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Abstract: Evolving Takagi-Sugeno (eTS) fuzzy models and the method for their on-line 
identification has been recently introduced for both MISO and MIMO case. In this paper, 
the mechanism for rule-base evolution, one of the central points of the algorithm together 
with the recursive clustering and modified recursive least squares (RLS) estimation, is 
studied in detail. Different scenarios are considered for the rule base upgrade and 
modification. The radius of influence of each fuzzy rule is considered to be a vector instead 
of a scalar as in the original eTS approach, allowing different areas of the data space to be 
covered by each input variable. Simulation results using a well-known benchmark 
(Mackey-Glass chaotic time-series prediction) are presented. Copyright © 2004 IFAC 
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1.  INTRODUCTION 
 
For several centuries the so-called first principles 
models have dominated the natural sciences. 
However, for a number of practical engineering 
problems they are difficult or even impossible to 
build (Angelov, 2002; Yager and Filev, 1994). 
Another alternative is to use so-called "black-box" 
models (polynomial, regression models, neural 
networks). They can fit the data with arbitrary 
precision, but they are not transparent enough: their 
coefficients and structure is not directly related to the 
system being modelled (Yager and Filev, 1994). 
Fuzzy rule-based models and especially Takagi-Sugeno 
(TS) fuzzy models have gained significant impetus due 
to their flexibility and computational efficiency (Takagi 
and Sugeno, 1985; Yager and Filev, 1994). They have 
a quasi-linear nature and use the idea of approximation 
of a nonlinear system by a collection of fuzzily mixed 
local linear models. The TS fuzzy model is attractive 
because of its ability to approximate nonlinear dynamics, 
multiple operating modes and significant parameter and 
structure variations (Takagi and Sugeno, 1985). 

On-line learning of TS fuzzy models involves 
recursive, non-iterative clustering responsible for 
model structure (rule base) learning and recursive 
consequent parameter estimation (Angelov, 2002; 
Angelov and Filev, 2004). eTS is based on the 
assumption that the model structure evolves 
gradually instead of being known a priori (Angelov 
and Filev, 2004). It is important to note that this 
evolution is much slower than the evolution of the 
model parameters. For the eTS the notion of 
informative potential of the new data sample 
(accumulated spatial proximity measure) is very 
important. It has been first introduced in the 
mountain clustering approach (Yager and Filev, 
1993) and then refined in the subtractive clustering 
approach (Chiu, 1994). It is used as a trigger to 
update the rule-base (Angelov, 2002; Angelov and 
Filev, 2004). It is a great advantage of this approach 
that the learning can start without a priori 
information and only a single data sample. This 
interesting feature makes the approach potentially 
very useful in autonomous, robotic, and smart 
adaptive systems (Angelov, 2002). 



2. IDENTIFICATION OF TS FUZZY MODELS 
 

TS fuzzy models have been originally introduced by 
Takagi and Sugeno (1985) as the first systematic 
method for identification of fuzzy models. They are a 
group of rule-based models with fuzzy antecedents 
and functional consequent (1), 
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where iℜ  denotes the ith fuzzy rule; R is the number 
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The basic notion of the TS method is the fuzzy 
separation of the data space into local regions 
(Takagi and Sugeno, 1985). Each region is 
associated with a linear sub-model, which is valid 
with a degree, proportional to the distance to the 
region's center. In this way, the overall nonlinear 
system is represented by a fuzzy weighted 
combination of locally valid linear models. Usually 
Gaussians are used to represent the antecedent fuzzy 
sets. This ensures greatest possible generalization of 
the description (2), 
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where r is a positive constant, which defines the radius 
of the antecedent and the zone of influence of the ith 
model; *ix  is the focal point of the ith rule antecedent. 
In the eTS fuzzy model, which is based on TS fuzzy 
models and considers their on-line identification 
subject to gradually evolving rules, a small number 
of parameters is needed to be predefined. One of the 
few such parameters is the radius r. As it will be 
shown, it can be used as a leverage for a trade-off 
between the model complexity and precision. As a 
general guidance, too large values of r lead to 
averaging, too small - to over-fitting. A value of r in 
the range of [0.3; 0.5] has been recommended 
(Angelov, 2002; Angelov and Filev, 2004). Since the 
parameters of the linear models are boundless, there 
is no general need for normalization of the inputs. 
However, when the values of inputs differ 
significantly a vector representation of the radius will 
give more flexibility and can compensate the weights 
of the projections of the distance between a data 
point and a rule center on different inputs. We 
consider here a vector definition of the radii, 

[ ]Tnrrrr ,,, 21 K=  in the form (3), 

)( xxrr −=  (3)

where [ ]Tnxxxx K,, 21=  and [ ]Tnxxxx K,, 21=  are 
respectively the vector of expected maximums and 
minimums of the inputs. It should be noted that in 
on-line mode one could only expect the range of 
each of the inputs, but the precise values of x  and x  
are not critically important as they are compensated 
to some extend by the value of r , and ultimately by 
the boundless consequent parameters. 
Using different radii for each of the input variables 
we can denote the membership function of the 
antecedent fuzzy sets as (4). 
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The overall model output is calculated by weighted 
averaging of individual rules' contributions (5), 
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of the ith rule. In a vector form we can represent it as (6), 
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where [ ]TTRTT )(,,)(,)( 21 πππθ K= is a vector 
composed of the linear model parameters; 
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that are weighted by the normalized firing levels of 
the rules. 
Both locally and globally optimal solutions can be 
estimated using the RLS algorithm. The globally 
optimal one does not guarantee locally adequate 
behavior of the sub-models that form the TS fuzzy 
model. Locally meaningful sub-models could be 
found using weighted RLS (wRLS) algorithm 
associated with each rule (Angelov and Filev, 2004). 
 
 

3.  ON-LINE LEARNING OF eTS MODELS 
 
On-line learning of eTS fuzzy models includes 
recursive clustering and forming of a gradually 
evolving rule-base and weighted recursive least squares 
estimation. The basic stages of the procedure for on-
line learning will be briefly recalled. For more details 
the reader is directed to (Angelov and Filev, 2004). 
 
A. Rule-base initialization 
 
The on-line learning procedure starts with initialization 
of the rule-base. The first data point is established as the 
focal point of the first cluster )1( =i . Its coordinates are 
used to form the antecedent part of the fuzzy rule (1) 
using for example Gaussian membership functions (2). 
Its potential, P, is assumed equal to 1. Parameters of the 
local linear model associated to this rule are also 



initialized to 0. The covariance matrix, C, is initialized 
with large values, Ω, in the main diagonal (7), 
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where *1z is the first cluster center; *1x is the focal 

point of the first rule being a projection of *1z  on the 

axis x; I is the identity matrix. 
 
B. Reading the next data point 
 
The time step is updated )1:( += kk  and the potential 
of the new data points )( kz  is calculated recursively. 
Please note that k now denotes the new (next) time 
step. 
 
C. Calculation of the potential of the new data point 
 
The potential of a data point is measured by a 
Cauchy type function (8) (Angelov and Filev, 2004), 
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where )( kk zP denotes the potential of the data point 

)( kz  calculated at time k; j
k

j
i

j
ik zzd −= , denotes the 

projection of the distance between two data points 
( j

iz and j
kz ) on the axis jz  ( jx  for nj ,,2,1 K=  and 

on the axis y for 1+= nj ). 
The potential of the new data sample is calculated 
recursively by (9) (Angelov and Filev, 2004). 
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Parameters kϑ  and kν  in (9) are calculated from the 
current data point kz , while j

kβ  and kσ  are 
recursively updated by (10). 
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D. Updating the potentials of the centers 
 
Each new data point influences the potentials of the 
centers of the clusters ( *lz , Rl ,,2,1 K= ), because by 
definition the potential depends on the distance to all 
data points, including the new ones (the sum in the 
denominator by i in (8) has an increasing number of 
components). The input part *lx of these centers, *lz , 

Rl ,,2,1 K=  is used as focal points of the existing 
rules. 

The potentials of the focal points of the existing 
clusters are updated recursively (11) (Angelov and 
Filev, 2004), 
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where )( *l
k zP  is the potential of the lth cluster *lz , 

which is a prototype of the lth rule at time k. 
 
E. Rule base evolution 
 
At this stage the potential of the new data point, 
calculated at stage C, is compared to the potential of 
the centers of the existing clusters updated at stage D 
and the important decision whether to modify or up-
grade the rule-base is taken. The evolution of the rule-
base is driven by the following two basic principles: 
 
Principle 1 (MODIFY): 
 
IF (MODIFY condition) 
THEN the new data point )( kz  replaces this center 
(let us suppose that it has index j) (12). 
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Principle 2 (UPGRADE): 
 
IF (UPGRADE condition) 
THEN the new data point is added to the rule-base 
as a new center and a new rule is formed with a focal 
point based on the projection of this center on the 
axis x (13). 
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Generally, the MODIFY condition includes the 
UPGRADE condition plus the check for the closeness 
of the candidate new rule center to the already existing 
rule centers. Originally, two thresholds 
( )%15%;50 == εε  based on the maximum of the 
potentials of the existing rules, kP , have been 
considered as UPGRADE condition (Angelov, 2002), 
then the condition was simplified (Angelov and Filev, 
2004) to a comparison to kP  directly. A number of 
different scenarios have been investigated and they will 
be summarized and analyzed later. The closeness to the 
existing rule centers is measured with the Euclidean 
distance from the new data point to the closest of the 
existing rule centers (14). 
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F. Estimation of the local sub-models parameters 
 
In eTS fuzzy models the rule-base gradually evolves 
(Angelov, 2002; Angelov and Filev, 2004) leading to 
a change of the normalized firing strengths of the 



rules )( iλ , which effects all the data (including the 
data collected before time of the change). Therefore, 
the straightforward application of the RLS algorithm 
or wRLS is not correct. It has been proposed to reset 
the covariance matrices and initialize the parameters 
of the RLS each time a new rule is added to the rule 
base. This thR )1( +  rule is estimated as a weighted 
average of the respective covariance and parameters 
of the remaining R rules (Angelov and Filev, 2004). 
The following RLS procedure (15) (16) is globally 
optimal (Angelov and Filev, 2004), 
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When the rule-base is upgraded (UPGRADE 
principle is active) the RLS algorithm is reset in the 
following way (Angelov and Filev, 2004): 
 
a) Parameters of the new rule, thR )1( + , are 

determined by the weighted average of the 
parameters of the rest )(R  of the rules with 
weights equal to the normalized firing levels of 
the existing rules iλ . Parameters for the rest of 
the rules are taken from the previous step without 
change (17) (Angelov and Filev, 2004), 
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b) Covariance matrices are reset as (19), 
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where ijς  is an element of the covariance matrix, 
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a coefficient (Angelov and Filev, 2004). 
When a rule is replaced with another one (MODIFY 
principle is active), the covariance matrices are taken 
from the previous step without change. 
Similarly, there is a locally optimal procedure, which is 
based on the wRLS (20) (21) (Angelov and Filev, 2004), 
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with initial conditions 0ˆ1 =
iπ ; Ici Ω=1 ; Ri ,,2,1 K= . 

In this case, the covariance matrices are separate for 
each rule and have smaller dimensions 
( )1()1( +×+∈ nni

k Rc ; Ri ,,2,1 K= ). Parameters of the 
newly added rule (UPGRADE principle) are 
determined as weighted average of the parameters of 
the rest R rules by (18). Parameters of the rest R rules 
are not changed ( i

k
i
k 1−= ππ ; Ri ,,2,1 K= ). When a 

rule is replaced by another rule (MODIFY principle) 
then parameters of all rules are not changed 
( i

k
i
k 1−= ππ ; Ri ,,2,1 K= ). The covariance matrix of 

the newly added rule (UPGRADE) is initialized by 
IcR

k Ω=+1 . The covariance matrices of the rest R 
rules are inherited ( i

k
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G. Next output prediction 
 
Having the estimated parameters of the local sub-
models the next value of the output is predicted (22). 
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The first value to be predicted is the output of the 3rd 
data sample, 3ŷ . The procedure for rule-base 
evolution of eTS fuzzy models repeats the stages 
from B to G in a loop over all of the existing data in 
real time (theoretically an infinite loop), Fig. 1. 
 

BEGIN

A. INITIALISE

B. READ

C.; D. POTENTIALS

E. RULE-BASE EVOLVE

F. ESTIMATE

G. PREDICT

CLUSTERING

 
Fig. 1. Flowchart of the eTS learning algorithm. 
 
After the initialization at stage A, and reading the 
new data at the next time step, stage B, the recursive 
clustering starts (stages C-E). Stage C is very 
important because it offers the possibility to apply 
the approach in real time avoiding the problem with 
the continuously growing number of data. The stage 
of rule-base evolution, E, is a very important part of 



the overall algorithm, because it defines the model 
structure (rule-base) evolution. In fact, stages C and 
D are supportive for this stage, which will be 
considered in more detail in the next section. In the 
next stage, F, another important operation is 
performed, the recursive estimation of the parameters 
of local sub-models. The last stage, G, is summative, 
where the prediction is made. 
 
 

4.  RULE BASE EVOLUTION 
 
In this section different scenario for the rule-base 
evolution will be studied. They are summarised in 
Table 1. The original scenario is adopted by Angelov 
and Filev (2004) while scenarios D, E, F and G have 
been proposed by Victor and Dourado (2003). 
 

Table 1 Scenarios for rule-base evolution. 
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the potentials of the existing rule centers. 
Since we consider vector radii in this paper, instead 
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same as in (Angelov, et al., 2004). 
These different scenarios for rule-base evolution 
have been tested on a benchmark problem: prediction 
of the Mackey-Glass chaotic time-series, which is 
generated from the differential delay equation 
defined by (Angelov and Filev, 2004; Chiu, 1994; 
Kasabov and Song, 2002; Victor and Dourado, 
2003): 
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The aim is using the past values of v to predict future 
values of v. The value of the signal 85 steps ahead 

)85( += tvy  is predicted based on the values of the 
signal at the current moment, 6, 12, and 18 steps 
back: [ ]Ttvtvtvtvx )(),6(),12(),18( −−−= . 
The following experiment was conducted: 3000 data 
points, for 3200:201=t , are extracted from the time 

series and used as training data, Fig. 2; 500 data 
points, for 5500:5001=t , are used as testing 
(validation) data. All the data is put in the same file, 
i.e. training data plus testing data. The data set has 
3500 data samples and the learning mechanism is 
always active, even for the testing data. 
To evaluate the performance of the models we use 
the RMSE and the NDEI (Non-Dimensional Error 
Index) (24), the ratio of the root mean square error 
over the standard deviation of the target data. 
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The values of the performance measures will be 
calculated separately for the training and testing data. 
For the scenarios described before the results for a 
particular value of the constant radii, 4.0=r , and 
initialization parameter for the RLS algorithm 

750=Ω  are tabulated in Table 2 (Victor and 
Dourado, 2003). 
 

Table 2 Results for the different scenarios. 
 

Scenario R RMSE 
Training 

RMSE 
Testing 

NDEI 
Training 

NDEI 
Testing 

Original 19 0.09359 0.09853 0.37055 0.38891 
D 4 0.11815 0.11481 0.46775 0.45315 
E 7 0.11607 0.11063 0.45952 0.43663 
F 6 0.11314 0.10900 0.44791 0.43019 
G 5 0.11505 0.11178 0.45548 0.44119 

 
From this table it is obvious that for the same value 
of r very different values for the number of rules 
created and modified are obtained. The performance 
of the models, measured by the RMSE and NDEI, 
also varies significantly. We have also considered the 
use of the different scenario for creating the number 
of rules. The results for 9=R  are presented in Table 
3 (Victor and Dourado, 2003). 
 

Table 3 Results for a similar number of rules. 
 

Scenario r RMSE 
Training 

RMSE 
Testing 

NDEI 
Training 

NDEI 
Testing 

D 0.17 0.10723 0.10526 0.42454 0.41545 
E 0.25 0.10720 0.10388 0.42441 0.41001 
F 0.25 0.10089 0.09640 0.39942 0.38048 
G 0.20 0.10539 0.10085 0.41726 0.39806 

 
One can see that different radii are necessary to 
achieve the same rule-base size using the different 
scenario. From Table 3 we conclude that the 
performance is better for scenario F. It must be also 
stated that in scenario E the definition of the relevant 
threshold, the upper one (see Table 1), was made 
after some experimentation, which makes this 
conclusion problem-dependent. 
It is very illustrative to compare the rule-base 
evolution for the different scenario. This is shown for 
the first 500 data samples to the original scenario on 
Fig.2 and Fig. 3 (Victor and Dourado, 2003). 



 
Fig. 2. Potential evolution: kP  - red, )( kk zP  - green. 
 

 
Fig. 3. Rule base evolution for the original scenario. 
 
Similarly, for the scenario F (the best performing 
overall (Victor and Dourado, 2003)) we have: 
 

 
Fig. 4. Potential evolution: kP , )( kk zP , kP  - magenta. 
 

 
Fig. 5. Rule base evolution for scenario F. 
 
It should be noted that scenario D-F have a very 
large number of replaced rules (the MODIFY 
principle is active very often, and the rule base in less 
stable). The number of replaced rules has been 16, 
48, 83, and 85 respectively for the case represented 

in Table 2, and 11, 46, 80, and 80 for the case 
represented in the Table 3 (Victor and Dourado, 
2003). However, as a whole the eTS method gives a 
significantly more compact, and hence more 
transparent rule base than the similar neuro-fuzzy 
approaches, Table 4. 
 

Table 4 Comparative analysis. 
 

Methods Rules/Units NDEI 
RAN (Kasabov and Song, 2002) 113 units 0.373 
ESOM (Kasabov and Song, 2002) 114 units 0.320 
EfuNN (Kasabov and Song, 2002) 193 rule nodes 0.401 
DENFIS (Kasabov and Song, 2002) 58 fuzzy rules 0.276 
eTS (Angelov and Filev, 2004) 113 fuzzy rules 0.095 
eTS (Victor and Dourado, 2003) 9 fuzzy rules 0.380 
 
 

5.  CONCLUDING REMARKS 
 
Different scenarios are considered for the rule base 
evolution. The radius of influence of each fuzzy rule 
is considered to be a vector instead of a scalar, 
allowing different areas of the data space to be 
covered by each input variable. Simulation results 
using a well-known benchmark (Mackey-Glass 
chaotic time-series prediction) are considered in this 
paper. Further investigation concern the application 
of eTS to predictive modelling of the speech 
spectrum magnitude, classification of multi-channel 
source modulation. 
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