.

The on-board battery of each device can last for prolonged
intervals of time (e.g. tens or hundreds of hours, as it is typical
in most audio/visual sensors and mobile devices). Therefore,
the battery capacity can be assumed to be infinite compared
to the energy budget spent by the media search application
within each interval of T seconds [27]–[29]. Hence, issues
such as leakage current and battery aging do not need to
be considered. Nevertheless, it is well known that prolonged
power surges from applications have inadvertent effects on a
mobile device, such as faster-than-expected battery drainage
or device overheating [27], [29]. Therefore, in our analysis
we shall be considering constraints on the mean energy
consumption during the monitoring interval, as well as the
one-sided deviation from the mean. Finally, we remark that the
query data production and transmission and the cloud billing
are not strictly continuous processes. However, given that we
are focusing on large monitoring intervals comprising tens or
hundreds of seconds, they can be seen as continuous processes.

B. Definitions

We now present the key concepts behind our analytic
framework. The nomenclature summary of our system model
is given in Table I.

2Depending on the exact application, the IoT aggregator may carry out
authentication or encryption of queries, reformatting of the retrieved results
from the cloud service so that they display correctly on the particular devices,
application/collection of device metadata for service statistics and advertising,
etc. We do not discuss these aspects as they are out of the scope of this paper.
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1) Query data production: The query data production and
transmission by each device is a non-deterministic process,
because it depends on the frequency of the application invo-
cation (or on event-driven activation alerts), as well as on the
query size, which may vary, depending on the media search
application. Therefore, the query data volume (in bits) for
each time interval of T seconds of each device is modeled
by random variable (RV) Ψe with probability density function
(PDF) P (ψe). More broadly, given that devices may be
monitoring multiple event (or “activity”) zones, e.g., low,
medium and high activity, we consider A activity zones with
corresponding data volumes (in bits) for each time interval
of T seconds modelled by A random variables with PDFs
Pa(ψe), 1 ≤ a ≤ A. The statistical modeling of data volumes
for each activity zone can be gained by observing the occurred
processing and analyzing the behavior of each device when
it captures image or audio data and produces query bits to
be transmitted to the IoT aggregator. Alternatively, the query
data production and transmission volume can be controlled
(or “shaped”) by the system designer in order to achieve a
certain goal, such as limiting the occurring latency or utilizing
inactivity periods of other applications running concurrently on
the mobile device. Examples of systems with variable query
data production and transmission rates include visual sensor
networks transmitting image features [30]–[33], as well as
activity recognition networks where the data acquisition is
irregular and depends on the events occurring in the monitored
areas [34]–[36].

Beyond individual devices, the query volume uploaded
from each IoT aggregator to the cloud service is modelled
by random variable Ψb with PDF P (ψb). The distributions
Pa (ψe) and P (ψb) will be of the same type (the latter will be
a scaled version of the former) if the IoT aggregator shapes its
uploaded traffic in the manner it receives it. Alternatively, if no
traffic shaping is performed and the processing latency at the
aggregator is fixed, combining n1, . . . , nA devices producing
queries from A activity zones leads to:

P (ψb) = P1 (ψe) ⋆ . . . ⋆ P1 (ψe)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1 times

⋆⋅ ⋅ ⋅⋆PA (ψe) ⋆ . . . ⋆ PA (ψe)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nA times

,

(1)

i.e., the PDF characterizing the uploaded traffic is the result
of simple addition of the RVs modelling the data volumes
received by all ntot = ∑

A
a=1 na devices.

Since the query data production volume may be non-
stationary, we assume its marginal statistics for Pa (ψe),
1 ≤ a ≤ A, and P (ψb), which are derived starting from
a doubly stochastic model for these processes. Specifically,
such marginal statistics can be obtained by [37], [38]: (i)
fitting PDFs to sets of past measurements of query production
volumes, with the statistical moments (parameters) of such
distributions characterized by another PDF; (ii) integrating
over the parameter space to derive the final form of Pa (ψe)

and P (ψb). For example, if the query data production is
modeled as a Half-Gaussian distribution with variance param-
eter that is itself exponentially distributed, by integrating over
the parameter space, the marginal statistics of the query data

volume become exponential [37], [38]. The disadvantage of
using marginal statistics for the query data production volume
is the removal of the stochastic dependencies to transient
properties of these quantities. However, in this work we are
interested in constraining the first and second moments of the
energy consumption, as well as minimizing the expected cloud
billing cost, over a lengthy time interval (e.g. several minutes
or hours) and not in the instantaneous variations of these
figures of merit over short time intervals. Thus, a mean and
variance-based analysis using the marginal statistics is suitable
for this purpose.

2) Energy and cloud infrastructure billing parameters:
We assume that, on average, the production and transmis-
sion of one query bit incurs energy consumption rate of ge

Joule-per-bit (J/b). This rate incorporates the audio or visual
capturing, the feature extraction and compaction process to
produce the compacted feature vector, and the transmission
of the feature vector to the IoT aggregator. For example,
under a visual search application, this would incorporate the
energy consumption for the image acquisition, the processing
to extract salient point descriptions, the compaction process
to produce a 256-element feature vector comprising 32-bit
numbers (visual query) corresponding to each image [16], and
the transceiver energy consumption to transmit this 8192-bit
stream to the aggregator. Assuming that the entire process
requires on average 10−5 J on the mobile device under con-
sideration, this leads to ge ≅ 1.2×10−9 J/b. However, given the
time-varying nature of the query data production per device,
we also encounter the case where the device is consuming
energy to run the application (and possibly capture images or
audio) in the background without producing any queries. This
corresponds to “idle” energy consumption by each device with
average rate ie Joule-per-bit (i.e., ie Joule for the time interval
corresponding to the production and transmission of one query
bit). We assume that the application goes in idle mode during
time intervals where the amount of produced query bits is
below ceE [Ψe] b, with E[Ψe] the statistical expectation of
Ψe. The value of ce depends on the processing and transmis-
sion capabilities of the device, as well as on the specifics of
the application, e.g., the size of the feature vector per query,
the manner in which query generation is activated, etc. For
instance, regular query generation (e.g., once per second) will
correspond to lower value of ce in comparison to motion-
activated query generation, as the motion detection requires
continuous capturing and processing of data that corresponds
to higher percentage of “idle” energy consumption, i.e., energy
consumption that does not lead to query data generation. For
small time intervals, the energy consumption rates ge and ie
and the value for ce may fluctuate depending on the device
and network state (e.g., when memory paging, caching or other
operating system tasks are carried out, or when transmission is
hampered by high interference levels). However, given we are
considering long periods of time for each monitoring interval
T , we assume ge, ie and ce to represent the average values and
our experimental validation demonstrates that accurate energy
estimates can be derived under this assumption.

Analogously, billing costs are incurred when servers are
reserved from the cloud provider in order to process the
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queries uploaded by an IoT aggregator. Cloud providers offer a
variety of usage-based pricing strategies for the consumption
of computing resources that can be classified in three basic
models: pay-as-you-go, subscription-based and auction-based.
In this paper, we are primarily concerned with the first two
models since auction-based models cannot guarantee reliable
operation of compute instances.

In the pay-as-you-go model, users are billed with a static
unit price per time interval without up-front costs or long-
term commitments. Since the unit price remains constant, the
total price increases linearly with the increase of the consumed
units. Typically, a unit is a deployed virtual machine (e.g.,
an AWS EC2 instance) over a short time period (e.g., 1
hour) and the unit price follows a tiered model based on the
compute capacity of the unit (in terms of CPU, memory and
storage), the operating system and the region where the unit is
deployed. For example the AWS EC2 “on-demand” instances
use a linear per-unit pricing per hour. Variations of the linear
pay-as-you-go model involve a step decrease in the unit price
after certain utilization thresholds are reached, leading to a
sublinear increase of the unit cost with the increase of usage
time. An example of this model is the Sustained Usage pricing
of the Google Cloud Engine.

In subscription-based pricing the user commits to long-
term utilization for a pre-selected number of computing units
by paying a fixed upfront price for the entire consumption
period. Cloud providers may also offer a hybrid model that
combines discounted pay-as-you-go pricing with an upfront
payment for a fixed long-term time period (e.e 1 to 3 years).
The AWS EC2 “reserved” instances and the Microsoft Azure
Prepay implement a hybrid subscription/pay-as-you-go model.
The unit price can be either linear or subject to a step decrease
based on the usage volume.

Beyond their available pricing models, all cloud computing
services today use some form of autoscaling mechanism in
order to adjust the number of compute instances according to
the demand. For example, in AWS Auto Scaling [39] one can
set rules that scale the utilized compute instances for every
monitoring interval according to the average query volume
received during the previous monitoring interval. A typical
AWS Auto Scaling setup would be3:

● 3 single-core AWS EC2 m3.medium on-demand in-
stances when the average uploaded query volume was
below a certain “quota” of cb query bits (“idle” case) in
the previous monitoring interval,

● 30 on-demand instances when the query volume exceeded
cb b (“active” case) in the previous monitoring interval.

Such configurations are prevalent in all cloud computing
providers [AWS, Microsoft Azure, Google Compute Engine
(GCE), etc.], where services are developed using a core num-
ber of instances, and additional compute instances are added
when the demand exceeds a certain threshold [3], [4], [39],
[40]. For example, based on current AWS EC2 pricing, each
single-core m3.medium instance incurs (on average) billing
cost of 0.067$ per hour under the on-demand configuration.

3The reported numbers of instances and instance types are only indicative
and can be adjusted per IoT application.

Assuming that a search operation with a 256 × 32-bit query
requires 10ms of cloud service time and under the AWS
Auto Scaling rules stated above, this corresponds to billing
cost of (approximately): 5.6 × 10−7 dollars-per-query under
the “idle” case, or ib ≅ 6.8 × 10−11 dollars-per-query-bit ($/b)
and pb ≅ 6.8 × 10−10 $/b for the “active” case. Similar billing
rates can be calculated for other cloud providers under pay-
as-you-go or subscription-based pricing. Notably, despite the
fact that cloud infrastructure billing is levied on hourly or
minute-by-minute increments (e.g., for AWS and GCE, resp.),
because of the continued nature of the service, we do not
have “termination gaps”. Instead, some instances may idle for
some time before they are reused or terminated, depending on
the fluctuations of the query volume within each monitoring
interval. The quota of cb query bits that triggers the auto
scaling can be set according to the application or the number
of devices within each IoT aggregator and the billing rates
are always linear to the number of queries since we always
consider a fixed query and database size, which leads to the
computation time increasing linearly to the number of queries.

Beyond the cost of the computing time, billing cost propor-
tional to the expected query volume per monitoring interval,
E[Ψb], must be constrained to Vmax b, since: (i) all cloud
providers charge for data transfers and storage; and (ii) ex-
cessive interference will occur if the average query volume
rises above the capacity of the local network of each IoT
aggregator. Assuming 0.15$ per gigabyte of query volume
(based on current AWS pricing), this leads to (approximately)
gb = 1.9 × 10−11 $/b. Then, in order to remain competitive
against other solutions in the market, the service may wish to
set an expectation that each user should be billed for Bmean $
on average for each device and each monitoring time interval
of T seconds. Importantly, while the instantaneous rates ib,
pb, gb and the instantaneous query transmission rate from each
IoT aggregator may fluctuate, given that we are interested in
long monitoring intervals and infrastructure billing is typically
applied in minute or even hourly increments, we utilize mean
values for these rates, calculated by averaging over lengthy
operational periods.

Evidently, the large number of system, data production,
energy consumption, and cloud billing parameters of Table I
makes the exhaustive exploration of the complete design space
infeasible. Therefore, the creation of an analytic model that
can establish closed-form relationships between the different
parameters, as well as optimal settings under specified con-
ditions for device energy consumption and billing cost is of
paramount importance. This is the aim of the next section.

III. CHARACTERIZATION OF ENERGY CONSUMPTION AND
CLOUD BILLING COST

We derive analytic expressions for the expected energy
consumption of a device (and its one-sided deviate), as well
as the expected cloud billing for a group of ntot devices on
the same IoT aggregator. This allows us to derive closed-form
conditions that ensure that the one-sided energy variation is
minimized under a constraint on the expected energy con-
sumption for each device, or, vice-versa. We also derive the
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Table I
NOMENCLATURE TABLE.

Symbol Unit Definition

ntot, na – Total number of devices and devices of activity
zone a (out of A total zones) within the same
IoT aggregator

ge J/b Energy for producing and transmitting a query bit

ie J/b Energy during idle periods equal to the interval
required to produce and transmit a query bit

ce – Fraction of the average query volume below
which the device application is in idle mode

Emax_exp J Upper bound of the expected energy consumption
over T seconds

Emax_var J2 Upper bound of the one-sided variation from the
expected energy consumption over T seconds

rtot, ra b Average query data production and transmission
volume and average volume per device of activity
zone a (over the monitoring interval)

Vmax b Maximum query data transmission volume of
each IoT aggregator over the monitoring interval

Ψe ∼ Pa (ψe),
Ψb ∼ P (ψb)

b RVs modeling the query data production and
transmission volume per device (and activity
zone a) and per IoT aggregator

E [Ψe],
E [Ψb]

b Expected query data production and transmission
per device and per aggregator over the
monitoring time interval

gb $/b Billing cost (per query bit) incurred from
uploading/storing a query

ib $/b Billing cost (per time interval corresponding to
the processing time per query bit) incurred from
“idle” periods

cb b Number of query bits (quota) above which the
cloud Auto Scaling mechanism switches from
idle to active state

pb $/b Billing cost (per query bit) incurred from
processing a query after exceeding the quota of
cb query bits per T seconds (“active” period)

Bmean $ Expected cloud billing cost over T seconds

conditions that minimize the incurred billing cost and ensure
that the minimum value can be set to the expected billing of
Bmean per monitoring period of T seconds, while satisfying
the total query transmission volume constraint, Vmax, of the
IoT aggregator.

The expected energy consumption of each mobile device of
activity zone a over the monitoring period of T seconds is:

Eexp = E [Ψe] ge + ie ∫
ceE[Ψe]

0
(ceE [Ψe] − ψe)Pa (ψe)dψe,

(2)
where the integral of the second term expresses the expected
energy consumption for the time that the device will be in idle
mode. This term expresses the energy consumed to produce no
useful output, i.e., energy consumed that does not lead directly
to the production of query volume (e.g., image acquisition and
processing or buffering/standby).

We can also express the one-sided variability of the energy
consumption when the application switches from idle to active

state (i.e., when exceeding the ceE [Ψe]-bit query volume):

Evar = g
2
e ∫

∞

ceE[Ψe]
(ψe − ceE [Ψe])

2
Pa (ψe)dψe. (3)

For each monitoring interval of T seconds, higher values of
Evar imply higher energy consumption fluctuation from the
average energy consumption. Therefore, under a given energy
budget of Eexp Joule for the monitoring time interval of
T seconds, allowing for a large value for Evar will incur
significant drop in the device battery level (and possibly other
unintended consequences, such as device overheating, battery
degradation over time, etc.). On the other hand, a small value
of Evar will limit the query production volume handled by the
device, or may require a very high value for ce that may not be
realistic for the application and hardware under consideration.

Let us now consider the expected cloud billing cost when
receiving ntot aggregated media query volumes from an IoT
aggregator. We can express this cost via

Bexp = E [Ψb] gb + ib ∫
cb

0
(cb − ψb)P (ψb)dψb

+ pb ∫

∞

cb
(ψb − cb)P (ψb)dψb, (4)

where: E [Ψb] gb corresponds to the data transfer/storage
costs, the first integral corresponds to the partial moment
expressing the “idle” billing cost, and the second integral
corresponds to the “active” billing. Adding and subtracting
pb ∫

cb
0 (ψb − cb)P (ψb)dψb in Bexp, we get:

Bexp = E [Ψb] (gb + pb) − pbcb

+ (ib + pb)∫

cb

0
(cb − ψb)P (ψb)dψb. (5)

Evidently, the expected billing cost depends on the coupling
point, cb, as well as on the PDF of the aggregate query data
reaching the cloud service, P (ψb), which is either a variant
of the Pa (ψe) distributions, or it is linked to them via (1). In
the remainder of this section:

● We consider various cases for Pa (ψe) and P (ψb) and
minimize the energy variance of (3) subject to an upper
bound for the expression of (2), and vice-versa.

● We derive the number of query bits (quota), cb, that
minimizes the corresponding billing cost of (5) under
various PDFs, P (ψb).

● In order for the desired energy consumption and billing
cost parameters to be met concurrently while obeying
the total traffic volume constraint of each IoT aggregator,
we associate the minimum billing cost with the desired
value for the expected billing, Bmean, and the device
query production volumes for activity zone. Therefore, we
establish the corresponding number of devices, n1, . . . nA,
that can be admitted by each IoT aggregator under the
optimal configuration.

A. Coupling of Device Energy Consumption and Cloud In-
frastructure Billing

In order to control the overall energy consumption profile of
the application, one may wish to minimize the expected one-
sided energy variability, Evar, subject to the constraint that
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the expected energy consumption does not exceed Emax_exp

Joule within T seconds. Both of these values are provided
by the application or device developer in order to ensure the
application does not degrade the user quality-of-experience, or
disrupt other concurrently-running services on the device. We
term this problem as the “primary” optimization problem, and
its converse as the “dual” problem.

1) Primary energy minimization problem: We determine
the value ce that minimizes the one-sided variability of the
energy consumption while satisfying a constraint on the av-
erage energy consumption, i.e., we consider the optimization
problem

minimize
ce∈R+

Evar

subject to Eexp ≤ Emax_exp.
(6)

2) Dual energy minimization problem: Consider now a dual
setting, in which one aims at minimizing the average energy
consumption while satisfying a constraint on the maximum
one-sided energy variation from idle to active mode. The
activation threshold ce that achieves this is found by solving
the optimization problem

minimize
ce∈R+

Eexp

subject to Evar ≤ Emax_var.
(7)

3) Convexity of the energy minimization problems and
closed-form solutions: We first show that both the primary
and dual optimization problems of (6) and (7) are convex.
Therefore, they can be solved using fast numerical methods,
such as gradient descent or the Newton-Raphson method.

By taking the first and the second derivative of Eexp with
respect to ce we obtain

dEexp

dce
= ieE[Ψe]Fa(ceE[Ψe]) (8)

d2Eexp

dc2e
= ie(E[Ψe])

2Pa(ceE[Ψe]), (9)

where Fa(ψe) and Pa(ψe) are the cumulative distribution
function (CDF) and the PDF of the query volume per device
of activity zone a, Ψe, respectively. Since d2Eexp

dc2e
≥ 0, Eexp is

a convex function of ce.
Analogously, by taking the first and the second derivative

of Evar with respect to ce we obtain

dEvar

dce
= 2g2

e(E[Ψe])
2ce [1 − Fa(ceE[Ψe])]

−2g2
eE[Ψe]∫

+∞

ceE[Ψe]
ψePa(ψe)dψe (10)

d2Evar

dc2e
= 2g2

e(E[Ψe])
2
[1 − Fa(ceE[Ψe])] . (11)

Thus, d
2Evar

dc2e
≥ 0 and Evar is also a convex function of ce.

Given that Eexp and Evar are convex, the following propo-
sition offers a way to derive the solutions of the problems (6)
and (7) in closed form.

Proposition 1. The solution to the optimization problem (6)
is such that, at the optimal ce, it holds

Eexp = Emax_exp. (12)

The solution to the optimization problem (7) is such that, at
the optimal ce, it holds

Evar = Emax_var. (13)

Proof: See Appendix.
In other words, the solutions to both optimization problems

are obtained when the constraints are met with equality.
Therefore, whenever possible, by inverting the closed-form
expressions of Eexp and Evar for different query volume PDFs,
we can find the optimal ce in closed form.

4) Billing parameter tuning to minimize the cloud infras-
tructure billing cost and meet the expected billing Bmean: We
can now turn our attention to the billing cost Bexp in (5) for
the ntot-device aggregate query production volume over the
monitoring time interval of T s. We note that the first and the
second derivative of Bexp with respect to the coupling point
cb are given by

dBexp

dcb
= −pb + (ib + pb)F (cb) (14)

d2Bexp

dc2b
= (ib + pb)P (cb), (15)

where F (ψb) and P (ψb) are CDF and the PDF of the
aggregated query volume Ψb. Therefore, we can conclude that
Bexp is a convex function of cb when Ψb is modelled by a
continuous distribution function. Moreover, the value of cb that
minimizes the billing cost is obtained by solving the equation
dBexp

dcb
= 0, i.e.,

cb = F −1
(

pb

ib + pb
) , (16)

where F −1(⋅) is the inverse CDF of Ψb. Assuming any strictly-
increasing CDF, cb will be unique4. Therefore, in conjunction
with the fact that ∀cb ∶

d2Bexp

dc2
b

> 0, Bexp attains a global
minimum in function of cb.

5) Number of devices in an IoT aggregator to con-
currently satisfy cost and system constraints: In order
to meet energy, billing and query volume constraints:
{Emax_exp or Emax_var}, Bmean and Vmax, we first find ce
corresponding to (12) or (13). We can then match the device
query volumes r1, . . . , rA with the minimum billing cost,
min{Bexp}, obtained by substituting cb from (16) into (5).
Finally, setting

min{Bexp} = Bmean, (17)

and constraining the average traffic volume of all devices,

rtot =
A

∑
a=1

nara, (18)

by
rtot ≤ Vmax, (19)

we obtain the number of devices, n1, . . . , nA, that can be ac-
commodated by an IoT aggregator when each device satisfies
the energy settings of (6) or (7) and the IoT-uploaded volume

4Even if the CDF is monotonically increasing, all candidate extrema are
equivalent with respect to the derived billing cost.
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incurs the minimum billing cost of Bmean $ per monitoring
interval, while satisfying the query volume constraint Vmax.

Overall, via the energy-constrained analysis and the cloud-
billing optimization, one can explore different energy and
billing settings in order to accommodate particular types of
mobile devices (with given energy consumption parameters),
predetermined average query production volume, or given
number of devices per IoT cluster of Fig. 1. We present
detailed examples for this in the following subsections.

B. Illustrative Case: Ψe and Ψb Are Uniformly Distributed

For each activity zone a, when no knowledge of the
underlying statistics of the query generation process exists,
one can assume that both Pa (ψe) and P (ψb) are uniform
over the intervals [0,2ra] and [0,2rtot], respectively:

PU,a (ψe) = {
1

2ra
,

0,

0 ≤ ψe ≤ 2ra
otherwise

, (20)

and

PU (ψb) = {
1

2rtot
,

0,

0 ≤ ψb ≤ 2rtot

otherwise
. (21)

This corresponds to the case where the IoT aggregator’s
upload query volume PDF matches the query generation PDF
(20) and the aggregator merges and transmits query volumes
of ntot devices to the cloud service under the query volume
PDF of (21).

For each activity zone a, 1 ≤ a ≤ A, the expected value of Ψe

is EU [Ψe] = ra b. The expected value of Ψb is EU [Ψb] = rtot

b. The cases where ce > 2 or cb > 2rtot are of no practical
relevance, because: (i) the first inequality means each device
is always in idle mode, or (ii) the second inequality means
the cloud infrastructure is constantly overprovisioned. Thus,
we are only concerned with the case where: 0 < ce < 2 and
0 < cb < 2rtot.

1) Energy parameter tuning corresponding to the solution
of the Primary and Dual minimization problems of (6) and
(7): Starting from the device energy consumption, by using
(20) in (2), we obtain:

Eexp,U = (ge +
iec

2
e

4
) ra. (22)

In addition, by using (20) in (3), we obtain:

Evar,U = g2
e

(2 − ce)
3

6
r2
a. (23)

Then, given the average query volume ra per time interval
T , and the corresponding energy parameters ie and ge, it is
possible to derive the activation threshold ce that corresponds
to the solution to (6) by solving Eexp = Emax_exp for ce. Thus,
we obtain

ce,U,primary = 2

√
Emax_exp − gera

iera
, (24)

provided that Emax_exp > gera. The last inequality must hold
or else the energy constraint does not suffice for the production
of ra b within T seconds. We also note that the constraint ce <

2 implies in this case that Emax_exp < (ge + ie)ra. These two
constraints provide the feasible range for the expected energy
consumption under Uniformly-distributed query volumes as:
Emax_exp ∈ (ger, (ge + ie)ra).

Similarly, the solution to the constrained miminization of (7)
is obtained by solving for ce the equation Evar = Emax_var,
thus obtaining

ce,U,dual = 2 − (
6Emax_var

g2
er

2
a

)

1/3
. (25)

Note that if the constraint on the one-sided energy variation is
such that Emax_var ≥ 4g2

er
2
a/3, then such constraint is verified

by all nonnegative values of ce, and the minimum average
energy consumption is achieved by setting ce = 0. Due to
the finite support of the Uniform distribution, this effectively
corresponds to the trivial case when the one-sided deviation is
unlimited and the minimum energy consumption is obtained
when no idle energy is consumed.

2) Billing parameter tuning to minimize the cloud infras-
tructure billing cost and meet the expected billing Bmean: For
the case of uniform distribution, by replacing (21) in (5), we
obtain the average billing cost as

Bexp,U = (gb + pb) rtot − pbcb + (ib + pb)
c2b

4rtot
, (26)

and the optimal coupling point (16) is

cb,U =
2pbrtot

ib + pb
. (27)

The corresponding minimum-possible billing cost is:

min{Bexp,U} = (gb + pb −
p2

b

ib + pb
) rtot. (28)

The last equation shows that the minimum billing cost
increases linearly to the average query data production volume
of all ntot devices.

3) Number of devices in an IoT aggregator to concurrently
satisfy cost and system constraints: In order to meet both
energy and billing costs: {Emax_exp,Emax_var} and Bmean, we
can first tune ce according to (24) or (25). Then, by substituting
min{Bexp,U} = Bmean in (28), the expected billing Bmean

is achievable under the query transmission volume constraint
Vmax if

Bmean ≤ Vmax(gb + pb −
p2

b

ib + pb
). (29)

Otherwise, Vmax cannot accommodate the query volume that
guarantees billing equal to Bmean. When (29) is satisfied, we
can use proportional fairness [41] to derive the number of
devices from different activity zones, i.e.,

nU,a =
Bmean

(gb + pb −
p2
b

ib+pb )Ara
, (30)

for 1 ≤ a ≤ A. An interesting solution for nU,a occurs if Bmean

is set so that the volume Vmax is expected to be fully utilized,
i.e., the constraint of (29) is met with equality. In such a case,
the energy consumption parameters (Eexp,U and Evar,U), the
desired cloud billing cost (Bmean), and the aggregator’s data
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transmission volume (Vmax) become mutually coupled. Then,
the number of devices from different activity zones that can
accommodated by the IoT aggregator simply becomes

nU,a =
Vmax

Ara
. (31)

Overall, under the uniform distributions of (20) and (21),
nU,a of (30) represents the number of devices that should be
accommodated by an IoT aggregator [with each device having
ce according to (24) or (25)] in order to lead to the minimum
billing cost being equal to Bmean and aggregated query volume
below or equal to Vmax b.

C. Energy-constrained Query Volume Production and Min-
imum Billing Cost under Pareto, Exponential and Half-
Gaussian Distributions

We can now extend the previous calculation to other distri-
butions expressing commonly observed data transmission rates
in practical applications. We consider three additional PDFs
for Ψe and Ψb that have been used to model the marginal
statistics of many real-world data transmission applications
and provide the obtained analytic results in this subsection.
For each distribution and for each activity zone a, we couple
its parameters to the average query volume of the uniform
distribution, ra. This facilitates comparisons of the energy con-
sumption and billing cost achievable under different statistical
characterizations for the query volume.

1) Pareto distribution and fixed query volume: This distri-
bution has been used, amongst others, to model the marginal
data size distribution of data production processes that result in
substantial number of small data volumes and a few very large
ones [42], [43]. For each activity zone a, 1 ≤ a ≤ A, consider
PP,a (ψe) as the Pareto distribution with scale ve and shape
αe > 2,

PP,a (ψe) =

⎧⎪⎪
⎨
⎪⎪⎩

αe
vαe
e

ψαe+1
e

,

0,

ψe ≥ ve

otherwise
. (32)

The expected value of Ψe is EP [Ψe] =
αeve
αe−1

b. Thus, if we
set ve = αe−1

αe
ra, we obtain EP [Ψe] = ra b, i.e., we match

the expected query volume per device to that of the Uniform
distribution. The characterization of the energy consumption
for queries with Pareto-distributed volumes is summarized in
the following proposition.

Proposition 2. The average energy consumption for Pareto-
distributed media query volumes is given by

Eexp,P = [ge + ie [(αe − 1)αe−1ce(αece)
−αe + ce − 1]] ra, (33)

and the one-sided variation of the energy consumption from
idle mode to active mode is given by

Evar,P = 2g2
e

(αe − 1)αe−1c2−αe
e

ααe
e (αe − 2)

r2
a. (34)

Proof: The expressions (33) and (34) are obtained by
substituting the Pareto PDF (32) in (2) and (3), respectively,
and deriving the closed-form result of the integral expressions.

Note that Proposition 2 assumes that ce ≥ αe−1
αe

, since, oth-
erwise, the device will never switch from active to idle state.
In this case, the optimal solution, ce,P,primary, of (6) cannot
be expressed in closed form, but it is obtained via efficient
convex optimization algorithms such as gradient descent. On
the other hand, from (34), we can derive the solution of (7)
as

ce,P,dual = [
ααe

e (αe − 2)Emax_var

2g2
e(αe − 1)αe−1r2

a

]

1/(2−αe)
. (35)

A particular case of interest for the Pareto distribution arises
when αe → +∞: in this limit case, the query volume per
device converges to the expectation EP [Ψe] = ra, i.e., to fixed-
volume query production per monitoring interval and activity
zone. Then, since ce ≥ αe−1

αe
, as αe → ∞, the average energy

consumption tends to

Eexp,P = [ge + ie(ce − 1)] ra, (36)

and the one-side energy variation from idle to active mode
converges to zero (the device is in idle mode for a fixed
part of every monitoring interval). Then, the activation thresh-
old which meets the average energy consumption constraint
Emax_exp is given by

ce,P,primary = 1 +
Emax_exp − gera

iera
, (37)

provided that Emax_exp ≥ gera (which must hold or else the
query production rate, ra, is not achievable).

2) Exponential distribution: This distribution is relevant
to our application context since the marginal statistics of
compressed image and video traffic have often been modeled
as exponentially decaying [44]. Consider PE,a (ψe) as the
Exponential distribution with rate parameter 1/ra for each
activity zone a

PE,a(ψe) =
1

ra
exp(−

ψe

ra
) , (38)

for ψe ≥ 0. In this case, the expected value of Ψe is EE [Ψe] =

ra b. The characterization of the energy consumption for
queries with exponentially distributed volumes is summarized
in the following proposition.

Proposition 3. The average energy consumption for
Exponentially-distributed media query volumes is given by

Eexp,E = [ge + ie (ce + e
−ce − 1)] ra, (39)

and the one-sided variation of the energy consumption from
idle mode to active mode is given by

Evar,E = 2g2
e exp(−ce)r

2
a. (40)

Proof: The expressions (39) and (40) are obtained by sub-
stituting the Exponential PDF (38) in (2) and (3), respectively,
and deriving the closed-form result of the integral expressions.

In this case, the closed form solution of the problem (6) can
be derived from (39) as

ce,E,primary =W0 (− exp (−(Emax_exp + iera − gera)/(iera)))

+ (Emax_exp + iera − gera) /(iera), (41)
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where W0(⋅) is the main branch of the standard Lambert W
function [45]. Analogously, from (40) we can derive the closed
form solution of (7) as

ce,E,dual = ln
2g2

er
2
a

Emax_var
. (42)

3) Half-Gaussian distribution: We consider now PH,a (ψe)

as the Half-Gaussian distribution with mean EH [Ψe] = ra for
each activity zone a

PH,a (ψe) =

⎧⎪⎪
⎨
⎪⎪⎩

2
πra

exp (−
ψ2

e

πr2a
) ,

0,

ψe ≥ 0
otherwise

. (43)

This distribution has been widely used in data gathering
problems in science and engineering when the modeled data
has non-negativity constraints. Some recent examples include
the statistical characterization of motion vector data rates in
Wyner-Ziv video coding algorithms suitable for WSNs [32], or
the statistical characterization of sample amplitudes captured
by an image sensor [37], [46]. The characterization of the
energy consumption for queries with Half-Gaussian distributed
volumes is summarized in the following proposition.

Proposition 4. The average energy consumption for Half-
Gaussian-distributed media query volumes is given by

Eexp,H = (ge + ieceerf (
ce
√
π
) + ie (exp(−

c2e
π

) − 1)) ra,

(44)
where erf(⋅) is the error function, and the one-side variation
of the energy consumption from idle mode to active mode is
given by

Evar,H =
g2

e

2
((2c2e + π)(1 − erf (

ce
√
π
)) − 2ce exp(−

c2e
π

)) r2
a.

(45)

Proof: The expressions (44) and (45) are obtained by
substituting the Half-Gaussian PDF (43) in (2) and (3), re-
spectively, and simplifying the integral expressions.

In this case, the solutions to (6) and (7) cannot be expressed
in closed form. However, they can be efficiently computed
using gradient descent given that the error function can
be efficiently and accurately approximated with well known
methods [47].

4) Billing cost under Pareto, Exponential and Half-
Gaussian distribution: We now consider the billing cost for
the processing of queries uploaded from n devices via an
IoT aggregator. Let us first consider the aggregate query
volume distribution modeled via a Pareto distribution with
mean EP[Ψb] = rtot [with rtot given by (18)], i.e.,

PP (ψb) =

⎧⎪⎪
⎨
⎪⎪⎩

αb
v
αb
b

ψ
αb+1

b

,

0,

ψb ≥ vb

otherwise
, (46)

where αb > 2 and vb =
αb−1
αb

rtot.

Proposition 5. The average billing cost incurred from pro-
cessing Pareto-distributed query volumes is given by

Bexp,P = (gb−ib)rtot+(ib+pb)
(αb − 1)αb−1

ααb

b cαb−1
b

rαb
tot+ibcb. (47)

The minimum billing cost is obtained when

cb,P = (
ib + pb

ib
)

1
αb αb − 1

αb
rtot, (48)

and it is given by

min{Bexp,P} =
⎡
⎢
⎢
⎢
⎣
gb − ib + ib (

ib + pb

ib
)

1
αb

⎤
⎥
⎥
⎥
⎦
rtot. (49)

Proof: The proof stems from the evaluation of the general
solution expressed in (16) under the usage of the Pareto PDF.

In order to ensure that the average billing cost is Bmean

when the maximum query volume constraint, Vmax, is satis-
fied, we first need to guarantee that

Bmean ≤ Vmax

⎡
⎢
⎢
⎢
⎣
gb − ib + ib (

ib + pb

ib
)

1
αb

⎤
⎥
⎥
⎥
⎦
. (50)

Then, by determining the number of devices, n1, . . . , nA, for
activity zone based on proportional fairness, and by setting
min{Bexp,P} = Bmean in (49), we obtain

nP,a =
Bmean

[gb − ib + ib (
ib+pb
ib

)

1
αb ]Ara

, (51)

where Bmean is bounded by the constraint of (50). If Bmean

is set such that Vmax is expected to be fully utilized, i.e.,
(50) becomes an equality, then nP,a is given by (31). We also
note that, when assuming that the aggregate query volume is
Pareto distributed, by letting αb → +∞, we can analyze the
case when the aggregate query volume at the IoT is fixed and
equal to rtot. In this case, if cb ≥ rtot, the average billing cost
is simply given by

Bexp,P = (gb − ib)rtot + ibcb, (52)

which is minimized by setting cb equal to the mean, i.e., cb,P =

rtot.
Let us consider the aggregate query volume distribution

modeled via an Exponential distribution with mean EE[Ψb] =

rtot, i.e.,
PE(ψb) =

1

rtot
exp(−

1

rtot
ψb) , (53)

for ψb ≥ 0.

Proposition 6. The average billing cost incurred from pro-
cessing Exponentially-distributed query volumes is given by

Bexp,E = (gb − ib)rtot + ibcb + (ib + pb)rtote
− cb
rtot . (54)

The minimum billing cost is obtained when

cb,E = rtot ln
ib + pb

ib
, (55)

and it is given by

min{Bexp,E} = (gb + ib ln
ib + pb

ib
) rtot. (56)

Proof: The proof stems from the evaluation of the general
solution expressed in (16) under the usage of the Exponential
PDF.
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In order to ensure that the average billing cost is Bmean

when the maximum query volume constraint Vmax is satisfied,
we first need to guarantee that

Bmean ≤ Vmax (gb + ib ln
ib + pb

ib
) . (57)

Then, by adopting proportional fairness to allocate the number
of devices for each activity zone n1, . . . , nA, and by setting
min{Bexp,P} = Bmean in (56), we obtain

nE,a =
Bmean

(gb + ib ln ib+pb
ib

)Ara
, (58)

where the value of Bmean is upper-bounded by (57). Similarly
as before, if (57) is met with equality, then nE,a is given by
the simple solution of (31).

Finally, consider the case when the aggregate query volume
is Half-Gaussian distributed with mean EH[Ψb] = rtot, i.e.,

PH (ψb) =

⎧⎪⎪
⎨
⎪⎪⎩

2
πrtot

exp (−
ψ2

b

πr2tot
) ,

0,

ψb ≥ 0
otherwise

. (59)

Proposition 7. The average billing cost incurred from pro-
cessing Half-Gaussian-distributed query volumes is given by

Bexp,H = (gb + pb)rtot − pbcb + (ib + pb)

×(cberf (
cb

√
πrtot

) + rn(exp(−
c2b
πr2

tot

) − 1)) . (60)

The minimum billing cost is obtained when

cb,H = rtot

√
πerf−1

(
pb

pb + ib
) , (61)

and it is given by

min{Bexp,H} = rtot [gb − ib + (ib + pb)

× exp(−(erf−1
(

pb

pb + ib
))

2

)] . (62)

Proof: The proof stems from the evaluation of the general
solution expressed in (16) under the usage of the Half-
Gaussian PDF.

In order to ensure that the average billing cost is Bmean

when the maximum query volume constraint Vmax is satisfied,
we first need to guarantee that

Bmean ≤ Vmax [gb − ib + (ib + pb)

× exp(−(erf−1
(

pb

pb + ib
))

2

)] . (63)

Via a proportionally-fair allocation of the number of devices
for each activity zone [and by setting min{Bexp,P} = Bmean

in (62)], we obtain

nH,a =
Bmean

[gb − ib + (ib + pb) exp(− (erf−1
(

pb
pb+ib ))

2
)]Ara

,

(64)
where the value of Bmean is upper-bounded by (63). If the
billing is set such that Vmax is expected to be fully utilized,
i.e., (63) is met with equality, then nH,a is given by (31), i.e.,
mutual coupling is achieved between the energy consumption

Figure 2. Conceptual illustration of the linkage between: IoT system
parameters, cloud billing & autoscaling, and data gathering. When parameters
from two out of three domains are provided, our analytic framework can be
used to tune the parameters of the third.

parameters (Eexp,U and Evar,U), the desired cloud billing
cost (Bmean), and the aggregator’s data transmission volume
(Vmax).

D. Discussion

The results of this section can be used in practical applica-
tions to assess the impact in the required energy rates when
the statistics of the query generation and transmission follow a
certain PDF and the cloud billing costs are fixed. Conversely,
if a particular IoT device technology is chosen, under the
knowledge of the system and data gathering parameters, one
can establish the appropriate cloud billing rates and the number
of devices to include in each IoT aggregator in order to
minimize the cloud infrastructure cost. Finally, for given
IoT and cloud infrastructure parameters, one can assess the
achievable query generation and transmission rates such that
the IoT cluster leads to the optimal coupling between energy
consumption and cloud billing cost. Thus, as shown in Fig.
2, our analytic results allow for the linkage of energy, data
gathering and cloud billing parameters within IoT clusters
of devices. Hence, our analysis can be used for early-stage
exploration of the capabilities of a particular IoT infrastruc-
ture, in conjunction with the data gathering requirements of
a particular application, prior to embarking in cumbersome
development and testing in the field.

IV. EVALUATION OF THE ANALYTIC RESULTS

To validate the proposed analytic modeling framework of
Propositions 2–7, we performed a series of experiments based
on a visual sensor network connected to an IoT aggregator,
and eventually to an AWS S3 repository plus EC2 cluster
of on-demand instances. The following subsections present
the hardware and application specifications, as well as the
achieved results.

A. System Specification

We utilized a visual sensor network composed of multiple
BeagleBone Linux embedded platforms [17], [48]. Each Bea-
gleBone is equipped with a RadiumBoard CameraCape board
to provide for the video frame acquisition. For energy-efficient
processing, we downsampled all input images to QVGA
(320 × 240) resolution. Further, our deployment involved:
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1) a portable computer acting as the IoT aggregator, i.e.,
collecting all bitstreams via a star topology with ntot =

12 nodes and the recently-proposed (and available as
open source) TFDMA protocol [49] for contention-free
MAC-layer coordination;

2) an AWS S3 bucket where the IoT aggregator continu-
ously uploads all queries via a TCP/IP connection using
a Cron Job and the AWS Command Line Interface;

3) one reserved AWS instance running as the control server
and assigning query volumes from S3 to AWS EC2
on-demand instances that serve as compute units; via
AWS Auto Scaling, within each monitoring instance of
T seconds, the number of on-demand instances is set to:
● 3 when the query volume is below cb b (“idle” case).
● 30 when the volume exceeds cb b (“active” case).

Under our deployment and the utilized application, the
uploaded query vectors are matched with the feature
vectors extracted from 80,000 images of similar content.
The corresponding billing rates per query bit for this
matching operation were found to be ib = 6.27 × 10−11

$/b and pb = 6.27 × 10−10 $/b. Regarding query traffic
upload and storage costs, the corresponding billing rate
per query bit was found to be gb = 2.09 × 10−10 $/b.

We note that no WiFi or other IEEE802.15.4 networks were
concurrently operating in the utilized channels of the 2.4 GHz
band. However, even if IEEE 802.11 or other IEEE 802.15.4
networks coexist with the proposed deployment, well-known
channel hopping schemes like TSCH [50] can be used at the
MAC layer to mitigate such external interference. Moreover,
experiments have shown that such protocols can scale to
hundreds or even thousands of nodes [50]. Therefore, our
evaluation is pertinent to such scenarios that may be deployed
in the next few years within an IoT paradigm [51].

B. Visual Similarity Identification Based on the Vector of
Locally Aggregated Descriptors (VLAD)

Each BeagleBone runs a basic motion detection algorithm
(based on successive frame differencing) that generates a
visual query only when sufficient motion is detected between
the captured video frames. The query vectors were generated
using the state-of-the-art VLAD algorithm of Jegou et. al. [16],
which is based on SIFT feature extraction and compaction
using local feature centers and a PCA projection matrix, both
of which are derived offline via training with representative
video data [16]. The VLAD descriptor (i.e., query) size was
set to 8192 b (256 coefficients of 32 b each).

With respect to the visual feature extraction, dedicated
energy-measurement tests were performed with the Beagle-
bone following the energy measurement setup of our previous
work [17] (repeated tests with a resistor in series to the Bea-
glebone board and a high-frequency oscilloscope to capture
the power consumption profile across repeated monitoring
intervals). Under the utilized setup, we measured the average
energy cost to produce and transmit a query bit, as well as
the average initialization cost per frame for both application
scenarios. The resulting energy rates were: ge = 1.78×10−6 J/b

and ie = 6.10 × 10−7 J/b. Moreover, under the utilized appli-
cation, the Beaglebone can generate up to 1 query per second
while being constantly active, i.e., 8192T b per monitoring
interval of T seconds. By setting mean query rates such that
E[Ψe] ≤ 2048T b (i.e., up to 0.25 queries per second), this
allows for ce ∈ (0,4). In practice, we restricted the utilized
values for ce to (0,2] since higher values lead to the frame
acquisition frequently exceeding 1 frame per second, which
can lead to system instability.

C. Results with Controlled Query Generation that Matches the
Marginal PDFs Considered in the Theoretical Analysis

Under the settings described previously, our first goal is
to validate the analytic expressions of Section III that form
the mathematical foundation for Propositions 2–4. To this
end, we create a controlled query data production process
on each node by: (i) artificially setting several sets of query
volumes according to the marginal PDFs of Section III via
rejection sampling [52], a.k.a., Monte Carlo sampling; (ii)
setting the mean query volume size per monitoring interval,
r, to predetermined values. The sets containing query volume
sizes are preloaded onto the memory of each sensor node
during the setup phase. At run time, each BeagleBone node
runs a special routine, which, per monitoring interval t: (i)
reads the corresponding query volume size, v(t), from the
preloaded set; (ii) captures and processes v(t)

8192
frames, (iii)

transmits the produced v(t) query bits to the IoT aggregator;
(iv) if v(t) < ceE[Ψe], captures and processes ceE[Ψe]−v(t)

8192
additional frames without transmitting queries. In this way,
we emulate the actual operation of the node under various
query volumes that match the statistical models considered
by our analysis, and various thresholds ce for switching
between “idle” and “active” states. This controlled experiment
is designed to confirm the validity of our analytic derivations
when the operating conditions match the model assumptions
precisely.

Indicative experimental results for monitoring time interval
of T = 60 s are reported in Fig. 3 and Fig. 4 for r = 81,920
b. It is evident that the theoretical results match the Monte
Carlo experiments regarding energy consumption for all the
tested distributions, with all the R2 values (coefficients of
determination) between the experimental and the model points
being above 0.9964. We have observed the same level of
accuracy for the proposed model under a variety of data sizes
(r) and active time interval durations (T ), but omit these
repetitive experiments for brevity of exposition.

Similar experiments have been carried out in order to vali-
date the analytic expressions of Propositions 5–7 regarding the
average billing cost. Specifically, we have submitted indicative
queries to the cloud-computing service with volumes that have
been generated according to the marginal PDFs of Section III
via rejection sampling under various numbers of devices per
IoT cluster (ntot) and various average query volumes. The
aggregated queries are uploaded to the dedicated S3 bucket
for the service and are processed by a number of instances
that is controlled by the AWS Auto Scaling rules stated in
the previous subsection. In this case, we used T = 600 s and
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Figure 3. Average energy consumption Eexp vs. ce. The average query
volume was set to r = 81,920 b. For the case of Pareto distribution, we
used αe = 4. Lines with markers: Monte Carlo experiments; Lines without
markers: theoretical predictions.
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Figure 4. One-sided energy consumption Evar vs. ce. The average query
volume was set to r = 81,920 b. For the case of Pareto distribution, we
used αe = 4. Lines with markers: Monte Carlo experiments; Lines without
markers: theoretical predictions.

varied the value of cb in order to see the incurred infrastructure
billing costs under a variety of Auto Scaling thresholds.

Fig. 5 presents indicative results under this setup. Evidently,
the theoretical results follow the trends of the experimental
data, with R2 coefficients being above 0.9947 for all the
distributions under consideration. However, the theoretical
predictions tend to always underestimate the experimental
values. This underestimation is due to the fact that our analysis
does not take into account some practical latency and cost
aspects of the service, for example that switching between
“idle”, “active” states is not instantaneous and other cost
overheads (such as the cost of the control server) are not
taken into account by our analysis. Similar results to Fig. 5
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Figure 5. Average billing cost Bexp vs. cb. The average query volume
per device was set to r = 163,840 b and the experiment corresponds to
n = 10 devices. For the case of Pareto distribution, we used αe = 4. Lines
with markers: Monte Carlo experiments; Lines without markers: theoretical
predictions. The circles indicate minimum billing values as predicted by the
analysis in Section III.

have been obtained for a variety of average query volumes and
monitoring intervals, but are omitted for brevity of exposition.

D. Results with Real Data

We now present results when repeating the visual query
generation, transmission and cloud-based processing for 25
monitoring intervals under a practical deployment within sev-
eral research staff offices of the Electronic and Electrical
Engineering Department of University College London. The
deployment environment comprises a large shared office space,
which is composed of areas with low query generation activity
(seated desk areas with low movement of people) and areas
with high query generation activity (corridor areas with high
movement of people).

1) Accuracy of energy estimation under a fixed setup and
one activity zone: In the first batch of tests, each device’s
camera is set to fixed capture rate of 5 frames per second.
Via successive frame differencing for motion detection, VLAD
queries where generated when the contents of frames varied
beyond a preset threshold, e.g., when people passed (or moved)
in front of the device camera. Back-end query similarity
identification was done using prestored VLAD signatures of
80,000 images of similar content based on the AWS setup
described in the previous subsection.

Once data has been collected, we fitted5 the query pro-
duction volumes to one of the distributions used in Section
III, i.e., assuming only one activity zone. In the performed
experiment, and under monitoring interval of T = 60 s for the
devices, we found that the real data query volume histogram
agreed best with the Exponential distribution with r = 82,616

5Fitting is performed by matching the average data size r of each distri-
bution to the average data size of the JPEG compressed frames or the set of
visual features.
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Figure 6. Probability histogram of query volume for T = 60 s generated
from our deployment experiments and the best fit obtained via the Exponential
distribution.

b. For T = {600,1200} s, the best fit was found to be the
Pareto distribution with: r = 816,250 b and α = 3.89, and
r = 1,569,700 b and α = 3.95, respectively. An example for
the fit obtained with the Exponential distribution is given in
Fig. 6. Moreover, with respect to ce, we found that, under
the acquisition of 5 frames per second, the system switched
between “idle” and “active” states at ce ≅ 0.75.

Under this setup and with the fitted values for Exponential
and Pareto PDFs, Table II presents the obtained experimental
and theoretical values (via Propositions 2 and 3) for the
expected energy and the one-sided energy variance for two
monitoring intervals. It is observed that, despite the modeling
mismatch due to the fitting shown in Fig. 6, the theoretical
predictions on the expected energy consumption are always
within 2% of the experimentally-derived values, whereas theo-
retical predictions on the one-sided energy variation are within
20% of experimental data. As such, the proposed energy-
consumption model can be used for early-stage testing of
feasible application deployments with respect to their energy
consumption in order to determine the impact of various
options, prior to time-consuming experimentation in the field.

2) Energy and billing cost reduction under parameter tun-
ing and two activity zones: We consider a further example to
showcase how the theoretical modeling presented in Section
III can be leveraged in order to allow parameter tuning within
T = {600,1200}. When T = 600 s, we set the maximum
admissible one-sided energy variation to Emax_var = 0.35 J2,
whereas, when T = 1200 s, we set Emax_var = 1 J2. We
report experimental results generated from our deployment
for a scenario where A = 2 different zones are present,
corresponding to “low” and “high” activity. This was achieved
by positioning some devices in areas with low movement
of people (seated desk area of a large shared office) and
some others in areas with high movement (corridor area of a
large shared office). The devices contained in the first (i.e.,
“low activity”) zone produce query volumes that are best

approximated by the Pareto distribution with r1 = 160,000 b
and α1 = 2.42, if T = 600 s, and r1 = 320,000 b and α1 = 2.58,
if T = 1200 s. On the other hand, the devices in the second
(i.e., “high activity”) zone are best approximated via the Pareto
distribution, albeit with r2 = 4,915,600 b and α2 = 3.27, if
T = 600 s, and r2 = 9,572,600 b and α2 = 4.10, if T = 1200
s. The IoT aggregator admits n1 = 10 devices from the low-
activity zone and n2 = 2 devices from the high-activity zone,
thus resulting in a total query volume occupation of 11.43 Mb,
when T = 600 s, and 22.35 Mb, when T = 1200 s. Instead of
presetting the frame acquisition to fixed value (5 frames per
second, which led to ce ≅ 0.75), we now change the acquisition
rate, thereby controlling the activation threshold ce. Our aim
is to set ce to the value that minimizes the expected energy
consumption while verifying the constraint on the one-sided
energy variation, which is given by (35). We then compare
the expected energy consumption obtained with such setting,
with the one obtained via two baseline solutions that impose
ce = 1.5 or ce = 2 (corresponding to acquiring 10 and 13.3
frames per second). The obtained values from (35) were found
to be ce,P,dual = 0.82, corresponding to capturing 5.5 frames
per second, for the case T = 600 s, and ce,P,dual = 0.92,
corresponding to capturing 6 frames per second, for the case
T = 1200 s. The obtained energy consumption results, reported
in Table III, show that by selecting ce via the proposed analytic
framework, we can achieve gains of up to 23,55% with respect
to baseline settings. It is important to note that, beyond the
presented comparisons of Table III, the optimal tuning of ce
always led to decreased energy consumption in comparison to
all other baseline settings attempted, thereby experimentally
confirming the validity of Propositions 1 and 2.

Let us now consider the billing cost associated to the
cloud infrastructure. Under the utilized setup, we determined
the autoscaling threshold, cb, that is expected to lead to the
minimum cloud infrastructure billing cost based on Propo-
sition 5. We then benchmarked the obtained cost of the
system under this threshold against the intuitive (albeit ad-
hoc) baseline setting of cb = rtot = r1n1 + r2n2, which
corresponds to the autoscaling threshold being set to match
the average query volume of all ntot devices. The results,
given in Table IV, show that the obtained billing cost is 14%
(for T = 600 s) and 12% (for T = 1200 s) lower than the
case of the same query volume processing under the baseline
autoscaling threshold. This demonstrates that establishing the
system parameters based on the theoretical analysis can lead
to important cost savings within cloud-based media query
processing systems. Importantly, the optimal values derived by
(48) have consistently outperformed all other baseline settings
attempted, thereby experimentally confirming the validity of
Proposition 5.

V. CONCLUSIONS

We propose a novel theoretical framework for establishing
trade-offs in the energy consumption and infrastructure billing
cost of Internet-of-Things oriented deployments comprising
mobile devices generating media queries that are processed
by a back-end cloud computing service. Our analysis incor-
porates energy consumption and cloud infrastructure billing
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Table II
EXPECTED ENERGY CONSUMPTION AND ONE-SIDED VARIATION.

EXPERIMENTAL RESULTS FROM OUR DEPLOYMENT AND THEORETICAL
PREDICTION, ce = 0.75.

Theoretical Experimental

T = 60 s Eexp = 0.1588 J
Evar = 0.0201 J2

Eexp = 0.1603 J
Evar = 0.0254 J2

T = 1200 s Eexp = 2.7965 J
Evar = 1.4349 J2

Eexp = 2.8440 J
Evar = 1.2234 J2

Table III
EXPECTED ENERGY CONSUMPTION WITH ONE-SIDED VARIATION

CONSTRAINT GENERATED FROM OUR DEPLOYMENT EXPERIMENTS. THE
BASELINE SOLUTIONS CORRESPOND TO SETTING ce EQUAL TO 1.5 OR 2.
THE PROPOSED SOLUTION IS OBTAINED WITH ce = 0.82 AND ce = 0.92,

DERIVED VIA (35).

ce = 1.5 ce = 2 ce as in (35)

T = 600 s
Evar ≤ 0.35 J2

Eexp = 1.72 J
(13.26%)

Eexp = 1.95 J
(23,55%)

Eexp = 1.49 J
(ce = 0.82)

T = 1200 s
Evar ≤ 1.00 J2

Eexp = 3.30 J
(12,40%)

Eexp = 3.75 J
(22,95%)

Eexp = 2.89 J
(ce = 0.92)

rates when the devices and the cloud computing system
adapt their resource consumption according to the volume of
generated queries by switching between “idle” and “active”
states. Experiments with an embedded platform and Amazon
Web Services based back-end processing for visual query
generation, transmission and similarity detection demonstrate
that the proposed model forms a framework that accurately in-
corporates the effect of various system parameters with respect
to energy consumption and cloud billing costs. Therefore,
variations of the proposed analytic modeling can be used for
early-stage analysis of possible deployments, or limit studies
of the expected performance under a wide range of parameter
settings, prior to costly deployments in the field.

VI. APPENDIX

A. Proof of Proposition 1

We observe that Eexp is strictly-increasing in ce, since
dEexp

dce
> 0 for all values of ce larger than the left extremum

of the support of Ψe. Moreover, Evar is strictly-decreasing in
ce. In order to prove this, we express the dependence of Evar

from ce by using the notation Evar(ce), and we consider two

Table IV
EXPECTED BILLING COST GENERATED FROM OUR DEPLOYMENT

EXPERIMENTS. THE BASELINE SOLUTION CORRESPONDS TO SETTING
cb = r1n1 + r2n2 . THE PROPOSED SOLUTION IS OBTAINED WITH cb AS IN

PROPOSITION 5.

Baseline Proposition 5 Saving

T = 600 s
n1 = 10
n2 = 2

Bexp = 3.38 ⋅ 10−3 $
cb = 11.43 Mb

Bexp = 2.89 ⋅ 10−3 $
cb = 14.90 Mb 14 %

T = 1200 s
n1 = 10
n2 = 2

Bexp = 5.86 ⋅ 10−3 $
cb = 22.35 Mb

Bexp = 5.15 ⋅ 10−3 $
cb = 27.75 Mb 12 %

values c′e ≥ 0 and c′′e ≥ 0 such that c′e > c
′′
e . Then,

Evar(c
′
e) = g

2
e ∫

+∞

c′eE[Ψe]
(ψe − c

′
eE[Ψe])

2Pa(ψe)dψe (65)

≤ g2
e ∫

+∞

c′′eE[Ψe]
(ψe − c

′
eE[Ψe])

2Pa(ψe)dψe (66)

< g2
e ∫

+∞

c′′eE[Ψe]
(ψe − c

′′
eE[Ψe])

2Pa(ψe)dψe (67)

= Evar(c
′′
e ), (68)

where the first inequality follows from integrating a positive
function over a subset, and the second inequality follows from
(ψe − c

′
eE[Ψe])

2 > (ψe − c
′′
eE[Ψe])

2, when ψe ≥ c
′′
eE[Ψe].

The monotonicity properties of Eexp and Evar imply that
the constraints in (6) and (7) are active at the optimum
point. Therefore, on recalling that such optimization problems
are convex, complementary slackness [53] implies that the
solution of the problem (6) is such that Eexp = Emax_exp and
the solution of (7) is such that Evar = Emax_var.
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