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ABSTRACT

The emergence of collaborative virtual world applications that run
over the Internet has presented Virtual Reality (VR) application
designers with new challenges. In an environment where the
public internet streams multimedia data and is constantly under
pressure to deliver over widely heterogeneous user-platforms,
there has been a growing need that distributed virtual world
applications be aware of and adapt to frequent variations in their
context of execution. In this paper, we argue that in contrast to
research efforts targeted at improvement of scaability, persistence
and responsiveness capabilities, much less attempts have been
aimed a addressing the flexibility, maintainability and
extensibility requirements in contemporary Distributed VR
applications. We propose the use of structural reflection as an
approach that not only addresses these requirements but also
offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible.
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INTRODUCTION

Multi-participant shared virtual world applications are rea-time
distributed simulations in which users navigate and interact within
a two or threedimensiona virtua environment. These
applications range from non-persistent, short-duration sessions
with few users and limited data (e.g. racing online games, virtual
shopping applications) to persistent, long duration sessions with
many users and voluminous shared data (e.g. virtual communities,
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multi-participant virtual museums, online role-playing games and
collaborative design applications).

Recent research has been aimed at developing distributed
platforms that can support DVE applications running on the
public internet. This has proved extremely challenging,
particularly in massively multi-participant applications where
thousands of users potentially interact in real-time with each other
and with thousands of autonomous entities using uncontrolled
network and local (processor, memory) resources. In an effort to
better address these challenges, researchers have identified
various capabilities that a DV E system should offer.

Such systems have requirements which include the following:

e  Scaabhility: the ability to continue functioning satisfactorily
as the system’s execution context changes in size or volume
in order to meet diverse user needs.

¢ Persistence: capacity to remain active even when some/all
user sessions have terminated.

¢ Responsiveness: capability of responding to user demands
within a prescribed time frame guaranteeing sustained
support for high levels of interaction between many users.

*  Flexibility: ability to satisfy differing system constraints and
user needs with fluctuations in the system’s execution
environment.

e Maintainability: the ease with which the DVE system can be
modified to correct faults, improve performance, or other
attributes.

¢ Extensibility: the ease with which the DVE can be altered to
increase the system’s functional capacity.

The main focus of research on DVE platforms has been on the
first three capabilities and, as a result, a number of techniques
both at the platform and application level have emerged.

To improve scalability, existing published works propose a wide
range Virtual World partitioning approaches from static coarse-
grained partitions [3] to interest management (perception-

based) approaches (VS) [11]. For example, MASSIVE 1-2 [6]
combines spatial awareness mechanisms with information
aggregation algorithms to provide better support for introducing
contextual factors into awareness negotiations.

To address persistence requirements, some DVE platforms such as
Continuum [5] implement mastership transfer within peer-to-peer



architectures. Others maintain centralised databases that regularly
maintain versions of object states. For example, in Open
Community (OC), a Persistence server writes out a disk based
version of objects on a regular basis so that if the server has to be
terminated then restarted, the disk file is used to regenerate the
original set of objects.

To provide support for real-time interaction, researchers in DVE
systems have attempted to implement fully distributed
architectures together with multicast grouping of clients, e.g.
DIVE [3]. Others, e.g. Virtual Society [11], attempt to improve
robustness and reduce packet/message delays inherent in single-
server architectures by incorporating multicast grouping together
with multiple servers each of which provides a specific data set.

(A detailed analysis of techniques used in DVESs can be accessed
in[12]).

In contrast, there has been much less effort on addressing the
flexibility, maintainability and extensibility reguirements of
contemporary DV Es. We propose the use of structural reflection
as an approach that not only addresses these requirements but also
offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible.

This paper is structured as follows:

Section 2 presents a background on reflection. It defines, justifies
and details different types of reflection. Section 3 then provides an
insight into our overall approach while a description of our
system’s design is covered in section 4. Implementation details
and an overall architecture are covered in section 5 followed by
details of experiments and their evaluation in section 6. Section 7
then presents related work and finally, section 8 concludes the

paper.
2. BACKGROUND ON REFLECTION

2.1 Definition of Reflection

The conceptual origin of reflection could be traced to Smith [15]
who introduced it thus:

For the purposes of this paper, we provide a simple context-
specific definition of structural reflection in DVEs as;

‘a design principle that allows a Virtual World to have a
representation of itself in a manner that makes its adaptation to a
changing environment possible’.

2.2 Why Reflection?

The motivation for al reflective systems could broadly be

considered to stem from two concerns. These are:

1.  The desire for open implementation [2],[10]. The classical
view in software design is to handle complexity by the use of
abstraction (from simple to high level) to hide
implementation details from the users. This black-box
approach to design promotes re-use of components but it is
not always desirable to hide al implementation details from
the user. This is because hiding implementation details
necessitates making implementation decisions on behalf of
the application regardless of how essentia the information
the application has on the use of a particular module is. The

ultimate objective of open implementation is to overcome
this problem by exposing the implementation details of the
system. This must however be achieved in such a way that
there is a principled division between the functionality they
provide and the underlying implementation. In this context,
the former can be thought of as the base interface of a
module and the latter as a meta-interface whose purpose isto
provide access to the meta-level of the system. This approach
is captured by Rao [14]:

‘A system with an open implementation provides (at least)
two linked interfaces to its clients, a base-level interface to
the system’s functionality similar to the interface of other
such systems, and a meta-level interface that reveals aspects
of how the base-level interface is implemented’.

Metainterface (offersaMOP)

Service interface

Figurel An Open implementation

It is important to note that in object-oriented systems, this
meta-level interface is often referred to as the meta-object
protocol for the object (or MOP) [9]. The Common Lisp
Object System (CLOS) MOP for instance creates a reflective
object system, using its own mechanisms to create an object-
oriented representation of its behaviour.

2. The desire to provide a principled (as opposed to ad hoc)

means of accessing the underlying implementation of a
system. The ability to access the underlying implementation
mechanism of a system could be useful in two main aspects:
Inspection: Reflection can be used to inspect the internal
structural behaviour of a language or system. Exposing the
system’s underlying implementation subsequently makes it
straight-forward to insert additional structural behaviour to
monitor implementation.
Adaptation: Reflection can also be used to adapt the internal
behaviour of a system either by changing the interpretation of
an existing feature (by modification or replacement) or by
adding new features.

The use of reflection also has some potential drawbacks. The first

drawback is that its use inevitably incurs an additional

performance overhead. The most observable issue is the
requirement that additional code be used to resolve the precise
interpretation of behaviour in the system. The second obvious
drawback results from the desire to open up the implementation.

Care must always be taken by designers to maintain system

integrity when the programmer has open access to the

implementation.

2.3 Types of Reflection

Reflective computation can be
complementary types:

categorised into  two



e Structural Reflection: enables the inspection, addition,
removal or modification of the encapsulated features of base-
level entities, such as functionality (operations, methods) or
state (variables, attributes and constants).

e Behavioural Reflection: concerns computation about the
interpreter (the virtual machine). It exposes the execution
environment and enables one to reason about the way the
base-level program is executed.

A reflective language or system can provide both types of

reflective facilities. It is desirable, however, that the Meta-Object

Protocol provides a uniform way to do both kinds of reflective

computation, perhaps using two distinct interfaces which (ideally)

employ the same syntactic and semantic conventions.

3. OVERALL APPROACH

Our conviction is that conventional DVE platform architectures

are unable to cope effectively with their inherent flexibility,

maintainability and extensibility requirements as a result of two
reasons:

*  Firdly, as discussed above, their black-box nature inevitably
creates a hias in the peformance of the resulting
implementation since the platform designers have to decide
before-hand and make a choice on the implementation, then
lock that decision inside the black-box.

«  Secondly, even in instances where access to the platform
implementation is enabled, their highly coupled nature makes
implementation choices of certain services hard-coded in the
implementation of others. This intertwining of code
inevitably reduces the platforms to monolithic pieces of
system software. This makes dynamic adaptability apriori an
impossibility.

The above two reasons provide the drive for our use of reflection

and more specifically structura reflection coupled with an object

oriented approach in our implementation.

As stated earlier, the motivation for this work is to incorporate

flexibility, maintainability and extensibility into DVESs. The next

section provides details of our design.

4. SYSTEM DESIGN

4.1 The Object Mode

Reflection per se does not support flexibility, incrementality or
ease of use as this only comes about through the additional
application of object-orientation.

This view is supported by Kiczales et a [9] who points out an
important synergy between reflection and object-oriented
computing thus:

‘Reflective techniques make it possible to open up a language’s
implementation without revealing unnecessary implementation
details or compromising portability; and object-oriented
techniques allow the resulting model of the language’s
implementation and behaviour to be locally and incrementally
adjusted’.

This provides the inspiration for our use of an object-oriented
approach in our design.

In our object model, an object consists of:

¢ aset of accessible attributes,

¢ aset of methods to get and set these attributes (collectively
forming the interface of the object),

e aset of associated behaviours,
« oneor morerenderings of the object.

Active objects (e.g. avatars) possess al the four elements while
passive objects (e.g. components of the DVE terrain) contain all
elements except the set of behaviours.

4.2 The Role of Behaviour

The design of DVESs seeks to model VR applications around
various interpretations of reality. Real life artefacts exercise their
behaviour to perpetuate their significant subsistence. For example,
human beings exercise their ‘eating’ behaviour without which
they would not meaningfully exist. Behaviour is also used to
describe artefacts in real life. For instance, within the animal
kingdom, mammals nourish their young with milk secreted by
mammary glands. Plants on the other hand are defined as living
things typically lacking locomotive movement or obvious sensory
organs and possessing cellulose cell walls. The phrases ‘nourish
their young with milk secreted by mammary glands’ and ‘typically
lacking locomotive movement’ are observable behaviours that
define the existence of human beings and trees as mammals and
plants respectively. The fact that behaviour forms an integral part
of the existence of real life artefacts gives it a crucial role in our
attempts to model them. In VR, behaviour provides a handle in
the capture (simulation) of real world phenomena and their run-
time adaptation policies/mechanisms.

Behaviour is the way in which the state of an object’s attributes
changes over time. For instance, an object may have an attribute
called ‘location’; as it moves around, its location changes. The
way in which its location changes over time is its behaviour.
Object behaviours at the application level could be classified into
four broad categories based on their frequency of change and
predictability. They could also be considered to arise from a
corresponding set of four basic types of objects. The table below
classifies and briefly defines different behavioural forms with
real-world examples of objects that exhibit them.

Class Description E.g.
Static have a state that never changes - are

therefore deterministic. Desk
Dynamic change state over time but changes

are predictable - a function of time

and a set of pre-defined parameters. Fan
Non- respond to changes in their Door
intelligent | environment in straight forward way.
Intelligent | governed by unpredictable goals, Human

are therefore non-deterministic. beings

Figurell Object Behaviour Classification

We look into an object model that has three categories of

associated behaviours:

e Application (shallow) behaviours: are application level and
may or may not trigger changes in the system. For example,
the simulation of an avatar’s change in location (motion) is
an application behaviour.




e Platform (deep) behaviours: are system level and exist at the
application level as representations of middleware services or
mechanisms. For example, a particular consistency policy
that implements a receive-order sequence of events is a
platform behaviour.

e Hybrid (shallow-deep) behaviours: these are application-
system level with an implementation that causally cuts across
the entire DVE. For instance, an event channelling protocol
that has application-level input in form of packet loss
detection is a hybrid behaviour.

4.3 The Meta-modd

We adopt the object model earlier described in sub-section 4.1
and use techniques that alow the above three categories of
behaviour to be encoded and subsequently be evolved and
adapted at run-time.

In particular, we define a meta-interface (Meta-Object Protocol)
which essentialy offers structural reflective capabilities on
application objects with operations that:

e discover the internal details of an object in terms of
attributes, behaviours etc,

e insert anew attribute, behaviour or rendering,
e delete an existing attribute, behaviour or rendering or
*  replace an existing attribute, behaviour or rendering.

The diagram below provides a simplified representation of the
meta-interface.

MetaBehaviours Q Q

An App. Object addBehaviour(..)

removeBehaviour(..)

getBehaviour(..)
getBeh.Name..)
addBeh.Listener(..)

M etaBehaviour sSupport

\ remBeh.Listener(..)

[}

[}

[}

i manages Behaviours
[}

! [

[}

| [ JJ
! GravityBehaviour
[}

Figurelll Design of the Metarinterface

This MOP can then be used for adaptation over the object model
described earlier.

Adaptation is essentially the dteration of the underlying
implementation of a system in order to suit the needs of its
fluctuating execution environment. These fluctuations range from
user subjectivity to the system’s infrastructural setting.

Adaptation in DVEs should result in applications that are flexible
in two main dimensions:

e static flexibility: such as customisation to particular
individual/group practises or subjectivity in their demands.

e dynamic flexibility: in response to run-time changes in
execution environments in the course of specific
collaborations or even specific collaborative sessions.

To achieve the above two dimensions, there is an obvious need to
consider adaptation within the entire DVE and in this regard, we
identify two types:

e  External adaptation: adaptation functions are provided
outside an application object, either in a management
subsystem, provided by the user or a combination of both.

e Self-adaptation: adaptation management is implemented
within an object, i.e. objects continually monitor the
execution environment and adapt themselves on the fly.

5. IMPLEMENTATION

5.1 Overall Architecture

A platform has been implemented based on the above design. This
platform offers dynamism in DVEs via exploitation of
application-specific ~ semantics and run-time execution
environment awareness. It provides the application designer with
access to application objects as well as mechanisms encapsulated
in six service bundles within a middleware platform called
ReflectivePING".

The service bundles, each with its own set of pluggable
mechanisms include: Concurrency, Replication, Interest
Management, Persistence, Consistency and Event Channelling.

The diagram below illustrates the platform’s overall architecture.

! ReflectivePING is an enhanced version of Platform for
Interactive Networked Games — the original non- reflective
version was designed by a number of partners in a EU funded
project.
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FigurelV Architectural Design

The rationale for the architecture above has a basis on the earlier
identified need for incorporation of flexibility and run-time
adaptation in contemporary DVEs. This must be considered over
a set of services and mechanisms with policies defined to manage
their dynamic configuration over an execution kernel.

At the Object and Event Management Layer, five service bundles
present run-time pluggable or unpluggable mechanisms as
detailed below:

e Concurrency comprising:

Lock Transfer Mode [standard or predictive] with normal change of
mastership and subsequent transfer of locks between nodes versus
predictive anticipation of mastership by nodes hence transfer of
locks to implement entity ownership.

¢ Replication consisting of:

Rate [standard, high or low] with provision of multiple instances
of the same object at different nodes varying such that it can be set
at run-time.

¢ Persistence constituting:

Service-type [in-memory or in-disk] with processor and memory
resources determining circumstances under which there should be
switches.

Check-point Rates [low, standard or high] with snap-shot taking of
the smulation state set as a variable that can be atered
dynamically.

e Consistency comprising:

Algorithm  [receive-order, priority-order or total-order] with
receive-order using simple FIFO event ordering in satisfactory
network conditions and when weak consistency is not an issue,
priority-order such that there’s a reference to event creation time
at the application level and total-order when strong consistency is
a major concern.

e Interest Management consisting of:

Protocol [spatial or publish-subscribe] with spatial based protocols
used in perfect network conditions and publish-subscribe
protocols applied when there is a need to filter event transmission
to nodes according to relevance.

Based on the application object behaviour classification presented
in sub-section 4.2, the Application Layer presents instances of
application-specific mechanisms. We pick on examples that apply
in our experimental scenario (as shall be seen later in section 6.1)
and categorise them into:

Prediction [on or off] involving modelling of deterministic
behaviours at nodes to compensate for high latency with increased
processing by each entity through envisaging the Master avatar’s
trajectory.

Behaviour Configuration [drop, pick or replace] involving dynamic
dropping/picking/replacement of behaviours depending on
Local/External load levels or User preferences e.g. replacement of
rich text with plain.

Smoothing [simple, standard or complex] constituting algorithms
applied to counter jerking visual effects on the avatar’s trajectory
depending on the rate at which updates are sent to the node.
Finally, the Communication Layer comprises the Event
Channelling service bundle with:

Protocol [reliable, unreliable or Application Level Framing] with
reliable channelling used to relay events that require high levels of
reliability, unreliable channelling used when high system load
levels presents a bigger problem than reliability and

Application Level Framing (ALF)? when local resources are
available and some form of application control over packet loss
detection/recovery is important.

We choose to focus our efforts on Replication, Consistency and
Event Channelling service bundles for our experiments since
efforts to address scalability, responsiveness and persistence
concerns have focused on the Interest Management, Concurrency
and Persistence service bundles.

Each mechanism is represented as a pluggable or unpluggable
behaviour at the application level. Behaviours can be broken
down into individual constituent parts called Behavioural

2 A networking service protocol model that explicitly includes an
application’s semantics in the design of that application’s protocol
[Floyd 901.



Attributes (BAs). We define a Behavioural Attribute (BA) as a
separable part of the behaviour of an object. Considering motion
in a DVE, InertiaSave (an algorithm that models the
deterministic Inertia behaviour at the slave simulations) is a BA
of the behaviour Inertia. It encapsulates a reactive program and
can be configured or reconfigured individualy using
propertiesmethods/events. A reactive program describes a
behaviour (or Behavioura Attribute) and its associated state.

We use a reactive programming approach to avail a flexible
paradigm for encoding reactive systems, especially those which
are dynamic since it provides application programmers with afine
control over concurrency, event broadcast and several primitives
for gaining fine control over program execution. More
specifically, we use a tool caled Junior (Jr). The next section
explains the reactive programming paradigm.

5.2 Reactive Programming

Reactive programming is a process which involves the encoding
of reactive instructions. Since active objects have their own
specific behaviour and react continuously to events occurring in
their environment (interactions with other objects or time
progression), programming active objects (e.g. avatars) in ashared
virtual world is essentially aform of reactive programming.

Junior is a Java-based kernel model for reactive programming that
defines concurrent reactive instructions communicating using
broadcast events [7]. Our choice of Junior is influenced by the
fact that its reactive approach avails a flexible paradigm used for
programming reactive systems especialy those that are dynamic
(i.e. the number of components and their connections change
during execution).

Programming in J is essentialy a four-stage process that
involves:

1. declaring areactive machine— to run the program

2. writing a reactive instruction — to describe the application
program
dropping the program into a reactive machine

4. running the reactive machine — done using a non-terminating
loop that cyclically makes the machine and program react.

Below is an example to illustrate the above process.
i mport junior.*,;

public class Behavi our
{
public static void main(String[] args){

Machi ne nachi ne! =
Jr. Machi ne®(Jr. Loop(Jr. Seq(Jr. At o new
Recei veO der BA()), Jr. Stop()?)));

machi ne. react () %

}
}

The above excerpt runs Receive-OrderBA, a platform (deep)
behaviour from the Consistency service bundle. Receive-
OrderBA() is a description of the application program which in
this instance has the code which orders events First-In-First-Out
(FIFO) from the Object and Event Management Layer to the
Application Layer.

5.3 Adaptation M anagement

Adaptation management concerns the monitoring of objects, the
decision making based on observed trends, and the subsequent
enactment of the decisions through a feedback and control loop.
Our meta-interface drives such behavioural changes as
addition/removal at run-time of pluggable or unpluggable purely
application behaviours, purely platform behaviours and hybrid
behaviours.

We perform various instances of both:

e coarse-grained adaptation at run-time for instance in
addition/removal or replacement of algorithms earlier
mentioned in the Consistency service bundle or protocols in
the Event Channelling service bundle.

e fine-grained adaptation for instance in configuration of rates
used within the Replication service

The diagram below gives a visualisation

management in our architecture.

of adaptation

Execution
Kernel | |

Application BAs
]
Behaviours O O O
]
Reification CCSR
Meta-interface
App. getBA(), addBA(), removeBA(),
Layer getBANames(), addBAListener()
Services .
I Platform Services
ayer
t‘ tl t‘ Obj. & Event
Data Mgmt.
Event Chann.
& O 0O B8

Events | |

Reification

Kernel

unreg(oldService), | reg(newService)

rem(oldService)
untick(oldSevice)

init(newService)
put(newService)

Figure V Adaptation Management



The Application Layer models both application behaviours and
also a representation of system behaviours, thus providing a
common metaphor for adapting the system. Run-time adaptation
of the application-specific behaviours occurs within this layer
while the more generic system behaviours adapt via configuration
and reconfiguration of platform services. In both cases, though
this is modeled as changes in behavioura attributes. To support
this, the meta-interface offers operations to discover, insert, delete
and replace both application and system behaviours via such
constructsasaddBA( ), get BA() etc.

The Services Layer comprises the entire Platform’s service
bundles mentioned in Figure IV. These are handled in form of
data structures and events.

The Execution Kernel offers a Causally Connected Self
Representation (CCSR) of the Platform services and a reification
that enables transparent (from the application programmer’s
viewpoint) unregistration (of an old service) and registration (of a
new service). Just like application-specific behaviours, the run-
time configuration of platform services is done in the form of
operations that the Application Layer’s metarinterface offers.
Hence invoking these operations at the Application Layer triggers
corresponding actions within the OpenPING’s execution kernel to
unregister ‘old’ services and register ‘new’ ones dynamically.

6. EXPERIMENTSAND EVALUATION

From our implementation, we have set up four experiments that
focus on allowing developers to adapt object behaviour at run-
time. Our experimental prototype is a simple ‘RobotWar’ game in
which remote users attempt to ‘fire’ at one another’s robots using
‘canons’. In the game, each user has ownership of a single robot
(replicated at all remote sites) which can move around and ‘holds’
a ‘canon’ that ‘fires’ at the rest of the users’ robots at a key-press.
The challenge is to evade all the opponents’ ‘missiles’ and at the
same time ‘shoot’ down their robots.

Below is a screenshot of the simulation with two users’ views of
the game arena each with an execution-monitoring panel below it.

Figure VI Screenshot of ‘RobotWar’ game

In the ‘RobotWar’ game, our interpretation models context-
specific application (shallow) behaviours alongside standard
implementations of platform (deep) and hybrid (shallow/deep)
behaviours as shown in the experiments briefly outlined below.
(Further details can be accessed in the author’s PhD thesis
currently in preparation).

6.1 Expt. 1 - Application Behaviours

Aim: To enable dynamic addition/removal of deterministic and
non-deterministic application BAs that impact on system
resources.

Implementation: The experiment is designed such that
GravityBA is added or removed at run-time. The system can also
self-adapt by using a set policy to add/remove GravityBA by
continuously monitoring a feed-back loop on local system load.
Another policy selects one amongst a pre-defined set of local
‘light-weight’ (bandwidth-hungry) and ‘heavy-weight’
(processor/memory-hungry) InertiaBA algorithms at the same
time adding or removing BounceBA.

Code:

To illustrate the above, below is an excerpt from the class
Gravi tyChannPol i cy. j ava that adds/removes at run-time,
the purely Application Layer BA Gravity at the press of a button.

Met aBehavi ours robot Meta =
(Met aBehavi ours) env. | i nkedObj ect () ;
Robot robot =
(Robot) ((Reacti veSi nDbj ect) robot Met a) . get Enti t yPee
r();
// reverse the GravityBA and change the object’'s graphical
representation
if (robotMeta.getBA("Gavity")!=null){
robot Met a. renoveBA("Gravity");
robot . set | conFi | eNane(i mages[1]);
}//ending ‘if...’

else {
robotMeta.addBA ("Gravity",
(BehaviouralAttribute) new GravityBA() );

robot.setIconFileName (images[0]);
}//ending ‘else...’

Results: When the system executes, there is observable dynamic
configuration (replacement, dropping, picking) of Behavioural
Attributes depending on local & externa load for the best
visudlization in dealing with Local Client Delay (LCD) at the
graphics and rendering level.

Various models of the deterministic BA Inertia are applied
depending on replication rates and this causally tweaks smoothing
and prediction algorithms in force at any one time to mask Client-
Client-Delay.

Evaluation: The above results exemplify OpenPING’s
incorporation of adaptation management. The framework
implements this in form of objects continually monitoring the
execution environment and adapting themselves at run-time. The
four lines of code in the “if-else’ expression above show the
simplicity and expressiveness with which application-level
behaviours are configurable.



6.2 Experiment 2 — Platform Behaviours

6.2.1 Consistency Service

Aim: To drive run-time causa addition/removal of the
Consistency service algorithms: Receive-order, Priority-order and
Total-order.

Implementation: Receive-orderBA uses simple FIFO event
ordering and as such is good enough in satisfactory network
conditions. Priority-orderBA is used whenever network
conditions (monitored via disparities in Master and Slave object
positioning) are unsatisfactory.

The system adjusts to the increase in system load by sacrificing
strict event ordering (that is activated by Priority-orderBA).
Conversely, the system fine-tunes itself to a decrease in system
load by activating strict event ordering at the platform.
Total-OrderBA’s use is not illustrated in this experiment but it is
worth noting that it’s implementation suits simulations in which
very strict consistency is of paramount importance.

Result: The framework’s execution is such that Priority-
orderBA’s addition is causally triggered at the instant the
application-level behaviour InertiaSaveSmpleBA is added and
the behaviour Receive-orderBA causally activated whenever
InertiaSaveComplexBA is executed. This evidence reveals how
much like application behaviours, platform behaviours can
flexibly be configured run-time to conform to fluctuating network
and system resource availability.

Evaluation: This experiment illustrates how OpenPING’s
flexibility facilitates adaptation to fluctuations in load levels and
network conditions within the system. Its provision of a Meta
Object Protocol (MOP) avails a set of meta behaviours (accessible
to the DVE designer at the application level) that support the
designer in his choice of implementation from a variety of
mechanisms to suit different execution conditions.

6.2.2 Event Channelling Service

Aim: To drive dynamic causal addition/removal of the Event
Channelling service protocols: Reliable event channelling and
Unreliable event channelling.

Implementation: The system adjusts to the absence of dead-
reckoning (prediction and smoothing) mechanisms by causal
activation of the reliable packet delivery protocol to compensate
for jitter. It also adjusts at run-time to the presence of dead-
reckoning by activation of the ‘light-weight’ but unreliable event
delivery protocol.

Additionally, it adapts to the extra load at the application-level
whenever GravityBA is added by using ‘light-weight’ unreliable
event channelling; also switching at run-time to reliable delivery
immediately GravityBA (hence additional load) is non-existent.
Result: The system’s application switch to GravityBA causally
activates a switch by the Event Channelling service to
UnreliableEventChannelBA in order to counter the effects of the
extra load (at the application level) that GravityBA adds.
Conversely, whenever the Behavioural Attribute GravityBA is
disabled, ALFEventChannelBA is activated such that the platform

takes advantage of application involvement in event delivery and
recovery.

Evaluation: This result demonstrates OpenPING’s provision of
multiple infrastructure mechanisms that support real-time
interaction. The experiment shows how through the use of
structural reflection, it is possible for the DVE designer to exploit
the relationship between the application and the underlying
platform to optimise the entire system’s execution.

6.3 Expt. 3 - Hybrid Behaviours
6.3.1 Replication Service

Aim: To drive dynamic configuration of the rate at which peersin
the DVE replicate their statesto one another.

Implementation: The application designer can either decrease or
increase replication rates a  will by activation of the
ForceSynchroBA to suit a range of network and system resource
availability conditions.

Result: The slave (receiving) peers adjust to increase/decrease in
replication rates by the Master replica which causally triggers a
switch between the Consistency BAs. Receive-orderBA and
Priority-orderBA.

Evaluation: This illustrates fine-grained adaptation by the system
in which functions are provided outside an application object, by
the user. It shows two instances of adaptation incorporated in the
framework; one in which the DVE designer gains total control of
the replication rate to peers and another in which receiving peers
adjust dynamicaly to changes in rates at which updates are
received.

6.3.2 Event Channelling Service

Aim: To enable dynamic causal addition/removal of the ALF
Event Channelling protocol.

Implementation: While the system executes, an application
switch to GravityBA causaly activates a switch by the Event
Channelling service bundle to UnreliableEventChannelBA such
that the underlying platform makes up for the additional load at
the Application Layer. Conversely, whenever GravityBA is
disabled, ALFEventChannBA is activated to exploit the
information that the application has on the game.

Result: This experiment shows that the DVE adapts to the
increase in system load by sacrificing application-semantics’
involvement in event delivery. Conversely, it adapts to a decrease
in system load by activating reliable event delivery at the
platform.

Evaluation: This is evidence that adaptation functions within the
framework can be provided outside an application object in a
management subsystem. The results of the experiment further
prove that the framework’s reflective model supports run-time
adaptation even in instances where behaviours cannot explicitly
be referred to as platform or application.

6.4 Expt. 4 — Performance Metrics

This experiment evaluates the performance overhead that is
directly attributed to the additional code used to reslise reflection
hence run-time adaptation within the framework. It involved the



use of Intel Pl PCs with 128 MB — 256MB memory and
650MHz clock speeds in a 100 Mbps Fast Ethernet Local Area
Network (LAN). All the experiments were done on single idle
processors and averages (with typical variations measured at * 2
milliseconds) taken over 100 independent runs.

Aim: To appraise performance metrics and scalability of the
OpenPING framework.

Implementation: At start-up, a measure is done on the period of
time it takes to load and initialise all services from the platform
and start the ‘RobotWar’ game. To quantify the impact
Behavioural Attribute (BA) configuration has on OpenPING’s
performance, subsequent measurements are made with varying
numbers (N) of either Application behaviours or Platform/Hybrid
behaviours loaded at the same instant. Measurements are also
made to quantify the period of time it takes to
configure/reconfigure BAs during normal operation (i.e. after
start-up).

Result: Tt takes an average of 1,735 milliseconds to load the
platform and the game at start-up. The total variance between time
measurements regarding the configuration or re-configuration of
all behaviours during normal operation is 31 milliseconds.
Configuring (getting/adding or getting/removing) a single (or two)
Application Behavioural Attribute(s) either at start-up or run-time
(during execution) costs 16 ms of execution time while it costs a
maximum of 31 ms of execution time to load as many as 10
Application behaviours at the same instant.

Loading a single Platform or Hybrid Behavioural Attribute (BA)
at start-up or run-time costs 16 ms while it costs a maximum of 31
ms of execution time to load 10 of them at the same instant. The
contribution this makes towards attainment of the recommended
threshold for effective end-to-end lag in propagation of
multimedia data (100 — 300 ms) [8] is not significant.

Below is a graphical representation of loading time (ms) against
Behaviours (N) at start-up.

Performance Metrics
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Figure V11 Execution time for configuration of Platform Services
and application-specific BAs at Start-up.

Evaluation: The figures above give credence to the fact that at
just about 1% (of the total execution time) as an overhead

incurred by the framework, incorporation of run-time adaptation
through structural reflection offers tangible benefits.

The fact that as many as 10 Behavioura Attributes (BAs) are
configured at the same instant (at start-up or during execution)
without an exponential increase in execution time proves that the
approach taken fully meets scalability demands in next generation
DVEs.

6.5 Overall Evaluation

In summary, the experiments above:

e demonstrate how OpenPING’s meta interface offers support
to the designer in his/her choice from a variety of
mechanisms in a flexible way.

e show how OpenPING’s multiple infrastructure mechanisms
(just like  Application behaviours) co-exist to enable run-
time configuration via policies that the DVE designer
defines at the Application Layer.

e prove OpenPING’s provision of support for dynamic as
opposed to compile-time adaptation of application as well as
platform behaviours either at start-up time or during
execution.

e epitomize the simplicity, expressiveness and ecase with
which the DVE designer incorporates a number of
OpenPING’s mechanisms alongside application-specific
behaviours.

e prove that the overhead incurred in execution time is not too
big a price to pay in order to avail the full benefits of
flexibility.

7. Related Work

7.1 MASSIVE-1,2

MASSIVE [6] (Model, Architecture and System for Spatial
Interaction in DVEs) is an experimental prototype whose
particular emphasis is on scalability and heterogeneity.

While the MASSIVE system is driven by these two key
requirements, the need for incorporation of run-time adaptation is
clearly evident. A case in point would be introduction of
dynamism in mapping of multicast channel sets onto third party
objects to achieve both scalability and flexibility.

7.2DIVE

Developed by the Swedish Institute of Computer Science as a
research prototype, DIVE [3] has dynamic behaviours of objects
described by interpretative scripts in Tcl. These scripts can be
evaluated on any node where an object has a replica and a script is
typically triggered by events in the system such as user interaction
signals, timers, collisions etc. DIVE has strengths in its
performance, use of multicast-based distribution with LAN-
bridging and unicast-only support, flexible Tcl scripting, support
for sub-division and subjectivity with audio and video support. Its
weaknesses are in its assumption that networks have low-loss and
reasonably high band-width hence low latency for collaborative
manipulation. In early versions of DIVE [3], the ISIS toolkit [1]
uses a multicast protocol to distribute changes and set locks. All



nodes are guaranteed to have seen the same sequence of events,
which while good for system integrity, provides limits on
scalability for instance in DIV E where an upper limit of ten peers
was set. On the other hand, in the absence of the ISIS toolkit,
consistency guarantees which inevitably improve interactive
manipulation especially in environments with high network
latencies are non-existent.

7.3 CONTINUUM

Continuum [5] is aresearch project carried out at France Telecom
R&D that targets the design of an open and adaptable platform to
support large-scale virtua worlds with emphasis on real-time
distributed simulations, multi-player online games and
collaborative (design or engineering) applications on the public
internet. The framework prototype is based on a flexible Java
based middleware called Jonathan [4] with which RMI and
CORBA compliant platforms can be built using appropriate
binding techniques. New services can be made available at any
time and used in existing applications since application semantics
is transparent to infrastructure components. Continuum offers an
array of service options but these are essentially compile-time and
do not come with an interface or execution kernel that supports
run-time adaptation of mechanisms.

74 CAVE

In his PhD thesis ‘Continuously Available Virtual Environments’
presented at Nottingham University in October *01, Purbrick [13]
investigates persistence in DVEs. CAVE associates behaviour
with platform services in much the same way the application level
provides a handle on objects. It however has a limited scope as it
only tackles the issue of persistence in continuously available
large-scale virtual environments.

8. CONCLUSION

This paper has outlined the need for dynamic adaptation as a
means to achieve better flexibility, maintainability and
extensibility and also offer support in a flexible way for the run-
time incorporation of scalability, persistence and responsiveness
techniques. Incorporating dynamically evolving application-
specific wishes by making modifications (on the middleware or
application) at compile-time is not ideal especially if the
application involves real-time interaction and requires round-the-
clock availability.

To support dynamic adaptation, this paper has detailed how our
framework facilitates not just the co-existence of multiple
alternative infrastructure mechanisms but additionally, rather than
applying a single mechanism to all environmental scenarios,
mechanisms can be tested, replaced, configured or dropped at the
application level in the same manner that behaviours in the
application are.

Hence we argue that in distributed virtual reality, the use of
reflection at the application level to design a meta-interface
through which internal managers monitor and adapt platform and
application behaviour dynamically is the way forward in the
design of next generation DVEs.
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