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Abstract. Wearable inertial sensors have become 
an inexpensive option to measure the movements 
and positions of a person. Other techniques that 
use environmental sensors such as ultrasound 
trackers or vision-based methods need full line of 
sight or a local setup, and it is complicated to 
access this data from a wearable computer’s 
perspective. However, a body-centric approach 
where sensor data is acquired and processed 
locally, has a need for appropriate algorithms that 
have to operate under restricted resources. The 
objective of this paper is to give an overview of 
algorithms that abstract inertial data from body-
worn sensors, illustrated using data from state-of-
the-art wearable multi-accelerometer prototypes.  
 
 
INTRODUCTION 
 
To date, wearable computers are primarily used in 
specific areas, and are certainly not focused to a 
large audience like the one for mobile phones or 
handheld computers. Producing tiny, light-weight 
computers alone is not enough to make wearable 
computers break through to a wider market.  
 
The properties of wearable computing (as stated in 
(12) for example), indicate several advantages 
over computing devices that follow the desktop 
paradigm: a computer that is always on, which is 
close to the wearer and has ways to get input 
without user interaction, has a far better chance of 
getting to know its owner than regular computers. 
We therefore assume that making a computing 
system that ‘perceives’ what its wearer is doing, 
would be a step forward for wearable computing. 
 
Augmenting a computer with sensors in order to 
give it some level of insight in what is happening, 
has been a well-researched topic in AI and robotics 
and has resurfaced about a decade ago in the field 
of human-computer interaction (HCI) as context 
awareness. The goal is to take the strain away 
from user-interaction and let the computer make 
decisions autonomously, based on information that 
was acquired independently from the user via the 
sensors.  
 
Research at Philips (2) concentrated on integration 
of many small sensors into clothing, while 
accelerometers were also discovered to be ideal 

sensors to distinguish basic activities of the 
wearable computer user (6,8). 
 
A range of applications exists in the medical 
domain, where a patient’s activities might be 
monitored in combination with other sensing 
(knowing someone’s activity is crucial in clarifying 
why the heart rate is suddenly higher, for instance) 
or for keeping track of a person’s posture in 
ergonomic applications. Wearable computing 
scenarios use activity-aware applications in other 
settings, like meetings (4) or tracking (6). Other 
future directions might include deducing tell-tale 
signs for emotions in an individual’s posture and 
gestures. 
 
 
RATIONALE 
 
This section clarifies two design choices that were 
made not only by the authors, but also in similar 
wearable computing research.  
 
 
Why Accelerometers? 
 
We limit the type of sensor in our research to the 
acceleration sensor or accelerometer. This sensor 
can be thought of as a ball that is attached to two 
springs on opposite sides, and which is placed in a 
tube to limit its movement in two directions, as 
depicted in Figure 1. Measuring the position of the 
ball within the tube is in this metaphor the output of 
the sensor: shaking the tube to the left and right 
will move the ball’s position, but tilting it will do so 
as well (but in a lesser degree). These two effects 
are called dynamic and static acceleration 
respectively.  

 
 
Figure 1. Metaphor for the acceleration sensor, using 
the location of a ball in a tube that is attached to two 
springs.  
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Advantages of a body-network of accelerometers 
include mainly the cost, power consumption and 
size of this type of sensor. Other available sensors 
that might replace or contribute to accelerometers 
for measuring a person’s body movements, are 
either more expensive, bigger in size, or require 
more battery power at the time of writing this 
paper.  
 
 
Why So Many? 
 
The goal of the sensors is to detect motion and 
position of a person’s body that can be abstracted 
to a more abstract activity, like sitting, running, or 
waving. Early research (4, 6, 8) used merely a 
couple of well-placed accelerometers to distinguish 
as many of these activities as possible. Among the 
solutions were placing one or two accelerometers 
on one hip, or just above one of the knees.  
 
This approach is far from error-proof, however: if 
the sensors are just above the knee for instance, 
lying on the ground would produce the same 
sensor values as sitting, and so would lifting the 
leg the sensors are attached to. A solution would 
be to attach two more sensors on the other leg, but 
lying horizontally would still look like 'sitting down' 
to the system. We can go on like this and even 
after adding many more sensors of the same type, 
still come up with situations that make the system 
incorrectly 'detect' sitting. 
 
Having the sensors distributed over the wearer’s 
body is therefore a straightforward solution in order 
to make sure that every aspect of the body’s 
movements and positions will be registered. 
 
 
HARDWARE PLATFORMS 
 
Although the heart of this paper is about the 
algorithms that can make abstractions from a vast 
amount of worn sensors, it is necessary to give 
certain characteristics of the hardware platforms 
that produce the data. As this paper was a joint 
effort by two institutions, two distinct, custom-built 
multi-accelerometer platforms were used. 
 
 
The Lancaster Sensor Hardware 
 
The Lancaster multi-accelerometer platform (9) 
has 30 accelerometers, which are all linked to one 
microcontroller unit that sends the output straight 
to a wearable computer’s serial port. Rather than 
using straps to fasten the sensors to the wearer’s 
body, the choice was made to embed the 
accelerometers in trousers and a lab coat. Sensors 
are grouped per two (in physical packages of the 
accelerometers). 

The ETH Zurich Sensor Hardware   
 
The platform built at ETH Zurich was designed as 
a more modular, straps-based harness. It is based 
on smart-its (5), a modular multi-purpose miniature 
computing platform. Groups of six sensor modules 
are connected to a smart-it via multiplexers, with 
each module containing four accelerometers, 
which can be combined (experiments in this paper 
used two of these groups, thus giving a total of 2 
times 4 sensors per 6 modules = 48 
accelerometers).  
 
 
CHALLENGES 
 
 
Noise 
 
The main difficulty when translating raw sensor 
data from sensors in clothing to an activity 
description is the presence of noise. We 
differentiate three types of noise: 
 
Sensor Noise. This is the distortion of what the 
actual source looks like (e.g., movement) in the 
signal that the sensor produces. This includes 
noise in the electronic circuits around the sensor, 
and noise introduced during the measurement. 
Every hardware sensor produces a signal that 
contains a certain amount of noise.  
 
Sensor Distance Noise. We wish to measure 
movement and position (and in the future maybe 
other properties) of a person’s body. The sensors, 
however, are embedded in the person’s clothing. 
For free-hanging clothing such as skirts, this type 
of noise will evidently be large, but even tight 
garments can shift while moving.  
 
Time-Domain Noise. The sampling of sensor data 
might also fluctuate in time, resulting in noise in the 
time dimension as well. This might complicate 
things for recognition of gesture-based motion 
where patterns in time need to be predicted, or 
where they shift or drift over time (e.g., as walking 
patterns change slightly as one gets tired). 
 
An important factor in both discussed wearable 
sensor systems is the high number of sensors. 
This is inevitable as the objective is to measure the 
wearer’s activity by looking at the motions the body 
is making. The result: algorithms have to be able to 
combine or fuse all this data.   
 
The algorithms that process the acceleration data 
become slower and less effective as the number of 
accelerometers increases. This problem is 
generally known as the ‘curse of dimensionality’, 
and is a common obstacle for multi-sensor 
systems.  



 

  
Figure 2. The Lancaster Platform (right) and the ETH 
Zurich Platform (left). Both were used to capture activity 
data that were then analyzed at both sites.  
 
Fusion of sensor data 
 
Sensor and/or feature selection is the most used 
method to solve this problem. Not all sensors are 
equally important to detect a certain activity; 
walking is mainly detected by leg movement and 
writing by the arm’s motions, for instance.  
 
 
OVERVIEW OF ALGORITHMS 
 
This section gives a short overview on common 
algorithms that have been used in the past to 
process data from wearable sensors.  
 
 
Preprocessing 
 
Basic statistics, such as the minimum, maximum, 
average or (co)variance over a certain interval 
make ideal descriptors for acceleration data. The 
main advantage is reduction of the data streams: 
using the aforementioned four values to describe a 
stream of 100 values, for instance, will make things 
easier for the algorithms that have to further 
abstract this information.  
 
Peaks in the signals of the accelerometer signals 
can be expected to reveal a great deal more than 
the basic statistics discussed before. A promising 
method is to detect and characterize peaks as 
soon as they occur. The accelerometer traces can 
be parsed by first recognizing activity by 
thresholding the size and length of a running 
variance. Then, the available peaks within that 
activity region are measured and roughly 
classified. 
 
 
Clustering / Topographic Mapping 
 
Kohonen Self-Organizing Map. Unsupervised 
neural networks, such as the Kohonen Self-

Organizing Map, have been applied extensively to 
analyse the data from wearable sensors, in (9) and 
(7) for instance. These algorithms map the 
incoming sensor data to a grid-like map, where 
similar signals are mapped close to each other on 
the map, and dissimilar signals are mapped far 
away from each other.   
 
 
Classification 
 
Support Vector machines. Loosli et al. (7) use 
support vector machines (SVMs) to improve on the 
method in (10), using a selection procedure of 
parameters.  
 
Bayesian Classification. Bayesian classification is 
a simple classification algorithm based on Bayes’ 
rule from basic probability theory. It requires 
labeled training data for the classification. Bayes’ 
rule states that the probability of a given activity a, 
given a feature vector x, can be calculated as 
follows:  
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p(a) denotes the a-priori probability of the given 
activity. The a-priori probability p(x) of the data is 
only used for normalization. It can often be ignored 
by simply choosing the activity with the highest 
likelihood as the final classification. The likelihood 
p(x|a) has to be computed from labeled training 
data. 
 
Graphical Models. Graphical models such as 
Markov Models are commonly used in combination 
with previously discussed methods to do additional 
consistency checks. The Markov Chain was used 
in (10) for instance to track sequences of activities, 
such as “sitting” – “standing” – “walking” – 
“running”, and assign probabilities to these 
transitions. Kern et al. (4) have used Hidden 
Markov Models to recognize similar activities. 
Chambers et al. (11) have used HMMs to 
recognize Kung-Fu gestures. 
 
 
STUDY: CROSS USAGE OF DATASETS 
 
This section describes the results of a cross 
comparison test between the data sets from 
authors’ hardware and algorithms, testing data 
from both platforms on both sites’ algorithms. This 
is possible since the nature of both hardware 
configurations is similar enough, using similar 
sensors and having similar specs. The benefits for 
this approach include an extra check on the 
reliability of the data, but more importantly a check 
for the generality of the algorithms (as they were 
not prepared for the data).  
 



The intention of this study is not to find out which 
platform or algorithms are superior (this study is 
too small for that), but to illustrate the authors’ 
methods using each other’s ‘unrehearsed’ data 
and find similarities and common ground in the 
authors’ research.  
 
 
Datasets 
 
We recorded two data sets, one with each 
hardware platform.  
 
ETH data set. The ETH data set is a continuous 
data set lasting ca. 18min and containing the 
activities: sitting, standing, walking, stairs up, and 
stairs down. The sensors are attached to shoulder, 
elbow, wrist, hip, knee, and ankle on both sides of 
the body (see figure 2).  
 
Lancaster data set.  For facilitating further 
comparison, the Lancaster data set was roughly 
modelled on the ETH data set, and consists of 
several activities like lying down on a bed, sitting, 
standing, walking, stairs up, and stairs down. The 
accelerometers are attached to the shoulders, 
upper arms, lower arms, hips, above the knees, 
below the knees, and above the ankles on both 
sides, plus an additional one on the chest (two 
perpendicular sensors per location, see figure 2).  
 
 
Illustration of Methodologies – Mapping 
 
Lancaster’s topographic mapping-based method 
combines topographic mapping algorithms, putting 
similar sensor data together in categories, with a 
Markov Chain model that keeps track of 
sequences of these categories. Before the 
clustering, however, some pre-processing is done 
on the data. Apart from simple statistics (minimum, 
maximum, average and variances per sensor over 
a window of 50 samples), basic peak-based 
information per sensor was assembled as well over 
a varying window.  
 
Peak-based Feature Extraction. For detecting the 
peaks, a two-step algorithm was used that first 
detects ‘area of activity’ in the data, in which it then 
starts analysing the peaks per sensor. This method 
generally works well, although certain limitations 
apply: the time frame for the area of activity is in 
practice relatively short (in the order of seconds), 
and it is not possible to track peaks over multiple 
dimensions.    
 
Topographic Mapping. A combination of the 
Kohonen Self-Organizing Map, with sub-
hierarchies of k-means clustering layers per cell in 
the Kohonen Map (as described in 10) was then 
utilised to further analyse the features (basic 

statistics, plus the peak information if the most 
recent sensor data was part of an area of activity). 
It is possible to give visual feedback during and 
after the run through the data set: Figure 4 shows 
such a visualisation of the created map for the ETH 
data set by the approach based on topographic 
mapping.  
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Figure 3. Peak extraction on the ETH data set, part of 
which is plotted in the top part of the graph, with a 
specific area of activity visualised in the middle two plots, 
and information on the detected peaks in the lower part. 
Only part of the full data set, and only four sensors are 
visualised for keeping the figure readable.  
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Figure 4. Visualization of the Kohonen Map on the ETH 
data set (known as the U-Matrix), where cells in plateaus 
of the same colour belong to the various activities in the 
data set. These different activity plateaus are in fact 
generated clusters that have been assigned a number in 
order of occurrence (1-5). The following clusters belong 
to the activities: 1 – sitting, 2 – standing, 3 comprises 
both walking up and down the stairs, 4 – walking down 
the stairs, and 5 - walking. 
 
Table 1 shows the final recognition rate over the 
entire ETH data set. As this algorithm does one 



pass over the data, a lot of the errors occur in the 
initial phases whenever a new activity presents 
itself. Apart from a weak performance in 
distinguishing the “walking up the stairs” and 
“walking down the stairs” activities, most other 
errors occur in transitions between activities.  
 
 

 Recognized Activity 
 Sit Stand Walk Lying Stairs 

Up 
Stairs 
Down 

Sit 93.22 0.1 2.16 0.05 2.51 1.96 
Stand 0.14 93.78 4.8 0.04 0.92 0.31 
Walk 2.74 4.49 74.98 3.77 4.95 9.06 
Lying 0.19 0.24 1.94 92.62 2.28 2.72 
Stairs 
Up 0.18 0.54 16.82 0.92 45.52 36.02 
Stairs 
Down 0.41 0.76 14.87 1.03 34.5 48.41 

 
 
 Recognized Activity 
 Sit Stand Walk Stairs 

Up 
Stairs 
Down 

Sit 92.28 0 3.84 1.2 2.67 
Stand 0 93.11 2.15 1.94 2.78 
Walk 1.62 0.56 73.2 12.68 11.94 
Stairs 
Up 3.23 2.66 16.64 38.83 38.63 

Stairs 
Down 1.28 1.14 8.79 30.88 57.9 

Table 1: Recognition Results of the Lancaster (top) and 
ETH (bottom) data sets using classification on the map 
that was generated by the Kohonen-based algorithm. 
The overall recognition is 71.05% 

 
Markov Chain. It made less sense to generate a 
Markov Chain, as the transitions of activities in the 
data set are not occurring often enough to extract 
a valuable model. This method is mainly aimed at 
providing a second opinion when the system is 
used for longer periods.  
 
 
Illustration of Methodologies – Naive Bayes 
 
The naive Bayes approach uses labelled data to 
recognize clearly defined activities. A running 
mean and variance, computed over the last 50 
data vectors, is used as features.  

Lancaster Data Set. The Lancaster data set is 
divided into three sequences, comprising of the 
activities lying-sitting-standing-sitting-lying (bed), 
sitting-standing-walking-stairs (sit), and stairs 
down-up (stairs). Three Bayes’ classifiers are 
trained on the entire sequences. A classification is 
done for every feature vector.  

 

 
 Recognized Activity 

 Bed Sit Stairs 
Bed 92.30 7.61 0.08 
Sit 1.73 98.20 0.06 
Stairs 1.69 10.71 87.59 

 

Table 2: Recognition Results of the Lancaster Data Set 
using Bayes’ Classification 

 
 Recognized Activity 

 Sit Stand Walk Stairs 
Up 

Stairs 
Down

Sit 99.27 0.34 0.33 0.04 0 
Stand 2.37 96.23 1.39 0 0 
Walk 2.12 6.48 87.54 0.32 3.52 
Stairs 
Up 4.44 0.03 18.79 72.98 3.72 

Stairs 
Down 4.20 0 15.47 0.01 80.30 

Table 3: Recognition Results of the ETH data set using 
Bayes' Classification. The overall recognition rate is 
87.26%. 

Table 2 shows the resulting confusion matrix of the 
recognition. The overall recognition rate is 92.7%. 
The confusion between sit and stairs is due to the 
fact that they both contain walking up and down 
stairs. The same applies to confusion between bed 
and sit, which both contain sitting and standing. 
 
ETH Data Set. Five Naive Bayes classifiers have 
been trained on the ETH data set. Table 3 
summarizes the recognition results. Apart from the 
activities stairs up and stairs down, the recognition 
rate is between 87-99%. The principal confusion is 
between walking and stairs up/down, which is 
mainly due to the similarity of the three activities. 
Compared to the topographic mapping approach, 
the overall recognition rate is improved by 16%. 
 
CONCLUSIONS 
 
We aimed at giving an overview of up to date 
research on multi-sensor wearable platforms, 
specifically focusing on the algorithms that interpret 
the many streams of data these produce, with a 
closer view at the approaches of this paper’s 
authors.  This was illustrated by applying the 
algorithms on data sets that were created using 
each others’ sensing platforms. Both algorithms 
have proven that they are suitable for practical use 
before, and performed well in recognizing a variety 
of different activities.  
 
Both approaches deal differently with noise. The 
ETH platform has the accelerometers strapped 
tightly to the body to avoid noise being created by 
clothing (which is present in the Lancaster 



platform). On the algorithms’ side, noise is mainly 
reduced by using adequate pre-processing, but 
also by using algorithms that are known to operate 
well for noisy data. 
 
Rather than proving or disproving superiority in the 
choice of algorithms, the two discussed 
approaches proved to be built for slightly different 
application domains. The topographic mapping 
approach of automatically clustering the data is 
well suited for applications with activities that are 
not well defined, that can change over time, or for 
which there is no labelled training data available. It 
allows capturing activities that are relatively 
arbitrary and even can be chosen by the user. The 
Bayesian approach requires labelled training data 
and hence needs more effort in the data 
acquisition phase. Given these labels however, it is 
possible to recognize activities such as walking, 
sitting, standing, lying in bed, etc. with high 
accuracies. In applications where high recognition 
rates are for a selection of predefined activities, 
such a supervised approach is usually optimal. 
 
In conclusion, we stress that progress in this 
particular area of multi-accelerometer activity 
tracking is progressing rapidly. Multi-sensor 
hardware platforms such as the ones presented 
here were only constructed in the last year, using 
components that only recently have shrunk to 
comfortable sizes. As new iterations of both 
hardware and algorithms will be put through, we 
expect to see reliable versions that eventually will 
go beyond lab experiments and become 
appropriate for a wider use in wearable computing. 
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