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Abstract 
Research in classifying and recognizing complex concepts 
has been directing its focus increasingly on distributed 
sensing using a large amount of sensors. The colossal 
amount of sensor data often obstructs traditional algorithms 
in centralized approaches, where all sensor data is directed 
to one central location to be processed. Spreading the 
processing of sensor data over the network seems to be a 
promising option, but distributed algorithms are harder to 
inspect and evaluate. Using self-sufficient sensor boards 
with short-range wireless communication capabilities, we 
are exploring approaches to achieve an emerging 
distributed perception of the sensed environment in real-
time through clustering. Experiments in both simulation 
and real-world platforms indicate that this is a valid 
methodology, being especially promising for computation 
on many units with limited resources. 
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Introduction 

It is obvious that distributed sensing has been inspired to a 
great extent by biological systems, where highly redundant 
sensors appear in the form of duplicate sensing (e.g. 
having two eyes), fusory sensing (e.g. seeing and touching 
the same object), and distributed sensing (e.g. networks in 
the skin) (Brooks 1988). It is our aim to investigate what 
the impact of distributed algorithms, self-organization, 
and sheer number (scalability) of sensor modules will have 
on sensing and perception of the environment. 
 Moving sensing tasks to real-world applications often 
proves to be impractical, as the concepts that have to be 
learned and distinguished are too complex to be captured 
by just a few sensors. Instead of improving the quality of 
the used sensor(s), the quantity is increased in distributed 
sensing. Benefits of this approach have been mentioned 
early on in sensor fusion literature (Ayache 1990, Brooks 
and Iyengar 1998): (1) redundancy in sensors leads to a 
more robust system since faulty sensors have little effect 
on the output, (2) distributed sensors have a higher chance 
to capture relevant aspects because of their spatial 
spreading, and (3) the cost of producing many sensor 
modules that perform recognition concurrently is 

considered to be smaller, since sensors can be smaller and 
are not required to be as precise. 
 We will concentrate in this paper on clustering data 
originating from a numerically fixed set of sensors, 
concurrently operating in the same environment. A prime 
requirement is that the clustering should be done in a 
decentralized way, since it is being implemented on a 
hardware platform based on microcontrollers with limited 
memory. The output of this distributed sensor network is 
the distributed storage of typical representations of various 
states, or contexts, of the environment. 
 Research into new interaction techniques in ubiquitous 
computing is gradually moving towards ‘smarter’  objects 
that are able to monitor their environments with hardware 
sensors. This research is usually referred to as ‘context 
awareness’  (Abowd et al 1997). The many sensors 
approach in context awareness has attracted attention from 
various research domains (Kahn et al. 1999, Lim 2001). 

The Hardware Platform 

The platform for the experiments in this paper is a 
collection of ‘Smart-Its’ . In this section we describe some 
of the characteristics of the Smart-Its in order to provide 
insight into the experimental setup, and illustrate some of 
the limitations. One Smart-It unit embodies a sensor 
module, and a communication module, which are 
interconnected. 
 The core of sensor module is a PIC 16F877 
microcontroller clocked at 20 MHz, which offers 384 bytes 
of data memory and 8Kx14 bits of memory. See Figure 1 
for the arrangement of the sensors. A library comes with 
the module that provides easy access to the sensor values. 
A serial line connector is available for connecting the 
sensor module to a PC. Of the two I2C connectors, one is 
used to interface to the communication module. 
 The communication module is based on the PICF876. 
An RF stack provides wireless communication, at a 
maximum rate of 125 kbit/s. The current implementation 
of the RF stack only supports broadcast. Two of the I/O 
pins are used for communication with the sensor module 
over I2C. The I2C interface offers read and write access to 
field strength information, as well as access to the sender’s 
IP and the application data packet. 



 

Figure 1. The two modules that combined make up the Smart-It 
unit: Left, the sensor module with light sensor, microphone, 2 
accelerometers, thermometer, pressure sensor (bottom) and 
buzzer (top). Right, the wireless communication module. Both 
boards measure 43 x 50 mm. 

The Kohonen Self-Organizing Map 

Self-organization of neuronal functions seems to exist on 
very abstract levels in the brain. When a laboratory rat has 
learned its location in a labyrinth, certain brain cells on 
the hippocampal cortex respond only when it is in a 
particular location. The Kohonen Self-Organizing Map 
(SOM) (Kohonen 1997) has a similar principle: units 
(referred to as neurons) are recruited topologically for 
tasks depending on the sensory input. It is commonly 
classified as a neural network, and more specifically a 
winner-takes-all competitive algorithm, since the units 
compete with each other for specific tasks.  
 Each unit i has its own prototype vector wi (also referred 
to as codebook vector or weight vector), being a local 
storage for one particular kind of input vector that has 
been introduced to the system. Initially these prototype 
vectors with a dimension n equal to the input space, start 
out as vectors with random small components and, as new 
input enters the SOM, are improved following this update 
rule: 
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where �  is called the learning rate and is situated between 
0 and 1, and � (winner) is the neighbourhood function 
ranging from 0 to 1 as well, depending on the distance 
between the current SOM unit and the winner. The winner 
is the unit that has a prototype vector that is closest to the 
current input vector using the Euclidean distance: 
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The neighbourhood function is traditionally implemented 
as a Gaussian (bell-shaped) function: 
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with nb a parameter indicating the width of the function, 
and thus the radius in which the neighbours of the 

winning unit are allowed to update their prototype vectors 
significantly. The map of units is usually taken as a two-
dimensional grid, although many other organisations have 
been applied (such as a map of hexagons). 
 After a sufficient amount of input data has been 
presented to the SOM, self-organization will result in a 
topographic map, where similar data is mapped onto units 
in a particular region of the map, and neighbouring units 
will be activated (i.e. become winners) for similar input 
data.  Figure 2 shows how different units become recruited 
for different states of the environment by colouring the 
units according to the state in which they were declared as 
winners. 

 

  

Figure 2. A 2D Self-Organizing Map showing different regions 
of winning units for different states of the environment. 

Implementation 
The Kohonen SOM mainly has implementations based on 
a single-processor, centralized method. Therefore, it is 
necessary that we elaborate on the implementation for the 
smart-its platform and the simulation1. 
 The distributed implementation of the Kohonen Self-
Organizing Map (SOM) produces an algorithm that has 
several variations from the traditional centralized version:  
 

• The units of the SOM are embodied by the Smart-Its: 
each Smart-It records a prototype vector that 
resembles one particular kind of input it has 
experienced. Note that this creates little stress on the 
resources, since one vector easily fits into the 
microcontroller’s memory.  

• The topology of the SOM, instead of being a fixed 
grid, has a loose topology, defined by the physical 
distances between the Smart-It units. 

                                                
1 The source code and data files are available for 
download at this website: 
 http://www.comp.lancs.ac.uk/~catterae/alife2002/  



• The input for each of the units is different, though 
similar since it comes from readings from the same 
state of the environment. In a traditional SOM 
however, inputs for all units are exactly the same. 

• Units can be moved, removed, or added, resulting in 
a truly ad-hoc network. This resembles research done 
on growing SOMs and SOMs where ‘dead units’  (i.e. 
units that never tend to win) perish (Fritzke 1997).   

 
 Communication between the units across the network 
consists of packets that encapsulate all the necessary 
information to complete both the find-winner and the 
update-prototype-vectors phases. After having read the 
sensor values, each unit compares those values with its 
internal values, stored in the randomly initialised 
prototype vectors and calculates the Euclidean distance 
between both vectors. A packet is then created and 
broadcast across the network with the elements as they are 
listed in Table 1. The timestamp is provided to eliminate 
outdated packages.  
 After receiving packets from the units in its 
neighbourhood, a Smart-It can identify the winner by 
searching for the minimum error. By then calculating how 
close it is to the winner (in physical distance), the 
prototype vector can be updated as shown in the update 
rule above.  
  
1 Unit ID 
2 Packet Timestamp 
3 Error (Euclidean distance between prototype and 

input) 

Table 1. Packet description for the Kohonen Self-Organizing 
Map implementation. 

 The output of the network is the ‘activation’  of the 
winning unit, which will be consistent with a self-
organized topology, provided enough iterations have been 
introduced to the network, or if the network does not 
change too rapidly.  

Discussion 

Experiments on both simulation and Smart-Its platform 
are discussed in this section. All results presented here 
were produced using datasets containing real-world data 
from the actual sensor modules, and executed on the 
simulation platform that was designed to be as close as 
possible to the hardware units. This was done to allow us 
to evaluate the impact of varying the learning rate and 
neighbourhood radius parameters, whilst using the same 
sets of sensor data. 
 The five datasets (one for each smart-it) are visualized 
by time series plots in Figures 3-7. Note that, although the 
sensor data is very similar (as the units are physically 
close to each other), it is not exactly the same. The 
intensity of the light for instance (marked in the legends 
by ‘Light’ ), is higher for units 1 and 2 since they were 

positioned directly underneath the light source. The 
accelerometer data is also a bit different as not all boards 
were positioned in the same fashion (the readings from the 
accelerometers reflect position in the X-axis and Y-axis). 
Also notice how some sensors, such as the temperature 
sensor, change only slightly and gradually, while others 
such as the sound level, tend to vary a lot. The pressure 
sensor on each unit was used to synchronize the data 
amongst the smart-its, as can be observed around sample 
1680 on the X-axis. 
 
 

 

Figure 3-7. Datasets with sensor values from each of the smart-
it units during several states of the environment (‘ contexts’ ): 
Lights on (1-330), talking people nearby while lights remain on 
(331-400), lights turned off (401-800), talking people nearby 
while light remain turned off (801-1000), and heating on (1090-
1400). 

  The success of our implementation of the Kohonen 
Map, as on any of its implementations, depends heavily on 
the choice for the learning rate and neighbourhood radius 
parameters. We will concentrate on the first, as it is the 
most important one and the number of smart-it units is not 
large enough to evaluate the impact of a changing 
neighbourhood radius. 
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Figure 8. Error (left Y-axis) and winning unit IDs (right axis) 
over time with a high learning rate. Units ‘ forget’  the stored 
prototype vector, which gets overwritten by the current input. 
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Figure 9. Error (left Y-axis) and winning unit IDs (right axis) 
over time with a normal learning rate. Unit 5 specializes for the 
first context, unit 4 specializes for the third context, while the 
other two contexts are not introduced long enough to be claimed 
by one unit.  

 Figures 8 and 9 show the behaviour of the SOM with a 
different learning rate. With a high learning rate, units 
easily overwrite their prototype vector with each new kind 
of input vector. This problem is known in machine 
learning as ‘catastrophic forgetting’  and relates to the 
‘plasticity-stability dilemma’  (Grossberg 1976). Results 
with a smaller learning rate (Figure 9) do preserve their 
prototype vectors, although fluctuating sensor data causes 
the recruitment of several units for one context (331-400 
and 801-1000 for instance, where the sound level varies 
heavily).   
 The results from our experiments show that self-
organization does take place and that similar sensor data 
maps onto sensor units topographically. Similar data 
clusters in a particular region of the environment 
populated with sensor units. 

Conclusions 

Our aim in applying artificial life principles to the domain 
of context clustering and eventually context classification 
and discovery is to provide flexibility and robustness in a 
constantly changing environment. The sensor boards 
themselves are relatively simple. By harnessing their 
collective intelligence arising from their interactions, we 
aim to produce systems where individual sensor boards 
and/or sub networks of sensor boards in the collection, 
learn to specialize in recognizing a particular state of the 
environment or context.  

 Our experiments demonstrate that clustering of 
incoming sensor data through self-organization on many 
distributed sensor modules with limited processing 
capabilities is possible.   
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