
Utilising the Event Calculus for Policy Driven Adaptation on Mobile Systems

Christos Efstratiou1, Adrian Friday1, Nigel Davies1,2 and Keith Cheverst1

1Computing Department
Lancaster University
Lancaster, LA1 4YR

United Kingdom
{efstrati,adrian,nigel,kc}@comp.lancs.ac.uk

2Department of Computer Science
University of Arizona

Tucson, Arizona 85721
USA

nigel@cs.arizona.edu

Abstract

Adaptation is an important requirement for mobile ap-
plications due to the varying levels of resource availability
that characterises mobile environments. However without
proper control, multiple applications can each adapt inde-
pendently in response to a range of different adaptive stim-
uli, causing conflicts or suboptimal performance. In this
paper we present a policy driven approach for mobile adap-
tive systems that can overcome the aforementioned prob-
lems. Our system is based on a policy language derived
from the Event Calculus logic programming formalism. Im-
portant characteristics of our policy language are the sup-
port for explicit expressions of time dependencies and the
simple and user friendly syntax.

1. Introduction

Mobile environments are characterised by sudden and
dramatic changes in the availability of system and network
resources including connectivity, network quality of service
(QoS) and power supply [3, 8]. It is therefore a primary re-
quirement in applications designed for such environments
that they support adaptive behaviour in order to continue to
function effectively [9, 12].

Moreover, supporting the development of context-aware
mobile applications introduces a further set of factors based
on ‘situation’ that applications are required to adapt to.
These factors can be, for example the physical location of
the system or the proximity of other ‘interesting’ devices.

All these characteristics require the development of ap-
plications that can react to triggers received by the system
(either relating to resource availability or contextual infor-
mation) and adapt accordingly.

Current approaches to mobile adaptive systems are typ-
ically based on predefined courses of action implemented

within the application or supporting subsystems (middle-
ware or operating system). Indeed, most adaptation sup-
port mechanisms are specialised on one single adaptation
domain (e.g. network QoS based adaptation) allowing mod-
ification of the adaptive behaviour of applications within the
boundaries of that specific domain.

In this paper we argue that in order to successfully adapt
in response to environmental or contextual changes, appli-
cations must respond in a coordinated ‘system-wide’ man-
ner. Failure to consider such issues may lead interference
between separate applications’ adaptation mechanisms co-
existing on a given system. Moreover, the lack of a mecha-
nism that oversees the interdependencies of adaptive appli-
cations can potentially lead to conflicts, suboptimal perfor-
mance and unwanted hysteresis effects [5, 6].

In this paper we present a middleware platform that has
been designed specifically to provide support for adaptation
both within and between mobile applications. Coordinated
behaviour is achieved on a system-wide level by separat-
ing policy from mechanism through the use of a per-host
policy-driven adaptation controller. More specifically, the
important characteristic of our approach is the decoupling
of the adaptive mechanisms supported by each application
and their adaptation policies directing when and how adap-
tation should take place. All adaptation policies of each
host are handled by an adaptation control module based on a
policy language derived from the Event Calculus [20]. Our
approach allows sharing of application status information
among all applications running on the system. The intro-
duction of a policy language that handles adaptation allows
the dynamic modification of the adaptive behaviour in order
to overcome potential conflicts or to better satisfy the user
needs.

The paper is structured as follows. In section 2 we dis-
cuss the motivations for building our platform using a range
of application scenarios. The section concludes with a set
of requirements that are the basis for our approach. Sec-
tion 3 provides an overview of the main components of our

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

adaptation platform. In section 4 we describe the policy
language that is used by our platform, based on the Event
Calculus formal specification language. The section gives
a detailed description of the design concerns in the imple-
mentation of a dynamic policy evaluation mechanism and
the main issue of how time is handled within the language
implementation. Section 5 presents our currently imple-
mented prototype and section 6 considers our work in re-
lation to other existing and related approaches. Finally, sec-
tion 7 contains our concluding remarks and pointers for fu-
ture work.

2. Motivation

As the need for adaptive context-aware applications in-
creases, the case where multiple adaptive applications trig-
gered by several adaptation and contextual triggers operat-
ing on the same end-system will be a common scenario. Our
experience with the development of mobile adaptive appli-
cations has led us to believe that it is necessary to provide
a certain level of control over the adaptation procedure in
order to achieve a harmonious operation of the system in
such environments. In this section we present an analysis of
the problems that can occur in current adaptive systems and
conclude with a set of requirements for our approach.

2.1. Defining the Problem

Early approaches to supporting adaptive mobile systems
were mainly concerned with the impact of the variations
in network QoS due to the wireless communication links
[9, 11, 17]. More recent approaches consider other at-
tributes that can become triggers for adaptation, such as
power supply [7, 8]. So far all these adaptation mechanisms
operate in isolation with little or no concern about their in-
terdependencies, though the requirement for such a concern
has been identified in the past [8].

Consider the following illustrative scenario: a single ap-
plication is ‘triggered’ to adapt by the power adaptation
mechanism in order to reduce its power consumption. The
application reduces the use of the network in order to re-
duce the amount of power drawn by the network interface.
Across the system as a whole, this reduction of the network
usage is discovered by the network adaptation mechanism
as a net increase in available bandwidth. As a result another
application (or even the same one) is triggered to increase
the use of network so as to provide higher level of service.
In this scenario it is clear that the application of one adap-
tive mechanism (power) is the direct cause of another con-
flicting adaptation (use of network resources). Generalising
from this behaviour, we can postulate that the isolation of
adaptation mechanisms can lead to conflicting or unstable
situations.

As we have stated, a characteristic of many current adap-
tation approaches is that adaptive behaviour is either hard-
coded within the application, or implemented within a mid-
dleware platform based on predefined adaptation patterns.
For instance, commercially available adaptive applications,
such as video players [19], may adapt the quality of video
playback in response to changes in end-to-end network
QoS. Such behaviour is intrinsic to the specific video appli-
cation and cannot be generalised. It is further evident that
the majority of context-aware applications have been imple-
mented in an ad-hoc manner [1, 18]. Such applications are
clearly unaware of other applications operating on the sys-
tem and cannot take into account any side-effects that their
reaction may have on the rest of the system. In adaptive
middleware designed to support mobile systems [11, 17, 3]
there is a certain level of awareness of multiple applications
operating on the system. The level of control over these ap-
plications however, is limited to the predefined adaptation
policies built into the applications, the underlying middle-
ware platforms or the operating system itself.

In more detail, adaptation is driven by the applica-
tions’ requirements on the available resources. The under-
ling adaptation mechanism is responsible for meeting these
requirements or triggering the applications whenever the
available resources are not enough to satisfy their demands.
Whenever an application is triggered due to change in the
level of available resources they have to adapt to the new
situation. However, the actual decision of the appropriate
reaction to such a trigger is taken by the application without
any knowledge about coexisting applications. Furthermore,
the hard-coded adaptation behaviour patterns built-in either
the applications or the middleware does not allow dynamic
modification of the systems’ behaviour according to vary-
ing situations or special user requirements. The following
scenario illustrates this issue:

Let’s consider an adaptive streaming video player and
an adaptive web-browser performing a download of a large
file, both operating on the same host. In this case both net-
work bandwidth and power supply are finite resources. In
such a scenario there are a number of possible adaptation
configurations that could be applied:

• The web-browser reduces the bandwidth usage al-
lowing the video player to request a less com-
pressed/higher bandwidth stream so as to reduce the
power consumption due to stream decoding while the
power consumption on the network card remains the
same. This strategy would best suit the case where
the user considers the video to be of higher importance
than the timely completion of the file transfer.

• A second strategy might be for the video player to re-
quest only the soundtrack of the video sequence (re-
ducing both network bandwidth and power consump-

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

tion due to decoding the video). The bandwidth saved
by the video player can be reused by the web browser
to increase the speed of the file download. Such a strat-
egy would be appropriate if the user needed the file
more urgently than the full video feed.

• A third possibility would be for both applications to
degrade their service in order to maintain power con-
sumption below a specific threshold. This strategy
would be the most appropriate option if extending the
battery life of the system is the highest priority.

All of these options could be required depending on the
user needs and the specific situation. As stated earlier, the
hard-coded adaptation mechanisms implemented in many
current systems does not allow this level of dynamic modi-
fication of the adaptation behaviour across the system.

2.2. Requirement for policy driven adaptation

In order to look in more detail at how the limitations of
current approaches can be overcome, it is first necessary
to examine the fundamental mechanisms supporting adap-
tation. Adaptation can be viewed as a mechanism that in-
cludes three distinct functional elements. The first element
concerns the monitoring of a specific source of information
that is ‘interesting’ for that adaptive mechanism. This infor-
mation source could be the availability of a specific resource
such as the power supply or a contextual trigger such as the
system’s physical location.

The second element concerns the policy that describes
how this mechanism should react according to the informa-
tion being monitored. This policy could, for example, state
that when the power supply drops below a specific threshold
then a reaction is necessary.

The third element is the actual adaptation mechanism
that performs the specific adaptive action as directed by the
policy. For example, an adaptive mechanism might reduce
the network bandwidth consumed by the application. This
last element may also have an impact on the initial source of
information, e.g. to change the rate that the available power
drops. This last link between the adaptive mechanism and
the initial resource being monitored does not necessarily ex-
ist in all systems. Most context-aware systems for example
do not affect the initial resource that triggered their change
of behaviour.

Though a simple adaptive system follows this depen-
dency cycle, in a system where several applications or
multiple triggering attributes exist, the dependencies span
across several applications and information sources. As
seen in the previous example, an adaptive mechanism that
is triggered in order to reduce the level of power consump-
tion may have a side effect on the level of available network
bandwidth of the system. These side effects are the main

Monitor

Policy

Mechanism

Figure 1. Basic adaptation cycle

cause of conflicts. We believe that in order to detect such
conflicts it is necessary for all adaptive applications to ex-
ternalise their adaptive mechanisms allowing the system to
determine possible interdependencies and oversee potential
conflicts.

Once a conflict or undesirable situation has been de-
tected, either by the system or by the user, it is necessary to
allow modifications to the adaptive behaviour of the system
in order to resolve the situation. However, in most current
adaptive applications the adaptation policies are not distinct
elements within the adaptive cycle. In most cases adaptation
policies are hard-coded within either the monitoring process
or the adaptive mechanism, making adaptive conflicts hard
to detect. To allow the necessary level of control over the
behaviour of the system it is our contention that policies
must be decoupled from the adaptation mechanisms them-
selves. Moreover, these policies should be defined in a lan-
guage flexible enough to allow the specification of condi-
tions that can include multiple triggering events that may
take place over time.

In this paper we present an approach based on such a
policy language. Adaptation decision mechanisms use the
policy language to allow the active involvement of the user
in the modification of the systems adaptive operation. Fur-
thermore, the user can set up the system to behave accord-
ing to his/her needs and dynamically modify its behaviour
when these needs change.

Summarising the findings of the above analysis we can
conclude with a set of requirements for a general purpose
adaptation support platform that should be able to overcome
the highlighted issues:

• Application control and coordination. Current adap-
tation approaches provided limited support in terms of
coordinating the behaviour of multiple applications to
achieve a user required goal or overall improved per-
formance. In order to support flexible and coordinated
adaptation there is a requirement for the triggering of
adaptation to be handled in a cross-application level.
Given this approach, the decision about when and how
an application should adapt is pushed out of the ap-
plications’ boundaries while the adaptive behaviour is
still part of the applications’ characteristics.

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

• Support for Flexible Adaptation Policies. A further
requirement is to support the notion of policy driven
adaptation. Policies can be specified externally from
applications and should be described in a flexible man-
ner to allow the incorporation of multiple adaptation
triggers over time. Moreover, the externalisation of
such policies allows for the system to determine the
coexistence of adaptive applications that may interfere
with one another. The policy language that will be used
should not be bound to a specific adaptation domain –
it is desired that the language specification should of-
fer a certain level of abstraction that will allow a broad
space of adaptation policies to be specified.

• User involvement. The user is a principle component
in any adaptive systems. More specifically, the user is
the only one that can judge whether the behaviour of
the system is satisfactory. Given this fact, the system
should allow the user to oversee the interdependencies
of all adaptive applications within a system. More-
over, the user should be able to identify any possible
conflicting, unstable or just undesired behaviour. Fur-
thermore, the user should be able to configure the over-
all behaviour of the system according to their current
needs. Generalising this requirement it is necessary
to break the transparency enforced by current adaptive
systems offering user awareness and involvement in re-
spect to adaptation.

In the next section we present our prototype platform that
is designed taking into account these requirements.

3. Our Adaptation Platform

The realisation of the system requirements outlined
above requires the design of a platform in which adap-
tive mechanisms and policies are decoupled. Furthermore,
mechanisms must be ‘exposed’ or externalised in order to
enable coordinated control by an ‘adaptation controller’.
Our adaptation platform has been designed to address these
requirements. Figure 2 shows the relationship between the
main components of our platform. The functionality of the
platform can be split into two main areas:

1. the sharing of application state information and their
available adaptive mechanisms

2. the coordination of the behaviour of the applications
according to the adaptation policies

In more detail, the platform allows applications and tools
monitoring changes in the systems’ environment to pro-
vide a description of their functionality including a set

Application
description

Registry Adaptation
Control

 Application Monitoring
Tools

Policies

Registration

Triggering

Figure 2. The overall architecture

of state attributes containing information on the environ-
ment/application and adaptive actions that they can per-
form. These descriptions are handled by the platform’s reg-
istry.

The adaptation control is the component that is respon-
sible for making decisions about the appropriate adaptive
actions that the applications should take. These decisions
are made based on the set of policies exported by the appli-
cations or established by the user.

3.1. Registry

Each adaptive application that is running on a host must
register with the platform’s registry. The application reg-
istry holds a description of each application’s available
adaptation mechanisms as well as a set of state variables that
provide information about each application’s current state.
The registration information is provided by the application
in XML1 (a sample of which is presented in figure 3). The
structure of the registration information has been influenced
by the design of the UPnP protocol [16].

The registration information is divided into two sections.
The first section provides a list of the available adaptation
mechanisms that are supported by the applications. This de-
scription allows the platform to invoke the appropriate adap-
tation mechanism whenever the application is required to
adapt. The description of an adaptation method may spec-
ify relationships between the attributes passed to the method
when invoked and the state variables within the application.
The semantics of such a relationship denotes the effect an
adaptive mechanism may have on the state variables of the
application. More specifically, each of the attributes passed
to an adaptation mechanism may relate to the new value a

1The XML schema for the application registration can be found in
http://www.comp.lancs.ac.uk/∼efstrati/platform/api-schema.html

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

<application>
<name>WebBrowser</name>
<uniqueId>1234</uniqueId>
<methodList>

<method>
<name>SetBand</name>
<attributeList>

<attribute>
<name>bandLimit</name>
<relatedVariable>netBandwidth

</relatedVariable>
</attribute>

</attributeList>
</method>

</methodList>
<stateVariableList>

<stateVariable>
<name>netBandwidth</name>

</stateVariable>
</stateVariableList>

</application>

Figure 3. Sample of XML description for an
adaptive application

state variable will take after the invocation. Multiple af-
fected state variables by an adaptation mechanism can be
specified through the definition of multiple attributes passed
to the adaptation mechanism.

The second section provides a list of ‘state variables’ that
represent the current state of the application. Based on this
information the registry creates a copy of these variables
within the platform. The values of the variables are updated
by the application by sending events to the platform when-
ever a state variable changes. This provision of state infor-
mation by the applications allows the platform to monitor
all applications within the system and consider their state
before taking adaptation decisions.

As described in section 2.2, the general adaptation cycle
includes the monitoring of a set of information sources that
may trigger adaptation. The registration protocol described
here provides a general mechanism for the introduction of
such information sources to the platform. Any informa-
tion source acting as an adaptation trigger can be served
by a monitoring tool registered with the platform. The ar-
chitecture is thus extensible; information sources may in-
clude attributes relating to the state of system hardware (net-
work, power etc.), but also application specific information
sources (such as context monitors). The specific informa-
tion that the platform requires for triggering adaptation can
be accessed through the state variables that each monitoring
tool defines. In our current prototype implementation two
monitoring tools have been defined that act as wrappers for
the network interface and the battery level of the host. Both
of these tools register with the platform and provide details

about the state of these devices through their state variables.

3.2. Adaptation Control

The adaptation control module is responsible for mon-
itoring the behaviour of all applications on a single host
and triggering them to adapt according to adaptation poli-
cies registered with the platform.

The behaviour of the adaptation control module is con-
trolled by events fired by the applications when the values
of their state variables change. These events act as triggers
for the adaptation control module in order to apply an adap-
tive mechanism as described by the adaptation policies. Ap-
plications register ‘default policies’ with the platform that
specify their default adaptive behaviours. In practice how-
ever, the set of active policies may include modifications or
additional policies provided by the user.

Part of the adaptation control module’s functionality is to
provide a dynamic policy evaluator for the adaptation poli-
cies. The details of the policy language and the evaluation
mechanism used are presented in the following sections.

4. The Event Calculus as a Policy Language

In this section we will provide a detailed description of
the policy language used in our platform. This policy lan-
guage is based on the event calculus formal specification.

4.1. The Event Calculus

The event calculus was introduced by Kowalski and Ser-
got [13] as a logic programming formalism for reasoning
about events and change. The work presented here is based
on a simplified version of the event calculus that was pre-
sented later by Kowalski [14].

The event calculus provides a theoretical framework
where it is possible to reason about events and their ef-
fects in an event-driven system. The event calculus is de-
fined over a set of entities, namely events that take place at
specific time points and fluents that represent the effects of
the events. A fluent represents a specific situation that has
a timed duration, for example a state like ‘battery is low’.
When the system under consideration gets into that specific
condition the fluent is considered to be valid (it holds). The
state of fluents are defined according to events that can ini-
tiate or terminate them.

Along with the basic entities of events and fluents, the
event calculus defines a set of predicates that allow the spec-
ification of propositions about when specific events take
place and what the state of fluents are. More specifically
the basic predicates defined in event calculus are:

Initiates(e, f, t) : Fluent f is initiated by event e at

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

time t.

Terminates(e, f, t) : Fluent f is terminated by event e at

time t.

Happens(e, t) : Event e occurs at time t.

By using these predicates we can ask about the validity of
some fluents at particular time points. More specifically, the
simplified event calculus defines the following additional
predicates:

HoldsAt(f, t)⇐∃ e, t1[Happens(e, t1) ∧ t1<t ∧
Initiates(e, f, t1) ∧
¬Clipped(t1, f, t)]

Clipped(t1, f, t2)⇐∃ e, t[Happens(e, t) ∧
t1<t< t2 ∧ Terminates(e, f, t)]

Declipped(t1, f, t2)⇐∃ e, t[Happens(e, t) ∧
t1<t< t2 ∧ Initiates(e, f, t)]

The HoldsAt rule states that a fluent is valid at a specific
time point t if an event e exists that initiated this fluent at an
earlier time and this fluent has not been terminated during
this time. The Clipped and Declipped rules state that a flu-
ent has been terminated or initiated respectively by an event
that took place within a time period.

Based on this small set of rules the event calculus allows
us to define an event based system that changes as events
take place. In addition, we can use the available rules to ask
about the validity of specific conditions of the system and
the times that these conditions are valid.

4.2. The Policy Language

In order to understand the suitability of the event calculus
for our platform we have to consider some of its basic char-
acteristics. Firstly, the operation of the platform is driven
by events. The input given to the adaptation control module
is the set of state variables reported by the applications. As
described in section 3.1 as the values of these state variables
change, the corresponding applications generate events that
notify the platform about their new values. The event calcu-
lus, by definition, embodies the eventing mechanism within
its specification.

Secondly, the platform is required to handle the condi-
tions under which an adaptive reaction should take place
in a uniform manner, irrespective of the type of adaptation.
The decision mechanism should be a general purpose mech-
anism that will handle adaptation policies relating to a vari-
ety of adaptation types such as network based adaptation or
adaptation related to physical context. The event calculus
is general enough to allow the specification of rules for any
type of event based system.

Thirdly, the policy language must be flexible enough to
allow policy specifications that consider multiple events and
time relationships among these events. Time relationships
in particular, are important for the fine-tuning of the sys-
tem and for overcoming instabilities or conflicts. Time is a
fundamental element of the event calculus, allowing a high
level of flexibility in the specification of time relationships.

Therefore, deriving from the specifications of the event
calculus, we define the event calculus policy language in
which policy rules are formulated as event-fluent-condition-
action sets in a form similar to policies specified in PDL
[15].

Specifically, each policy rule is comprised of a set of sys-
tem specific event definitions, a set of fluents controlled by
the events, a condition body and an action body. The ba-
sic operation of a rule is to perform the actions defined in
the action part if the condition part evaluates to true. The
condition part consists of a logical expression involving the
occurrence of events or the current state of fluents. Each
fluent expresses a specific situation that the rule is inter-
ested in. The situations expressed by fluents are directly
controlled by the defined events.

For example, let’s consider a policy specifying that the
network connection should switch to GSM when the user is
outdoors. An informal way to describe this is:

Events LeftHome, LeftOffice, InHome, InOffice
Fluent Outdoors :

initiated by events: LeftHome, LeftOffice
terminated by events: InHome, InOffice

Condition :
Initiated(Outdoors)

Action:
Switch network to GSM

As described in this example, the fluent Outdoors is con-
trolled by the events denoting when the user leaves or enters
areas that the network connection should not be GSM. The
condition part evaluates to true at the time the fluent is ini-
tiated and the action part is executed.

Formally speaking a policy rule is an expression of the
form:

event definition1

. . .
event definitionn

fluent definition1

. . .
fluent definitionm

condition { condition }
action {

action1

. . .
actionk

}

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

event lowBand :- NetworkInterface.availableBandwidth < 19200
event normBand:- NetworkInterface.availableBandwidth >= 19200
fluent inLowBand {

initiates(lowBand)
terminates(normBand)

}
condition {

initiates(lowBand, inLowBand, t1) and
not clipped(t1, inLowBand, t2) and
t2 > t1 + 30

}
action {

WebBrowser.LowBand()
}

Figure 4. A sample policy rule

Definition 1 An event symbol e represents the occur-
rence of an event as described by the event definition. The
event definition is an expression of the form:

event e :- l

where e is an event symbol and l is a system specific logi-
cal expression. The logical expression is of the form p1θp2

where

1. θ is a Boolean operator from the set {and, or} and p1,
p2 are logical expressions as well, or

2. θ is a relation operator from the set {=, !=, <, <=,
>, =>}, p1 is a system specific attribute and p2 is a
constants of the same type. It is assumed that the user
has access to the set of available system attributes that
can be used for the definition of the logical expression.

As highlighted in definition 1, the user is assumed to
have access to the set of system attributes that can be used
for the definition of events. In our system these attributes
are the application state variables reported by the adaptive
applications running on the system during registration with
the platform (described in section 3.1). The specification
of such an attribute is represented by an expression of the
form:

a.v
where a represents the application running on the system

and v one of its state variables. An event, for example, spec-
ified to mark the time the network bandwidth is between
19.2Kbps and 64Kbps is defined as:

event normBand:- (NetworkInterface.Bandwidth > 19.2)
and (NetworkInterface.Bandwidth < 64)

Definition 2 The occurrence of an event is defined
through the predicate happens(e, t) → {true, false} where
e is an event symbol and t is a time point. Predicate happens

evaluates to true iff t is the time point the logical expression
l specified by the event definition transits from false to true.

The happens predicate should be interpreted as “the log-
ical expression defined for event e has changed its value
from false to true at time point t causing the event to take
place”.

Definition 3 A time point is a positive integer that rep-
resents a specific point in time.

In our system, time points are considered to represent
time in seconds. However, the granularity for the represen-
tation of time within a policy system is an issue that depends
on the requirements of each implementation.

Definition 4 A fluent symbol f represents the state of a
fluent as described by the fluent definition. The fluent defi-
nition is an expression of the form:

fluent f {
init1
. . .
initn
term1

. . .
termm

}
where f is a fluent symbol and each initi is an expres-

sions of the form initiates(e) where e is an event symbol
representing the event that initiates the specific fluent; and
each termi is an expressions of the form terminates(e)
where e is an event symbol representing the event that
terminates the specific fluent.The order in which the initi-
ates/terminates expressions appear is not significant.

A fluent is considered to hold for the time period between
its initiation and termination including the termination time
and it does not hold for the time period between termination
and initiation including the initiation time.

A fluent in the policy language does not relate to any
value within the platform itself. It is an abstract entity
that can be defined according to the policy author’s require-
ments. The purpose of a fluent is to represent entities that
have time duration and their state changes according to the
occurrence of events. In practice a fluent usually represents
a real situation of the system’s behaviour (like for example
operating in a low bandwidth state as shown in figure 4).

As Definition 4 describes, the state of a fluent is con-
trolled by the events that initiate or terminate the fluent. We
have to make clear the distinction between the statements
initiates(e) and terminates(e) defining a fluent from the
predicates initiates(e, f, t) and terminates(e, f, t) that are
defined later on.

Definition 5 The condition is a logical expression of the
form

1. p1θp2 where θ is a Boolean operator from the set {and,
or} and p1, p2 are condition expressions as well, or

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

2. a predicate proposition of initiates, terminates, hold-
sat, happens, clipped, declipped and their negations,
or

3. a logical expression of the form t1θt2 where θ is a rela-
tion operator from the set {=, !=, <, <=, >, =>} and
t1, t2 are time variables or expressions representing
time points.

The body of a condition specifies the logical expression
that should be evaluated in order for the action part to be
executed. Within the condition body a policy rule may in-
clude combinations of predicate propositions and time rela-
tionships.

Definition 6 The initiates/ terminates proposition is an
expression of the form:

initiates(e, f, t) / terminates(e, f, t)

where e is an event symbol, f is a fluent symbol and
t is a time variable. This proposition is true iff initi-
ates(e)/ terminates(e) is part of fluent’s f definition, hap-
pens(e, t) is true and the fluent does not hold (hold for ter-
minates) at time t.

These predicates allow the specification of queries in re-
lation to the initiation/ termination of fluent. They should
be interpreted as “the event e initiated/ terminated fluent f
at time t”.

Definition 7 The holdsatproposition is an expression of
the form:

holdsat(f, t)

where f is a fluent symbol and t is a time variable. This
proposition is true iff there is an event e1 for which initi-
ates(e, f, t1) is true and t1 < t and for every event e2 and
time point t2, t1 < t2 < t, terminates(e2, f, t2) is false.

The holdsat predicate allows the specification of queries
in relation to the actual state of a fluent. The predicate
should be interpreted as “fluent f holds at time t”.

Definition 8 The clipped/ declipped proposition is an
expression of the form:

clipped(t1, f, t2)/declipped(t1, f, t2)

where f is a fluent symbol and t1, t2 are time points and
t1 < t2. This proposition is true iff there is an event
e for which happens(e, t) is true and t1 < t < t2 and
terminates(e, f, t)/initiates(e, f, t) is true.

The clipped/declipped predicates are used for specifying
queries about the initiation or termination of a fluent within
a specific time range. The predicates should be interpreted
as “fluent f has been terminated/initiated sometime within
(t1, t2)”

Definition 9 An action is a statement of the form:

a(t1, . . . , tn)

where a is an action symbol with n arguments and each ti
is a parameter of the appropriate type.

An action statement represents a call to a specific adapta-
tion method of an application as defined by the applications
by their registration. An action call triggers an application
to adapt when the condition part of the policy evaluates to
true.

In a more informal way, each rule of the policy language
consists of two main parts: a condition and an action. The
condition is a logical expression that can evaluate to true or
false. The action is a list of calls to adaptation methods that
should be performed only if the condition evaluates to true.

Each condition is further divided into two parts: the dec-
laration part and the condition body. The declaration part
defines the events and fluents that participate within the
body of the condition. The body itself consists of a logi-
cal expression combining Boolean operations (and, or, not)
and the predicates specified by the event calculus.

The declaration of an event specifies when an event is
considered to have occurred in relation to the values of spe-
cific application state variables. As shown in figure 4 the
event lowBand is considered to have taken place when the
state variable availableBandwidth of the application Net-
workInterface has taken a value below 19.6Kbps. A fluent
declaration is done by specifying all the events that can by
initiated and terminated by.

The condition body consists of a logical expression using
the event calculus predicates. This logical expression can
use predicates to evaluate the time specific events take place
or whether a fluent holds or does not hold. The condition
body can include time relationships between time variables
that correspond to the time at which specific predicates eval-
uate to true. The policy author can thus specify not only the
events and fluents that affect a condition, but also the time
relationships between these predicates. As presented in fig-
ure 4 the body of that condition specifies that it will evaluate
to true only if the fluent inLowBand has been initiated at a
time t1 and has remained valid until time t2 > t1 + 30. In
essence, this rule specifies that it evaluates to true if the sys-
tems’ available bandwidth has remained below 19.6Kbps
for more than 30 seconds.

The last part of a policy rule is the list of actions. Within
the list of actions the policy author has to specify a sequence
of adaptation methods that should be invoked by the plat-
form when the condition of the rule evaluates to true.

4.3. Policy Evaluation

An important requirement for the evaluation of the poli-
cies is that the evaluation should take place progressively
as the values of state variables change over time. Specif-
ically, there is no easy way to discover when all neces-
sary information is available in order to evaluate a rule in

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

one step. Rather, the evaluation of a rule must take place
in stages as information about the state variables become
available. More specifically, as events take place some
predicates within the body of the condition may evaluate to
true, whilst others are false, awaiting future events that may
change their value. Even while all predicates may have eval-
uated to true at specific time points, the time relationships
may still not be satisfied. As a consequence, the policy eval-
uation mechanism should progress incrementally as events
take place and allow the execution of the actions only at the
time that the whole condition body has been satisfied.

One of the important characteristics of the policy lan-
guage is the fact that time variables receive their values im-
plicitly through the evaluation of the predicates in which
they participate. A predicate such as happens(e, t) eval-
uates to true when event e occurs. When a predicate be-
comes true, the time variables participating receive their
values according to the semantics of the predicate. In the
happens(e, t) example, variable t will take as its value the
time that event e took place.

Even though a time variable within the policy language
represents a single time point, there are some predicates that
can evaluate to true when the related time variables take
any value from a range of available time points. Predicate
holdsat(f, t) for example can be true for any value of t
within the range of values from the time the fluent f has
been initiated until it was terminated:

∀t, holdsat(f, t) ⇔ ∃t1, t2[t1 < t2∧
initiates(e1, f, t1) ∧ terminates(e2, f, t2)∧
¬clipped(t1, f, t2) ∧ t ∈ (t1, t2)]

This fact forces us to represent all time variables within
the evaluation mechanism as ranges of values that can eval-
uate a specific predicate to true. The case of a single time
point value, as produced by predicates like happens(e, t),
are special cases where the time range has the same start
and end point. Table 1 offers a list of the rules that define
the values that time variables receive during the evaluation
of predicates.

The representation of each time variable as a time range,
has a direct impact on the way time relationships are eval-
uated. Though a logical expression between two variables
should result in a comparison of the values that can either
be true or false, in our case, any logical expression among
time variables results in a modification of the ranges that a
time variable covers in order to make this expression valid.
Let’s consider the common case of equality between two
time variables. The result of such an expression will be to
assign to both variables a new value range that includes the
common sections of the two initial time ranges of the two
variables:

t1 ∈ (a1, a2) ∧ t2 ∈ (b1, b2) ∧ t1 = t2 ⇒
t1 ∈ (a1, a2) ∩ (b1, b2) ∧

Table 1. Time value assignment through the
evaluation of predicate.

Predicate Variable Description

initiates(e, f, t) t = a
a: the time that e
took place

terminates(e, f, t) t = a
a: the time that e
took place

happens(e, t) t = a
a: the time that e
took place

holdsat(f, t) t ∈ (a, b)

a: the time that f
was initiated
b: the time that f
was terminated or
the current time if
it still holds

clipped(t1, f, t2)
t1 ∈ (0, a)
t2 ∈ (a, b)

a: the time that f
was terminated
b: the current time

declipped(t1, f, t2)
t1 ∈ (0, a)
t2 ∈ (a, b)

a: the time that f
was initiated
b: the current time

t2 ∈ (a1, a2) ∩ (b1, b2)

Similar rules can be defined for operations like “less
than” and “greater than”.

Therefore the algorithm for the evaluation of the policy
language can be summarised in the following steps:

1. As state variable values change, the evaluator deter-
mines which of the event expressions in the policy are
to be marked true or false.

2. When the occurance of an event has been identified,
the state of all the related fluents is determined, based
on the fluent definitions (initiate/terminate lists).

3. The state of the predicates within the rule’s body is
evaluated progressively as events take place and fluents
modify their state.

4. For each step where a predicate receives its value, the
corresponding time variable is assigned a time range
that makes this predicate true.

5. The time relations defined within the policy rule are
evaluated so as to find whether there are any possible
values for the time variables that can evaluate both the
predicates and the time relationships to true.

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

6. If all conditions have been evaluated to true, the action
list is executed.

7. If at any stage the values of the time variables do not
satisfy the time relationships, the incremental evalua-
tion of the rule is canceled and all variable values are
reset to null.

4.4. Efficiency

An important issue in the evaluation of the event calculus
policy language is the efficiency of the evaluation mecha-
nism. Since the evaluation procedure is driven by the update
of state variables reported by the adaptive applications, it is
important to reduce the number of times that false evalua-
tion attempts take place due to a state variable update. Sig-
nificantly, as the definition of policy conditions may include
time relationships between predicates, these time relation-
ships can provide a means for scheduling the incremental
evaluation of a policy rule at time points that are derived by
the policy condition.

As expressed in definition 1, each policy event is defined
through a logical expression evaluating over the state vari-
ables of applications. This expression represents a range
of values the given state variables may take, causing the
policy event to take place. However, an application may
update the values of the state variables manipulated by the
platform even when these updates do not cause any policy
events to take place. Therefore, in order to reduce the num-
ber of state variable updates performed by the applications,
these ranges of values specified by the policy definitions are
passed over to the application. This way the applications
will update the values of their state variables only when
the new values change the state of the logical expressions
defined by the policy events. For example, in the sample
presented in figure 4, the NetworkInterface monitoring tool
will only update the values of the availableBandwidth state
variable when the value of the variable changes from less
than 19200bps to more than 19200bps or vice versa.

As described in definition 5, the condition part of a pol-
icy rule may include expressions that define relations among
time variables. The evaluation of such expressions can only
be performed when all time variables involved have been
assigned a value or a range of possible values through the
evaluation of the predicate in which they participate. How-
ever, there may be cases where it is possible to infer a pos-
sible value for an undefined time variable. For example:

t1 = a ∧ t2 = t1 + 10 ⇒ t2 = a + 10
where a is the value t1 has received by the evaluation of

a predicate.
This conjecture can be used for the scheduling of the

evaluation of a predicate that relates to this time variable.
For example, lets consider the following condition body:

happens(e, t1) and
holdsat(f, t2) and
t2 = t1 + 10

Let’s suppose that event e takes place at time point a.
Through the evaluation of the relation between time vari-
ables we can infer that t2 = a + 10. Using this value the
evaluation of the rest of the condition body can be sched-
uled for time a+10. At that time point the holdsatpredicate
will be evaluated as either true or false. The current imple-
mentation of the policy evaluation mechanism is only ca-
pable of scheduling evaluation when the inferred time vari-
able is assigned a single value. However, we believe that
time relationships that specify a range of possible values
for an undefined variable (such as t1 > t2) can be useful
for the efficient scheduling of the policy evaluation proce-
dure. As we expect a policy based adaptive system to have
an intrinsically higher overhead with respect to traditional
“hard-coded” adaptive solutions, we see the the efficiency
of the rule evaluation as being an important area for us to
explore in our future work.

5. Prototype

We have developed a prototype of the platform presented
in section 3 in order to evaluate our ideas. The prototype
consists of a full implementation of the registry and adapta-
tion control modules and an initial version of the interpreter/
evaluator of the event calculus policy language. The policy
evaluator accepts the full policy language as described in
section 4, and implements the policy evaluation algorithm
presented in section 4.3. One aspect of the evaluator that
we have not yet implemented, is provision for mechanisms
which detect conflicts between the policy definitions, this is
an key aspect of our approach an important area for future
work.

In addition, we plan to provide a set of tools that en-
able the system to more easily integrate the user in the con-
flict resolution process. These tools will promote awareness
of potential adaptive conflicts and allow the user to assist
in their resolution by adjusting or augmenting the existing
policies and evaluation strategies.

6. Related Work

Most mobile systems supporting adaptation are con-
cerned with network related adaptation [9, 11, 17]. As
presented in section 2.1, efficient adaptation requires the
decoupling of adaptation mechanism and policies so as to
allow the dynamic modification of the latter to detect and
avoid conflicts, and achieve stable and coordinated adapta-
tion.

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

As a representative of these approaches we can consider
the Odyssey system [17]. The Odyssey system is a platform
supporting application-aware adaptation. Odyssey consists
of a viceroy running on each mobile host, responsible for
controlling network resources on that host, and a warden
for each type of application data exchanged over the net-
work. The viceroys in Odyssey are the system components
responsible for monitoring resources and triggering appli-
cation adaptation when necessary. However, viceroys are
controlled by application specific requirements and do not
allow any intervention from the user in modifying their be-
haviour. Furthermore, adaptation policies in Odyssey are
hard coded within both the viceroys and wardens. The first
for deciding when to trigger a particular application and the
latter for deciding how to modify a particular data stream.

An approach where adaptation mechanisms are exter-
nalised through XML interfaces is used in the Puppeteer
system [4]. However, Puppeteer proposes this approach as
a mechanism for incorporating non-adaptation aware appli-
cations into an adaptive system. Thus no general adaptation
support is provided and there is no consideration for adap-
tation policies specified/ modified by the user.

The Smiley system [10] provides an example of an adap-
tive web browsing architecture where user awareness is a
prime requirement. In Smiley, the GUI allows the user to
identify the quality of a hyperlink before deciding to follow
it.

In relation to policy management and policy languages,
our event calculus policy language follows a common ap-
proach to policy specification with the PDL language [15].
However, as PDL does not define any entities representing
time it does not allow the explicit specification of time re-
lationships. It is possible to express time through the speci-
fication of time events, however we believe that the explicit
specification of time variables and relationships between
time variables is much closer to the user’s notion of time
and is thus a key consideration. Moreover, the specification
of the fluent in the event calculus policy language allows the
user to map policy rules to real life conditions that have a
‘duration’, such as “I am at home”, “network is down”, etc.

The Ponder policy language [2] defines a full-scale pol-
icy management system. It supports the specification of
authorisation, delegation, information filtering, refrain and
obligation policies over system specific policy domains.
The event calculus policy language described here does not
provide a complete policy management system, but it does
allow the specification of policies similar to the ‘obligation
policies’ described in Ponder. In our approach, the expres-
sion of time relationships in the event calculus policy lan-
guage provides more flexibility. Time relationships as de-
fined in Ponder are quite limited; used mainly for the speci-
fication of constraints over the time a policy should be con-
sidered active.

7. Conclusions

In this paper we have presented the requirements for co-
ordinated adaptation of multiple applications, which char-
acterise modern mobile applications. We describe a plat-
form which aims to facilitate the development of such ap-
plications through the use of policy driven adaptation. In
our approach, policies are described using an event calculus
based policy language and exported by applications to our
platform. We believe that by thus externalising adaptation
policies to an entity with a system-wide purview, coordi-
nated adaptive behaviour is possible. Significantly, our plat-
form and simply policy formalism allows the active involve-
ment of the user in defining the system’s behaviour. We
have presented formal syntax definitions for the event calcu-
lus policy language used by our platform and in describing
our current implementation work, have demonstrated how
policies are constructed and evaluated efficiently. More-
over, while this language has been chosen as an appropriate
solution for our requirements, we believe that it can prove
a useful basis for other policy based systems with specific
timed dependent behaviour.

References

[1] K. Cheverst, K. Mitchell, and N. Davies. Design of an object
model for a context sensitive tourist GUIDE. Computers and
Graphics, 23(6):883–891, Dec. 1999.

[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-
der policy specification language. In Proceedings of Policy
Workshop, Bristol, UK, January 2001.

[3] N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple
space based platform for adaptive mobile applications. ACM
Mobile Networks and Applications (MONET): Special Issue
on Protocols and Software Paradigms of Mobile Networks,
3(2):143–156, 1998.

[4] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based adaptation for mobile computing. In Pro-
ceedings of the 3rd USENIX Symbosium on Internet Tech-
nologies and Systems, San Francisco, California, March
2001.

[5] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. Archi-
tectural requirements for the effective support of adaptive
mobile applications. Work in progress paper presented in
Middleware2000, (USA:New Yort), April 2000.

[6] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An
architecture for the support of adaptive context-aware ap-
plications. In Proceedings of Mobile Data Management
(MDM‘01), Hong Kong, January 2001.

[7] C. Ellis. The case for higher-level power management. In
Proceedings of HotOS’99, 1999.

[8] J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In Proc. of
the Second IEEE Workshop on Mobile Computing Systems
and Applications, 1999.

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

[9] A. Friday, N. Davies, G. Blair, and K. Cheverst. Develop-
ing adaptive applications: The MOST experience. Journal
of Integrated Computer-Aided Engineering, 6(2):143–157,
1996.

[10] Z. Jiang and L. Kleinrock. An adaptive pre-fetching scheme.
IEEE Journal on Selected Areas in Communication, 16:358–
368, 1996.

[11] A. Joseph, J. Tauber, and F. Kaashoek. Mobile computing
with the Rover toolkit. IEEE Transactions on Computers:
Special issue on Mobile Computing, 43(3), 1997.

[12] R. Katz. Adaptation and mobility in wireless information
systems. IEEE Personal Communications, 1(1):6–17, 1994.

[13] R. Kowalsky. A logic-based calculus of events. New Gener-
ation Computing, 4:67–95, 1986.

[14] R. Kowalsky. Database updates in event calculus. Journal
of Logic Programming, 12:121–146, 1992.

[15] J. Lobo, R. Bhatia, and S. Naqvi. A policy description lan-
guage. In Proceedings of AAAI, Orlando, FL, July 1999.

[16] Microsoft Corporation. Universal Plug and Play device ar-
chitecture, version 0.91, March 2000. http://www.upnp.org.

[17] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adapta-
tion for mobility. In Sixteen ACM Symposium on Operat-
ing Systems Principles, pages 276–287, Saint Malo, France,
Oct. 1997.

[18] J. Pascoe. The Stick-e note architecture: Extending the in-
terface beyond the user. In Proceedings of the 1997 Interna-
tional Conference on Intelligent User Interfaces, Short Pa-
pers, pages 261–264, 1997.

[19] Real Networks Inc. The Real Player. http://www.real.com.
[20] M. Shanahan. The event calculus explained. In M. J.

Wooldridge and M. Veloso, editors, Articial Intelligence To-
day, Vol. 1600 of LNCS, pages 409–430. Springer, 1999.

Proceedings of the Third International Workshop on Policies for Distributed Systems and Networks (POLICY�02)
0-7695-1611-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

