
M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

WCML: Paving the Way for Reuse
in Object-Oriented Web Engineering

Martin Gaedke Christian Segor Hans-Werner Gellersen

Telecooperation Office
University of Karlsruhe
Vincenz-Prießnitz-Str. 1

76131 Karlsruhe
Germany

Tel.: ++49 721 690279

{gaedke, segor, hwg}@teco.edu

ABSTRACT

Since 1990 the Web has changed from a distributed hypertext
system to an efficient environment for application delivery. Due to
the legacy of the Web implementation model the development,
management, and evolution of complex Web applications suffer
from the coarse-grained model-entities. The demands can not be
achieved without the application of programming technology and
software engineering practice to applications in the Web, which is
also referred to as Web Engineering. It has been recognized that
the gap between design models and the implementation model of
the Web leads to a development process that is hard to maintain,
because fine-grained design entities get lost in the coarse-grained
implementation model. Therefore, the coarse-grained implementa-
tion model hinders the maintenance and reuse of parts of an appli-
cation. In this paper, the impacts on Web Engineering due to the
coarse-grained Web implementation model are discussed and
typical solutions that are related to the above problems are intro-
duced. Then, the object-oriented WebComposition Markup Lan-
guage will be presented as basis for a generic approach to
component-based Web-application development.

Keywords

Web Engineering, XML, Component-based Web Development,
Object-orientation, Software Reuse.

1. INTRODUCTION
The development of applications for the World Wide Web has
progressed in the last few years and the Web has changed from a
simple medium for publishing into a standard platform for distrib-
uted applications [3]. While the Web was originally designed to
provide and link large quantities of information for distributed
research teams, it is now also used by companies and institutions
to make essential information available, to connect their legacy
systems, and in general to deploy Web-enabled applications. Nev-
ertheless, the development discipline usually has remained “ad-

hoc”, thus resulting in applications of poor quality and causing
tremendous costs for maintenance and further evolution. The rea-
son is the obvious lack of structure in these “ad-hoc”-engineered
applications, and therefore also a lack of traceability.

It is widely recognized [2, 4, 8] that the lifecycle of Web applica-
tions is no longer manageable without Web Engineering, i.e. the
application of software engineering practice to the Web. Every
engineering discipline should be based upon an approach to sys-
tem design which maximizes reuse of existing components [12] -
unfortunately, design and code reuse for quality improvement and
cost reduction in the Web is a tiring venture. The main cause for
this problem can be found within the Web implementation model
itself: because of its deliberately simple and coarse-grained nature
[3, 6], it is perfect for easy authoring and straightforward publica-
tions of documents, with file-based resources being a suitable unit
for development and modification. Unfortunately, this structure is
more or less useless as a base for software engineering techniques.

State-of-the-art Web applications require a new kind of character-
istics, for instance accessibility anywhere and anytime by anyone,
accommodation of different client capabilities (e.g. varying screen
resolutions [4]), and adaptation to the fast growing technology
they operate with. The WebComposition approach [6] has been
proposed as a foundation for various Web engineering tasks. Its
main purpose is to maintain fine-grained access to an object-
oriented model and automatically map entities of this design
model to the resource-based Web implementation model. Based
on the WebComposition approach we introduce the
WebComposition Markup Language (WCML) in this paper. In
the following section we will discuss the implications of mapping
(OO-) design concepts to the Web implementation model and how
Web Engineering can profit from reusing both design and code
fragments. Section 3 elaborates on WCML, an XML-based
markup language that allows object-oriented development of
Web-based applications. The WCML processor is described in
section 4; and section 5 focuses on how WCML encourages the
reuse of design and code. In section 6 we take a short glimpse on
related work and draw conclusions.

2. WEB EVOLUTION - WHY REUSE
MATTERS
The Web implementation model, founded on file-based resources,
does not provide the possibility of modelling higher-level design

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

concepts that go beyond the granularity of a file. Structures such
as dialogues in session-based applications, user interface objects
in interactive applications, or corporate identity elements repre-
sented by a single design-entity have to be duplicated in many
resources. This makes it hard to maintain the application and en-
force a disciplined evolution of the application without destroying
the concepts of the original design.

Although there are design methods and systems available that
support the mapping of higher-level concepts and fine-grained
entities to the Web (such as OOHDM[11], RMM[7], Jessica[2],
or TML[8]), the reverse mapping and possible distribution for
maintenance and reuse of higher-level concepts is only poorly
supported. Furthermore, because of the lack of structure in Web
application code, it is hard to reuse code in an application, define
code for reuse, or reuse code for different target systems. These
restrictions in the overall development process prevent lower pro-
duction and maintenance costs along with increased quality.

The reuse of design and code is successfully practised and a main
task of software engineering [1, 9, 10]. A few examples of how
reuse facilitates the development during the lifecycle of applica-
tions are:

• The reuse of applications by support for different systems or
machines

• The reuse of functionality provided by standard libraries like
mathematical libraries

• The reuse of component-based software such as Java Beans
or DCOM/COM components

• And, finally, the reuse of design knowledge like design pat-
tern and frameworks

However, these practices seem to be less common in today’s Web
application development.

Furthermore, and even worse, the maintenance of large Web ap-
plications is most often carried out by site engineers instead of the
original authors of the contents. Often, these engineers end up
mentally reconstructing the original higher-level design concepts
from the implementation itself, in order to keep the semantics
when modifying the site. Certainly, this error-prone strategy re-
sults in the loss of application integrity and leads to inconsistent
systems.

To put it all in a nutshell, there are two main aspects complicating
or even preventing the usage of software engineering techniques
for the development of Web applications:

• Design and code reuse can only be done in a very unsatisfac-
tory way.

Design concepts frequently relate only to fragments within a
resource, to structures composed of such fragments, or to
interlinked resources. As these concepts are not easily acces-
sible from within a resource-based Web implementation, they
are hard to reuse. In fact, reuse can be done only by replicat-
ing the respective design concepts.

• There is hardly any support for the object-oriented concept of
inheritance in Web development.

In design, generalization, polymorphism and specialization
are fundamental concepts for organization of Web sites and
Web applications, for instance describing general naviga-
tional concepts or page designs which can be refined to more

specific designs for certain categories of pages. Nevertheless,
when it comes to implementing the design conventional
methodologies fall back upon the simple resource-based de-
velopment technique that follows the Web implementation
model.

In the following section we describe the WebComposition
Markup Language, whose main intention is to provide developers
with an object-oriented technology to enable them to use their
software engineering skills in spite of the coarse-grained Web
implementation model Since the general architecture of the Web-
Composition approach remains transparent for the already existing
infrastructure (such as Web servers etc.), no severe changes of the
configuration are necessary to use WCML.

3. THE WEBCOMPOSITION MARKUP
LANGUAGE (WCML)
The WebComposition Markup Language is an application of the
eXtensible Markup Language (XML) [14] that paves the way for
object-oriented Web engineering based on the WebComposition
approach. WCML enables developers to reuse designs and code
fragments by providing a simple notation that is capable of defin-
ing objects and their relationships.

3.1 The WebComposition Model
In WebComposition, Web entities are modelled as components
with a state and a set of operations specifying the component be-
haviour. Components can model Web entities with respect to a
variety of target languages and of arbitrary granularity, i.e. links,
anchors, layout fragments, or even complete pages, scripts, or
groups of resources. Components can reference other components
to model aggregation (has-part relationship) or specialization
(inherits-from relationship). WebComposition is based on a proto-
type-instance OO model [13] as opposed to a class-oriented OO
model. Components may be used like an abstract class, i.e. every
component can be a prototype for another component.

Prototyping is a mechanism to implement code sharing among
objects. Another possibility to share the code of a component is to
allow multiple references on the same component. Sharing is fun-
damental to reuse and for maintainability as it helps keeping
modifications local.

Components described in WCML reside in a WCML document,
which we refer to as a virtual component store, in conformity to
the WebComposition system described in [6]. In the following
sections, we present the specification of the WebComposition
Markup Language by describing the XML elements and their
meanings. Like all XML documents a WCML document consists
of a prologue and the content containing the markup. Figure 1
shows an example virtual component store, which will be referred
to throughout the remainder of this section.

3.2 Components and their Properties
According to the WebComposition Model, a WCML document
consists of a set of component declarations, with their properties
and their relationships defined by inheritance and aggregation. As
mentioned above, a set of components is stored in a virtual com-
ponent store, i.e. a file-based WCML-document.

Each component is identified by a universally unique identifier
(UUID); for the sake of clarity and readability we will refrain from
using “real” UUIDs in this text. Instead, we fall back upon hu-

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

man-readable identifiers like “component1”. A component must
have at least one property and can have any number of prototypes
(see below). Furthermore, it can be specified whether the compo-
nent itself should be referable in the generated code. If this switch
is set to true an HTML anchor tag is created by the WCML com-
piler.

Properties are simple (name, value)-pairs, whereas two notations
are possible as shown in Figure 1 (1). Furthermore, a property can
be defined in different modes, as there are:

• public
This is the standard setting. A public property is visible and
referable everywhere.

• private
A private property is only valid within the component where
it has been defined.

Figure 1 (1) shows examples for the above.

3.3 Prototypes and Inheritance
Since WebComposition uses the prototype-instance-model [13]
for modelling inheritance, every component can be used as a pro-
totype by other components. An inheritance tree is implicitly built
using the appropriate prototype-statements by the compiler. This

facilitates the code and provides a simple but powerful means for
reuse and code sharing.

The WebComposition model supports multiple inheritance that
allows a component to have more than one parent. Since a com-
ponent inherits all properties of its ancestors and because proper-
ties can have the same names in different ancestors, a mechanism
to avoid ambiguities is required. In WCML we use ordered multi-
ple inheritance, which means that in case of conflicts the value is
used that belongs to the last component that has been inherited
from.

Inherited properties can be redefined, which will overwrite the
original value of the property in order to specialise components
for different tasks. Figure 1 (2) shows these concepts along with
the component derived from the inheritance tree by the compiler.

3.4 References and Linking
Properties can be referred to within any other property, i.e. the
reference to the property name is replaced with the value of the
referred property. A reference can be further qualified with the
from attribute in order to refer to a property from a particular com-
ponent.

<?xml version=’1.0’?>

<!DOCTYPE wcml SYSTEM "wcml2.dtd">

<wcml>

(1)

 <component uuid=’c1’ referable=’true’>

 <property name=’p1’ value=’v1’/>

 <property name=’p2’>

 v2

 </property>

 <property name=’p3’ value=’v3’

 mode=’private’/>

 </component>

(2)

 <component uuid=’c2’>

 <prototype is=’c1’/>

 <property name=’p1’ value=’vX’/>

 </component>

 <component uuid=’c3’>

 <prototype is=’c1’/>

 <prototype is=’c2’/>

 </component>

 (3)

 <component uuid=’c4’>

 <property name=’p4’ value=’c1’/>

 <property name=’p5’>

 <refprop name=’p4’/>

 <refprop name=’p1’ from=’c2’/>

 <refprop name=’p1’ from=’*p4’/>

 </property>

 </component>

</wcml>

Figure 1: A simple WCML example

<component uuid=’c3’>

 <property name=’p1’ value=’v1’/>

 <property name=’p2’ value=’vX’/>

</component>

<component uuid=’c4’>

 <property name=’p4’ value=’c1’/>

 <property name=’p5’>

 c1

 vX

 v1

 </property>

</component>

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

Furthermore, property references can be indirect in the sense that
the from attribute does not point to the component containing the
referred property but to another (local) property (marked with an
asterisk – similar to C). The local property then contains the
UUID denoting the actual component that includes the desired
property. This supports abstraction and thus facilitates the defini-
tion of reusable implementation patterns. Again, Figure 1 shows
an example for these notions (see (3)).

By using the object-oriented capabilities of WCML it is possible
to parameterise property references. For this reason, a further
component stated in the prototype or refinement attribute of the
reference tag is temporarily
inserted into the inheritance
tree. The value of the de-
sired property then is de-
rived from the modified
tree, which is discarded
after use. In this scenario,
the properties of the further
component act as arguments
– this provides an efficient
technique to build generic
components that can be
fully parameterised in order
to fulfil special tasks. Figure
2 shows an example to-
gether with the respective
temporary inheritance trees
for the usage of the proto-
type and the refinement
attribute. The difference between both is the place where the “ar-
gument component” is inserted into the tree: components called
with prototype are inserted above the referred component; com-
ponents called using refinement are put below the referred com-
ponent.

Relationships between components on a conceptual level can be
defined using a special variety of references, called “link proper-
ties”. The compiler maps link properties to the corresponding
hypertext links. The link property is identified by the attribute to
denoting the referred component. For example, <PROPERTY
name="link" to="c1.c3"/> will be resolved to the value
uuid.html#c1.c3. This property defines a link to the anchor
of component c3, which resides (may be not only) in the content

of component c1, as shown in Figure 3. The necessary HTML
tags with their attributes must be provided by the referring com-
ponent, as the target language is not determined.

The benefit of modelling the hypertext links in this way is the
possibility to define the links outside the components and thus to
redefine a navigation structure or even define multiple navigation
structures for the same components without modifying any com-
ponents.

3.5 Factories: Getting productive
A wide-spread class of Web applications are Web-based informa-

tion systems, designed to
provide access to more or
less extensive information
usually stored in a data-
base system. Conven-
tional applications
therefore require some
mechanism to retrieve the
data from the database;
some well-known solu-
tions include cgi-based
database integration,
server-side scripting for
dynamic page generation
or client-side approaches
like JDBC. In any case, a
great number of informa-
tion pages is generated,
which usually look all the

same but contain different data.

When these Web information systems are regarded from a Web-
Composition point of view, it becomes clear that there are two
possibilities how to implement such systems:

• A special component is required, which implements one of
the database integration approaches mentioned above. This
solution is quite efficient and does not cause any special
problems for the developer – the required code is simply en-
capsulated by the component. However, this component will
probably contain code that is specific to the target system,
depending both on the system software and the database in-
terface.

Figure 3: Hyperlink-support - Resolution of the Link-property

<component uuid=’c1’>

 . . .

</component>

<component uuid=’c2’>

 <property name=’p1’ value=’. . .’/>

 <property name=’p2’>

 <refprop name=’p1’ prototype=’c1’/>

 <refprop name=’p1’ refinement=’c1’/>

 </property>

</component>

Figure 2: Parameterised property reference and the respective inheritance tree

c1

c2

c2

c1

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

• For each information page one component is created. The
advantage of this approach is that platform-independence is
preserved.

Nevertheless, the latter strategy requires some mechanism to cre-
ate the information components automatically, based on given
data. In WCML, the notion of a factory provides such a mecha-
nism.

In general, a factory is a special component that contains the re-
quired information for producing any number of components ac-
cording to a production schema. The main elements of a factory
are:

• the data source

• a query expression to select data sets from the source

• a template defining how the “products” of the factory should
look like

The data source is stated as a URL addressing an XML-file that
contains the data. Using this approach, data can be stored in the
file system, but also can be dynamically derived from a database
using a simple mapping server. A subset of this data can be se-
lected by stating an XQL (XML Query Language) expression,
which is evaluated by the compiler. The results are taken dataset
by dataset and inserted into the template, so that a new component
is created for every dataset. The UUIDs of these components are
generated by the compiler using well-know algorithms for this
purpose.

The following section focuses on how WCML code is analysed
and translated by the WCML compiler.

4. PROCESSING WCML
A WCML document is processed by the WCML compiler map-
ping the described components of the Virtual Component Store to

the Web implementation model respectively the target language.
The WCML compiler is implemented in Java and as DCOM
Component using an arbitrary XML parser with DOM and XQL-
support. Thus, the remaining tasks for the WCML compiler is to
accomplish the presentation operation for the components and to
resolve the different properties including the links.

In Figure 4 the integration of the WCML compiler with the exist-
ing system is depicted.

The main goal to provide a possibility that enables Web engineers
to reuse object-oriented design and code or develop code for reuse
is accomplished by using XML. The components are provided by
WCML documents (XML-based description) accessible through
the file system, a database system, or for distributed development
support through a Web server. In the following step, the WCML
document is parsed by the WCML parser respectively an XML
parser.

After the parsing process of the components succeeded, the com-
piler analyses the composition of the components. Therefore, the
properties with their references and strings are processed to gener-
ate the presentation output. The analysis step takes the WCML
descriptions for function calls, hyperlinking, polymorphism, ag-
gregation and specialization into account and evaluates the en-
rolled component by enumerating all affected name-value pairs on
demand.

In the final step, the compiler creates the target resource given by
the UUID of the component, if not otherwise specified by the
filename and directory properties. The content of the component
is then passed through to the file respectively to the Web-server, if
the compiler serves as Web-server extension, servlet or is called as
CGI-application.

Figure 4: Integration and Processing of WCML

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

5. APPLICATION DEVELOPMENT WITH
WCML
As demonstration, we present a small WCML application in
which one information component is reused for the generation of
different information pages. This is done by falling back upon a
well-know design pattern – the decorator [5], a flexible alternative
to subclassing for extending functionality. In the Web environ-
ment the notion of a decorator can be adopted to easily create
different views of one information item. Figure 5 shows how
decorators can be used to specify navigation and layout of a Web
page.

The following paragraphs show step-by-step how to reuse code
for the generation of different documents in WCML. The results
of these code fragments are shown in Figure 6. For the sake of
clarity some special tags, which are necessary to identify HTML
code, have been omitted here. Instead, HTML code is printed in
bold.

First, we have to state the document prologue and open the
WCML document:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE wcml SYSTEM "wcml2.dtd">

<wcml>

Then, a component representing the information itself is defined:

<component uuid=’Chapter1’>

 <property name=’title’ value=’Introduction’/>

 <property name=’content’>

 The development of applications for the

 World Wide Web . . .

 . . .

 </property>

</component>

Each decorator must be described in an extra component:

<component uuid=’HTMLDecorator1’>

 <property name=’content’>

 <H1>

 <refprop name=’title’

 from=’*information.component’/>

 </H1>

 <refprop name=’content’

 from=’*information.component’/>

 </property>

</component>

<component uuid=’HTMLDecorator2’>

 <property name=’content’>

 Title of document:

 <refprop name=’title’

 from=’*information.component’/>

 <HR>

 Content:

 <refprop name=’content’

 from=’*information.component’/>

 </property>

</component>

These components display the information contained in the given
information component in two different ways. In order to generate
the “decorated information” a further component must be defined,
which sets information.component to the appropriate
value:

<component uuid=’Chapter1StyleHTML1’>

 <prototype is=’HTMLDecorator1’/>

 <property name=’information.component’

Figure 5: Decorator use for Navigation and Layout

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

 value=’Chapter1’/>

</component>

To create a differently decorated Web page, another component is
defined:

<component uuid=’Chapter1StyleHTML2’>

 <prototype is=’HTMLDecorator2’/>

 <property name=’information.component’

 value=’Chapter1’/>

</component>

Other information components can be displayed using the same
layouts by simply changing the value of the informa-
tion.component property. This technique itensifies and sim-
plifies the reuse of both the information and the decorator
component. Both information and layout are kept in one single
location, and changes are easily promoted throughout the Web site
by the reuse and inheritance mechanisms of WCML.

Furthermore, code of other target languages can be created by just
defining an appropriate decorator and the respective output com-
ponent:

<component uuid='LaTeXDecorator'>

 <property name='content'>

 \section{<refprop name='title'

 from='*information.component'/>}

 <refprop name='content'

 from='*information.component'/>

 </property>

</component>

<component uuid='Chapter1StyleLaTeX'>

 <prototype is='DecoratorLaTeX'/>

 <property name='information.component'

 value='Chapter1'/>

</component>

Finally, the WCML document must be closed:

</wcml>

Figures 6 shows screenshots of the three representations of
Chapter1 produced with the different decorators. The upper left
screenshot depicts Chapter1StyleHTML1, the screenshot on
the right side shows Chapter1StyleHTML2. At the bottom,
Chapter1StyleLaTeX is depicted.

6. CONCLUSION
Web development suffers from the coarse-grained Web implemen-
tation model that makes it hard to map fine-grained design entities
to the implementation model. Due to the tremendous progress in
Web technology and the Web model itself, it is difficult to reuse
code and design for cost reduction and quality improvements. In
this paper, we introduced the WebComposition Markup Language
that enables the object-oriented specification of Web content. In
the WebComposition model, a site with its different entities is
composed in terms of components of arbitrary granularity. Com-
ponents can capture the entities that are basic units for more com-
plex patterns, but that are hidden in resources in a standard Web
implementation. One instance of such patterns is views on the
content that can be modelled following the idea of the decorator
design pattern. We propose that using WCML, which is an appli-
cation of the XML, enables the development of reusable hyper-

Figure 6: Chapter1 decorated with HTMLDecorator1 (top left), HTMLDecorator2 (top right) and LaTeXDecorator (bottom)

M. Gaedke, C. Segor, H.-W. Gellersen (2000): WCML: Paving the Way for Reuse in Object-Oriented Web Engineering. 2000 ACM Sym-
posium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy, March 19-21, 2000.

media structures. In addition, by using XML for describing the
components we can fall back on existing XML-Editors or easily
develop custom editors using the DTD of the WCML and an
existing XML-Parser.

Further work on the support for reuse in Web Engineering aims at
the development of an open WCML component repository. The
repository is being built using hypermedia technologies to sim-
plify the component access. We also investigate on design pattern
for hypermedia applications and their integration in the repository.

7. REFERENCES
[1] S. W. Ambler, Process Patterns - Building Large-

Scale Systems Using Object Tecchnology. New
York, NY: Cambridge University Press, 1998.

[2] R. A. Barta and M. W. Schranz, “JESSICA: an
object-oriented hypermedia publishing processor,”
Computer Networks and ISDN Systems, vol.
30(1998), pp. 239-249, 1998.

[3] F. Coda, C. Ghezzi, G. Vigna, and F. Garzotto,
“Towards a Software Engineering Approach to
Web Site Development,” 9th International Work-
shop on Software Specification and Design
(IWSSD), Ise-shima, Japan, 1998.

[4] M. Gaedke, M. Beigl, H.-W. Gellersen, and C.
Segor, “Web Content Delivery to Heterogeneous
Mobile Platforms,” Lecture Notes in Computer
Science (LNCS), vol. 1552, 1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-
oriented software. Reading, Mass.: Addison-
Wesley, 1995.

[6] H.-W. Gellersen, R. Wicke, and M. Gaedke,
“WebCompostion: an object-oriented support sys-
tem for the Web engineering lifecycle,” Computer
Networks and ISDN Systems, vol. 29 (1997), pp.
1429-1437, 1997.

[7] T. Isakowitz, E. A. Stohr, and P. Balasubramani-
nan, “RMM: A Methodology for Structured Hy-
permedia Design,” Communications of the ACM,
vol. 38, No. 8, pp. 34-44, 1995.

[8] A. Kristensen, “Tempate resolution in
XML/HTML,” Computer Networks and ISDN Sys-
tems, vol. 30 (1998), pp. 239-249, 1998.

[9] C. L. McClure, Software reuse techniques : adding
reuse to the system development process. Upper
Saddle River, N.J.: Prentice Hall, 1997.

[10] J. S. Poulin, Measuring software reuse : princi-
ples, practices, and economic models. Reading,
Mass.: Addison-Wesley, 1997.

[11] D. Schwabe and G. Rossi, “An Object Oriented
Approach to Web-Based Applications Design,”
TAPOS - Theory and Practice of Object Systems,
vol. 4, pp. 207-225, 1998.

[12] I. Sommerville, Software Engineering. London ;
Reading, Mass.: Addison-Wesley Pub. Co., 1982.

[13] D. Ungar and R. B. Smith, “Self: The Power of
Simplicity,” OOPSLA '87, 1987.

[14] World Wide Web Consortium, “Extensible
Markup Language (XML) Specification: W3C
Working Draft 21 Apr 1996,” :
http://www.w3.org/, 1999.

