Lancaster EPrints

Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei.

Ginger, Michael L. and Ngazoa, E. Solange and Pereira, Claudio A. and Pullen, Timothy J. and Kabiri, Mostafa and Becker, Katja and Gull, Keith and Steverding, Dietmar (2005) Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei. Journal of Biological Chemistry, 280 (12). pp. 11781-11789.

Full text not available from this repository.

Abstract

Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of -phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.

Item Type: Article
Journal or Publication Title: Journal of Biological Chemistry
Subjects: Q Science > QH Natural history > QH301 Biology
Departments: Faculty of Health and Medicine > Biomedical & Life Sciences
ID Code: 9623
Deposited By: Dr Michael Ginger
Deposited On: 17 Jun 2008 15:08
Refereed?: Yes
Published?: Published
Last Modified: 26 Jul 2012 18:40
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/9623

Actions (login required)

View Item