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Abstract:  A solution to the state estimation problem
under structural uncertainty (unknown or changeable
dimension of the system state space) is given by the
Interacting Multiple Model (IMM) filter. The
requirements for its applicabilit y under structural
uncertainty are formulated. The highest IMM model
probabilit y is an indicator for the true model order and it
can be used for structural identification.  Results from
test examples with stationary systems and systems with
structural nonstationarity (changeable structure in the
course of the time) demonstrate the filter eff iciency. The
scalar and multivariable cases are investigated.
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1   Introduction
The present paper considers the state estimation
problem subject to structural uncertainty -
unknown or changeable dimension of the system
state space. The system state is estimated when the
structure and the true parameters of the system
model are unknown but they belong to an
uncertainty domain. A solution to this problem by
another multiple-model algorithm is given in [7].
The requirements for its applicabilit y under struc-
tural uncertainty are formulated in [7]. These
requirements are here extended for the IMM filter
- a powerful scheme [2,5] for estimation of hybrid
(continuous-discrete) systems. The IMM filter
belongs to the group of the multiple-model
algorithms that recently are very popular [1, 2, 8,
10, 11]. In most cases the IMM estimator is
applied under parametric model/noise uncertainty
[1-5, 9]. In contrast to this, here the problem with
structural uncertainty is studied. The overall state
estimate is a weighted sum of q partial estimates,
generated by a bank of Kalman filters for q models
with different structure from the uncertainty
domain. At the same time the IMM model
probabiliti es can be used for model order
determination.

  With the standard methods for structural
identification [6] the structure (model order)
selection is an iterative process. Usually, after the
initial model order computation on the basis of the
input-output data, the next obligatory step is the
model adequacy verification with the help of
different tests - by the zeros, poles and their
standard deviations, or based on the comparison
between the simulated/ predicted output with the
measured output, the residual errors, etc. The
presence of close poles and zeros is an indicator
that the model order is artificiall y increased and
the process of the structure selection is repeated
until receiving of  “enough good” results according
to the verification criteria.  In contrast to this
standard approach for structural identification, the
IMM estimator directly provides the model order -
it corresponds to the model with the greatest
probabilit y, recursively computed by the estimator.
The current system structure is detected based on
the measurements of the global system, and not by
the outputs of the separate subsystems.

2   IMM state estimation under
structural uncertainty
The state x Rk

n∈  of the system

 ( ) ( ) ( )x F M x G M v Mk k k k k k k k+ + + += +1 1 1 1 , (1)

  y Cx wk k k= +       (2)

is estimated where y Rk
r∈ is the measurement

vector, vk
m∈ℜ  and  wk

r∈ℜ  are respectively
the system and measurement noises, assumed to be
white and mutually uncorrelated, with zero means
and variances, respectively, Qk  and Rk . The
system model (1) at time k is among q possible
models (modes) that are depending on the
parameter { }M qk ∈ 12, , ,� . M ik =  denotes that

the i-th submodel is in effect during the sampling
period k of length T. The model switching is
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described by a Markov chain with known initial

model probabilities { }µi P M i= =0  and tran-

sitional probabilities { }p P M j M iij k k= = =−/ 1 ,

for i j q, , , ,= 1 2 � . The IMM state estimation
algorithm is a Bayesian suboptimal recursive
algorithm [2, 5] which yields the overall system
state estimate

              
� �

, ,x xk i k i k
i

q

=
=
∑ µ

1
                                 (3)

as a probabilistically weighted sum of partial
estimates 

�
xi , formed by a bank of operating in

parallel Kalman filters. At each recurrent cycle
( k k− →1 ) the initial conditions for the filter,
corresponding to the mode M ik =  are computed
by mixing the preceding mode-conditional
estimates 

�
xi ,  i=1,2,...,q.

   The order of the system model (1)-(2) is
unknown. The true model parameters F Gk k, , Ck ,

Q Rk k,  are also unknown but it is supposed that
they belong to an uncertainty domain. The true
model is approximated by q models from this
uncertainty domain. The uncertainty domain
contains p possible structures (models of different
orders n j pj , , , ,= 12 � ). From every structure

there are s models with different parameters. The
structures with different orders are constructed in
the following way: if from the full state vector

( )x x x xT T
j
T T

= 1 2, , ,�  (for the structure of

maximum order), the i-th segment xi  is dropped
out, the respective segment xi  is replaced by a
zero vector. It means that every segment from the
vector x  corresponds to some structure, and the
remaining segments are replaced by zeros. This is
important for the overall estimate (3) formation.
The estimate of the j-th segment of the state vector
x  is formed on the basis of the j-th segments of
the vectors 

�
, , , ,x i qi =12 � .An important condition

for the applicability of the filter is to keep the
correspondence between the variables in the
different IMM models when the order of the state
space is reduced and some variables are dropped
out. The true model is determined by the highest
IMM model probability.
     The choice of the transition probability matrix
P for the IMM depends on the problem specificity
and the initial information, if there is any.
  Examples satisfying the above mentioned
conditions are considered below.

3   Experimental results
The system under consideration S  is linear,
composed by independent subsystems Si ,

i q= 12, , ,�  connected in parallel (Fig.1), and
every of these subsystems is described by a state
vector xi , i q= 12, , ,� .

�

�

	 
 	

�

�

�

�

�






�

Fig. 1

For i=3 the general state vector of the system S  is

( )x x x xT T T T
= 1 2 3, , . If  some subsystems are

dropped out (a situation that often arises in
industrial or electronic systems), e.g. the
subsystems S2  and S3 , then the global system S

is described by the vector ( )x xT T
= 1 0 0, , .

    In all the examples below a system composed by
three subsystems ( i = 3 ) is considered.
   The algorithm performance is evaluated by
Monte Carlo experiments for 100 runs. A general
measure of performance, characterizing the filter
consistency, is the Normalized Estimation Error
Squared (NEES) [2] and it is presented.

Example 1. The system model (1)-(2) is stationary
(with constant matrices F G C Q, , , , and R ) and
with unknown order. The true model of the system
S  is:

F e= −0 1. , G =1- e−01. ,  C =1, Q = R = 1.

The final state estimate is computed on the basis of
three IMM models with different order (first,
second and third) from the uncertainty domain. For
equalizing the dimensions of the matrices and
vectors, the respective elements are fulfilled with
zeros:

1) ( )F diag e1
0 067 0 0= − . , ( )G e

T

1
0 0671 0 0= − − . ;

2) ( )F diag e e2
0067 05 0= − −. . , ( )G e e

T

2
0067 051 1 0= − −− −. . ;

3) ( )F diag e e e3
0 067 0 5 1= − − −. . ,

   ( )G e e e
T

3
0 067 0 5 11 1 1= − − −− − −. . ,

( )Ci = 1 1 1 , Qi = Ri = 1, i = 12 3, , . Between the

models the first one has a structure as the structure
of the true model, but its parameters are different.
    The transition probability matrix and the initial
model probability vector are
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. . .

, µ( )0

1 3

1 3

1 3

=
















.        (4)

The initial model probabilities in µ( )0  are chosen
equal, because the three models are equally
probable. The average model (mode) IMM proba-
bilities from Monte Carlo simulations are given in
Fig.2. It is seen that the probability of the first
model is the greatest, whereas the other two are
considerably smaller. On the basis of them an
inference can be drawn that the first order model is
the true one.
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Fig. 2  Model probabilities

 The NEES is given in Fig.3 and it demonstrates
that the IMM state estimate is consistent.
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Fig. 3   Normalized Estimation Error Squared

Example 2. The IMM performance is investigated
when the true unknown system model is

{ }F diag e e e= − − −0 1 0 5 1. . ,

( )G e e e
T

= − − −− − −1 1 101 05 1. . , ( )C = 1 1 1 .

The general IMM models are:

1) ( )F diag e1
0 067 0 0= − . , ( )G e

T

1
0 0671 0 0= − − . ;

2) ( )F diag e e2
0 067 0 33 0= − −. . ,

   ( )G e e
T

2
0 067 0 331 1 0= − −− −. . ;

3) ( )F diag e e e3
0 067 0 33 1= − − −. . ,

   ( )G e e e
T

3
0 067 0 33 11 1 1= − − −− − −. . ,

( )Ci = 1 1 1  and Qi = Ri = 1. The third order mo-

del coincides with the true model, but its
parameters are different.The transition probability
matrix and the initial model probability vector
have the form (4).The IMM model probabilities
and the NEES are given in Figs.4 and 5.
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Fig. 4 Model probabilities
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Fig. 5 Normalized Estimation Error Squared

Because the first IMM model structure does not
coincide with the true model structure and at the
beginning the greatest transition probability is
given to the first model, the estimator needs some
period of time for finding the true structure (the
probability µ3  corresponds to it).

Example 3. The system (1)-(2) is characterized by
changeable structure in the course of the time
(structural nonstationarity)
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       (5)

The models of the subsystems S1 , S2  and S3  have
the form

S1 : F e1
0 1= − . , G1 =1- e−01. , C1 =1, Q1 = R1 = 1,  (6)

time (s)

time (s)
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S2 : F e2
0 5= − . , G2 =1- e−05. , C2 =1, Q2 = R2 = 1, (7)

S3 : F e3
1= − , G3 =1- e −1 , C3 =1, Q3 = R3 = 1.  (8)

   The IMM models are:

1)  { }F diag e e e1
0 1 0 5 1= − − −. . ,

          ( )G e e e
T

1
01 05 11 1 1= − − −− − −. . ,

2)  { }F diag e e2
0 1 0 5 0= − −. . ,

          ( )G e e
T

2
0 1 0 51 1 0= − −− −. . ,

3) { }F diag e3
0 1 0 0= − . , ( )G e

T

3
011 0 0= − − . ,

( )Ci = 1 1 1 , Q Ri i= = 1, and { }diag .  denotes a

diagonal matrix. The structure and the parameters
of every IMM model coincide with the structure
and the parameters of the true system models in
the different time intervals.
   The transition probability matrix has the form as
in (4) and the initial model probabilities vector is

( )µ( ) . . .0 098 001 0 01= T
. The average IMM

model probabilities are given in Fig. 6 and the
NEES - in Fig.7.
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Fig. 6   Model probabilities

A second experiment is performed when the
system true structure is changing according to (5),
but only the structure of every model coincides
with the structure of the true models of the
subsystems, whereas the parameters are different.
The IMM models matrices chosen from the
uncertainty domain are :

    1) { }F diag e e e1
0 067 0 5 1= − − −. . ,

        ( )G e e e
T

1
0 067 0 5 11 1 1= − − −− − −. . ,

      2) { }F diag e e2
0 067 0 5 0= − −. . ,

          ( )G e e
T

2
0 067 0 51 1 0= − −− −. . ,

3) { }F diag e3
0 067 0 0= − . , ( )G e

T

3
0 0671 0 0= − − . .
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Fig. 7  Normalized Estimation Error Squared

  The average IMM model probabilities are shown
in Fig. 8 and the NEES - in Fig. 9.
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        Fig. 8  Model probabilities
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    Fig. 9  Normalized Estimation Error Squared

The results from the two tests are similar. In both
cases at the beginning ( k ≤ 150 ) the first
probability has the highest value, later on - the se-
cond one, and finally ( k ≥ 300 ) - the third model
probability. These changes correspond to the
changes in the model structure: at the beginning
the model order is n = 3, after that n = 2, and for
k ≥ 300 , n = 1. It can be seen by the comparison
of the plots in Figs. 7 and 9 that the NEES for the
models with accurate parameters is smaller than
the NEES for the models with inaccurate ones.
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Example 4. The considered system (1)-(2) is mul-

tivariable ( vk ∈ℜ3 , y Rk ∈ 3 , wk ∈ℜ3 )  with the
following structure (unknown)
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where S1 , S2  and S3  have the form (6), (7) and (8)
respectively.
   Different subsystems are working in the course
of the time - one of them are switched on, another
are switched off. The parameters of the subsystems
are accurate. The IMM is using seven models -
corresponding to all the possible combinations of
working subsystems.
      The IMM models matrices are:

1) { }F diag e e e1
0 1 0 5 1= − − −. . ,

           { }G diag e e e
T

1
0 1 0 5 11 1 1= − − −− − −. . ;

2) { }F diag e e2
01 05 0= − −. . , { }G diag e e

T

2
0.1 0.51 1 0= − −− − ;

3) { }F diag e e3
05 10= − −. , ( )G e e

T

3
05 10 1 1= − −− −. ;

4) { }F diag e e4
01 10= − −. , { }G diag e e

T

4
01 11 0 1= − −− −. ;

5) { }F diag e5
01 0 0= − . , { }G diag e

T

5
011 0 0= − − . ;

6) { }F diag e6
0 50 0= − . , { }G diag e

T

6
0 50 1 0= − − . ;

7) { }F diag e7
10 0= − , { }G diag e

T

7
10 0 1= − − ,

C Ii = 3 , Q Ii = 3 , R Ii = 0 01 3. , i = 17, , where I is
the identity matrix. The IMM transition probability
matrix and the initial model probabilities vector
are:

P =

0 94 0 01 0 01 0 01 0 01 0 01 0 01
0 01 0 94 0 01 0 01 0 01 0 01 0 01
0 01 0 01 0 94 0 01 0 01 0 01 0 01
0 01 0 01 0 01 0 94 0 01 0 01 0 01
0 01 0 01 0 01 0 01 0 94 0 01 0 01
0 01 0 01 0 01 0 01 0 01 0 94 0 01
0 01 0 01 0 01 0 01 0 01 0 01 0 01

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .





















,

( )µ( )0 1 7 1 7 1 7 1 7 1 7 1 7 1 7= T
.

The model probabilities and NEES plots are given
in Figs. 10 and 11. Because the IMM models
correspond to all the combinations of working
subsystems, it is possible by the model probabi-
lities to determine the model order and to identify
the active subsystems in every moment.
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 Fig. 10  Model probabilities
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  Fig. 11  Normalized Estimation Error Squared

Anther experiment is made by IMM models
corresponding to all the possible combinations of
subsystems but with inaccurate model parameters

1) { }F diag e e e1
0 067 0 33 1 25= − − −. . . ,

    { }G diag e e e
T

1
0 067 0 33 1 251 1 1= − − −− − −. . . ;

2) { }F diag e e2
0067 0 33 0= − − . ,

    { }G diag e e
T

2
0 067 0 331 1 0= − −− −. . ;

3) { }F diag e e3
0 33 1 250= − −. . ,

          ( )G e e
T

3
0 33 1 250 1 1= − −− −. . ;

4) { }F diag e e4
0 067 1 250= − −. . ,

    { }G diag e e
T

4
0 067 1 251 0 1= − −− −. . ;

5) { }F diag e5
0067 0 0= − . , { }G diag e

T

5
0 0671 0 0= − − . ;

6) { }F diag e6
0 330 0= − . , { }G diag e

T

6
0 330 1 0= − − . ;

7) { }F diag e7
1250 0= − . , { }G diag e

T

7
1250 0 1= − − . ,

C Ii = 3 , Q Ii = 3 , R Ii = 0 01 3. , i = 17, .

The model probabilities and the NEES are
presented in Figs. 12, 13. In spite of the fact that
only the structures of the models are true, whereas
the parameters do not coincide with their accurate

NEES

time (s)

time (s)
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values, the IMM estimator is finding the true
model structure in the different periods of time.

µ1
µ2

µ6 µ3

µ1

time (s)

µ4
µ5µ �

Fig. 12  Model probabilities

Fig. 13  Normalized Estimation Error Squared

The NEES is bigger then the NEES for the case
with accurate parameters. It should also be
emphasized that in all examples, the state
estimates are characterized by a very good con-
sistency (obvious from the NEES plots).

4   Conclusions

The Interacting Multiple Model filter has been
applied to state estimation in the presence of
structural uncertainty - unknown or changeable
dimension of the system state space and its per-
formance is evaluated by Monte Carlo simulations.
The restrictions, concerning the IMM application
to state estimation under structural uncertainty are
formulated. The most important one is to keep the
correspondence between the variables in the
different IMM models. The highest IMM model
probability is an indicator for the true model order
and it can be used for structural identification. In

comparison to the standard methods for structural
identification, where the model order selection is
an iterative process, the IMM estimator directly
provides the model order. Results from test
examples with stationary systems and systems with
structural nonstationary (changeable structure in
the course of the time) demonstrate the filter
efficiency. The scalar and multivariable cases are
investigated.
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