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We study fluctuational transitions in discrete and continuous dynamical systems that have two coexisting
attractors in phase space, separated by a fractal basin boundary which may be either locally disconnected or
locally connected. Theoretical and numerical evidence is given to show that, in each case, the transition occurs
via a unique accessible point on the boundary, both in discrete systems and in flows. The complicated structure
of the escape paths inside the locally disconnected fractal basin boundary is determined by a hierarchy of
homoclinic points. The interrelation between the mechanism of transitions and the hierarchy is illustrated by
consideration of fluctuational transitions in dynamical systems demonstrating “fractal-fractal” basin boundary
metamorphosis at some value of a control parameter. The most probable escape path from an attractor, which
can be either regular or chaotic, is found for each type of boundary using both statistical analysis of fluctua-
tional trajectories and the Hamiltonian theory of fluctuations.
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I. INTRODUCTION

Examples of fluctuation-induced transitions can be found
in many branches of science, from diffusion in solids and
protein folding, to switching in lasersf1g and resonantly
driven trapped electronsf2g. In many situations, it is impor-
tant not only to estimate the escape probability, but also to be
able to control it, which, in turn, requires additional informa-
tion about the structure of the escape paths connecting meta-
stable states.

The complex structure of chaotic limit sets existing in
phase space, and the fractality of the basin boundaries sepa-
rating coexisting attractorsf3–6g, inevitably make the analy-
sis of fluctuational transitions an extremely difficult and
challenging problem. The main difficulty stems from delicate
questions about the uniqueness of solutions and the boundary
condition on the chaotic attractor and/or on the fractal basin
boundary sFBBd. A number of interesting analytic results
were obtained for the escape problem in one- and two-
dimensional linear chaotic mapsf7–9g using the methods of
transition state theory. However, exact analytic results are
not readily available for the general case of a nonlinear map.
Instead, an asymptotic analysis of the escape problem in the
limit of weak noise developed for continuous systemsssee,
e.g.,f10gd and extended to mapsf11,12g can be adopted for
chaotic systemsf13–16g.

In this approach, an auxiliary Hamiltonian systemsfor
flowsd, or an auxiliary area-preserving map, is introduced
describing the fluctuational motion as a motion along certain
deterministic trajectories. The solution of the escape problem
is then given by the solution of the boundary value problem
in the extended phase space of the auxiliary system: it is the
solution yielding the trajectory of minimal energy connecting
the attractor to the boundary of its basin of attraction. We
emphasise that these deterministic trajectories underlying
fluctuational motion are not mere theoretical abstractions,
but can be observed experimentallyf17,18g.

The main difficulty in application of these results to cha-
otic systems lies in the fact that the boundary conditions are
in general not known, neither at the chaotic attractor nor on

the fractal basin boundary. For one-dimensional maps, the
problem of specifying boundary conditions can sometimes
be sidesteppedf14g by carrying out minimization over all
possible initial conditions on the chaotic attractor. Clearly,
such an approach cannot be extended to higher-dimensional
fractal structures.

Recently, however, it was shown that the problem of es-
cape in chaotic systems with fractal boundaries can be con-
siderably simplified. First, it was demonstratedf19–21g and
independently confirmedf22g that unique boundary condi-
tions can be identified on a chaotic attractor. Second, our
recent studies have shown that fluctuational transitions
across a locally disconnectedsLDd FBB occur via a deter-
ministic mechanism. We have also shown that escape occurs
via a unique accessible boundary point on the LD FBB and
that the structure of escape paths inside the LD FBB is de-
termined by a hierarchy of points in a homoclinic tangle
f23g. Moreover, it was inferred that the mechanism in ques-
tion should be common among many chaotic maps and
flows.

In this paper, we describe in more detail the mechanism of
fluctuational transition across both LD and locally connected
sLCd FBBs, and we demonstrate that our prediction about the
common nature of the described mechanism is indeed cor-
rect.

It was shown earlier that the presence of the homoclinic
tangencies that cause fractalization of the basin boundary
also leads to a decrease in activation energyf24,25g. In the
present paper, we give theoretical and numerical evidence to
demonstrate that the predicted mechanism is valid for sys-
tems showing “fractal-fractal” basin boundary metamorpho-
ses. This allows one to study the activation energy and the
optimal transition path even when the fractal boundary and
the escape path experience discontinuous changes. We show
that the noise can effectively move the accessible point in-
side the open neighborhood containing an attractor. Finally,
by studying fluctuational transitions across an LC FBB, we
have been able to find a unique optimal escape path and an
optimal fluctuational force, even for this qualitatively differ-
ent case.
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We emphasize that, by exploitation of an analogy between
the variational formulation of the control problem, and noise-
induced escape from the domain of attractionf26g, we are
enabled to find both the optimal escape path and the corre-
sponding optimal force that causes switching of complex
chaotic systems between coexisting stable states. This non-
linear approach to the problem of steered transitions between
coexisting stable states is of broad interdisciplinary interest
and is closely related to problems of control and stability of
complex nonlinear dynamical systemsf27,28g.

The paper is organized as follows. In Secs. II A and II B,
we review briefly some of our relevant recent results, de-
scribing in detail the procedures for computation of the acti-
vation energy. In Sec. II C, a proof based on topological
arguments is given to account for our observation that escape
takes place at an accessible point on the basin boundary, and
the procedures used for minimization of the activation en-
ergy are presented. Section III is devoted to the study of
noise-induced escape from a periodic attractor in the Henon
map. It is known that, for some values of the control param-
eter, this system possesses a so-called “fractal-fractal” basin
boundary crisis, where the FBB drastically change its form,
spreading inside the open neighborhood containing the at-
tractor f29g. We analyze the structure of the optimal escape
paths and generalize the notion of a noisy precursor of bifur-
cation to the interesting case of boundary crisis in the pres-
ence of noise. Section IV deals with fluctuation transitions
across a closed nowhere-differentiable LC FBB in a nonana-
lytic quadratic map. Our conclusions are given in Sec. V.

II. FLUCTUATIONAL TRANSITIONS
ACROSS THE LD FBB

To study fluctuation transitions through an LD FBB, we
took as a model the Holmes mapf30g driven by noise,

xn+1 = yn,

yn+1 = − bxn + dyn − yn
3 + jn, s1d

wherejn is zero-mean white Gaussian noise of varianceD.
Due to symmetry, the noise-free systems1d has pairs of co-
existing attractors forb=0.2 and 2.0ødø2.745, the basins
of which are separated by a boundary that may be either
smooth or fractal, depending on the chosen values of param-
eters. We chose for our studiesb=0.2 andd=2.7, which
corresponds to there being two coexisting CA basins sepa-
rated by an LD FBB. One of them is shown in Fig. 1sad. The
fractal dimension of the boundary, determined numerically
by using the “uncertainty exponent” techniquef31g, is
1.844 72. The chaotic attractorssCAsd in Eqs.s1d appear as
the result of a period-doubling cascade and, for the chosen
values of parameters, each of them consists of two discon-
nected parts. It should be noted that the properties of this
map, including the structures both of its CA and of its locally
disconnected FBB, are generic for a wide class of maps and
flow systemsf4,6g. For instance, a similar map was intro-
duced recently to model the localized breathing oscillations
of Bose-Einstein condensates in periodic trapsf32g. Taken
together with the results of our investigations of escape in

FIG. 1. sad sColor onlined One of the coexisting CAs is indicated
by the centrally placed filled curve. Its basin of attraction is shown
in white, whereas points belonging to the other basin are shaded in
gray. The most probable escape path connecting the CA with the
period-3 saddle cycleS3 lying on the fractal boundary is shown by
the sequentially numbered small circlessboundary value problemd
and starssMonte Carlo simulationsd, which practically coincide.
The remaining unnumbered circles show how the MPEP evolves,
just outside the basin of attraction of the initial state.sbd The x
coordinates of the optimal escape paths shown insad which were
obtained both from the Monte Carlo simulations withD=10−5

sdashed lined and from the solution of the boundary value problem
ssolid lined. The abscissa of the saddle pointS1 is shown by the
thin-dashed line.scd The optimal fluctuational force moving the
systems1d to the LD FBB. All units are dimensionless.
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other systems, these considerations allow us to conclude that
the escape mechanism we describe is indeed a typical one.

A. Statistical analysis of escape trajectories

We excited the systems1d with weak noise and collected
both the trajectories that provide escape paths from one CA
to the other and the corresponding realizations of noise that
induced them. Averaging a few hundred such escape trajec-
tories and noise realizations, we obtained the optimal escape
path and the corresponding optimal force, which are shown
in Fig. 1. The results of this statistical analysis allow us to
determine the boundary conditions near the CA and on the
FBB, and to demonstrate the uniqueness of the MPEP. It can
be seen in particular that the systems1d leaves the CA falling
into a small neighborhood of the saddle point of period 1
sS1d located between its two disconnected parts. Its stable
manifold separates the parts of the CA, while the unstable
one approaches the CA. Furthermore, the system makes a
few iterations in some small neighborhood ofS1 fsmall pla-
teau in Fig. 1sbdg and then moves in a few steps to the FBB,
crossing it at the saddle point of period 3sS3d.

Calculations have shown thatS3 for the chosen parameter
values lies on the FBB. Moreover, its stable manifoldssolid
black line in Fig. 1d is densef33g in the FBB and detaches
the open neighborhood including an attractor from the FBB
itself, thus allowing us to classify it as an accessible bound-
ary point f23,29,34g. Indeed, by definition a boundary point
P is accessible from a region if there is a curve of finite
length connectingP to a point in the interior of the region
such that no point of the curve lies in the boundary except
for P. In the case of the saddleS3, the part of the unstable
manifold ofS3 approaching the CA and lying inside the open
neighborhood plays the role of such a curve. It should be
noted that boundary pointS3 is the only saddle point belong-
ing to the homoclinic structure whose stable and unstable
manifolds are not tangent to each other. All other homoclinic
points are buried in the FBB and inaccessible from the open
neighborhood including CA because of such tangencies.
Moreover, in the absence of noise,S3 is the only saddle point
in the FBB from which the noise-free systems1d can relax to
an attractor in a finite number of iterations. For all other
initial conditions taken in inaccessible saddle points, the
noise-free systems1d must stay inside the FBB infinitely
long f29g. In other words, the saddle pointS3 is the ho-
moclinic point closest to the CA whose stable manifold sepa-
rates the interior, including the CA, from the FBB. This situ-
ation is similar, in some respects, to the case of fluctuational
transitions across the smooth basin boundary formed by the
stable manifold of a saddle boundary point. For that case, it
is well known that phase trajectories approach a saddle point
with zero velocity. For this reason, the action calculated in
some small neighborhood of the separatrix takes its minimal
value at a saddle pointf35g. The present case is much more
intricate due to the far more complicated structure of the
basin boundary and the large number of saddles embedded in
the boundary.

B. Variational formulation of the problem

Calculation of the MPEP requires an understanding of the
mechanism of escape from the initial state to the boundary of

its basin of attraction. According to the Hamiltonian theory
of fluctuations valid in the limitD→0 f13–16g, the MPEP is
the path which minimizes the “energy” defined asf36g

S=
1

2o
n=1

N

jWn
TjWn. s2d

Here the minimization has to be performed over all possible
realizations of noisehjnj that induce a transition of the sys-
tem s1d from the CAswith the initial condition on theS1d to
the FBB. The constraint between coordinateshxnj and hjnj
defined by Eq.s1d is implemented through introduction of a
set of Lagrange undetermined multipliershlnj f15g. In this
way, the minimization of energys2d overhjnj is equivalent to
the minimization of

L =
1

2o
n=1

N

jWn
TjWn + o

n=1

N

lWn
TfxWn+1 − fWsxnd − jWng,

overhjnj, hlnj, andhxnj. HerefWsxd is the deterministic part of
the map.

The result of the minimization is the following area-
preserving map:

xn+1 = yn,

yn+1 = − bxn + dyn − yn
3 + ln

y,

ln+1
x = sd − 3xn+1

2 dln
x/b − ln

y/b,

ln+1
y = ln

x. s3d

The evolution of the “energy” along the solution of Eq.s3d is
governed by

Sn+1 = Sn +
1

2
sln

yd2. s4d

C. Boundary conditions

In order to describe the process of escape from the vicin-
ity of the initial structure, a path solution of the extended
map is required that minimizes the “energy”s4d. We want to
describe here the boundary conditions on the basin boundary
for such a trajectory and we seek to prove that they have to
be chosen on an accessible saddle on the boundary. In what
follow, we refer to the notation in Fig. 2:V1 indicates the
accessible part of the basin of attraction of the stable struc-
ture;dV is the accessible part of the basin boundary, i.e., the
stable manifold of the accessible saddleS3; it separatesV1
from the remaining part of the coordinate space, here indi-
cated asV2. V2 is the set of all points in the space not
accessible fromV1. We start by proving thatV1 is mapped
into a subset ofV1. This means that no points inV1 are
mapped intoV2. Composed of accessible points,V1 is a
connected setsmore precisely an arcwise connected setd,
while V1 andV2 are separated bydV. As the continuous
image of a connected set is a connected set, and at least one
point of V1 is mapped insideV1, the wholeV1 is mapped

FLUCTUATIONAL TRANSITIONS ACROSS DIFFERENT… PHYSICAL REVIEW E 71, 046203s2005d

046203-3



into a subset of itself. In other words, a noise-free trajectory
cannot “jump over” the basin boundary. As a second step, we
give an argument that proves that an “energy”-optimal es-
cape path out ofV1 should terminate on the basin boundary.
Let us proceed as follows. The escape is realized when a
point x insideV1 is mapped into a pointy* in dV or in V2.
From the previous argument, we know thatfsxd sthe noise-
free image ofxd is still inside V1. The “energy” cost to be
minimized for the transition is12fy* − fsxdgTfy* − fsxdg, on all
possibley* P hdV ,V2j. The “energy” cost is clearly minimal
for a pointy on dV ssee Fig. 2d. Finally, every point ondV
can be connected via a noise-free path to the saddle embed-
ded in it. This means that among all possible points ondV,
the saddle has the least “energy” and that the escape must
take place through the accessible saddleS3.

In order to describe the escape process, therefore, the sys-
tem s3d has to be solved with the following boundary condi-
tions:

lim
n→−`

ln
y = 0, sxn

0,yn
0d P S1, sxn

1,yn
1d P S3. s5d

The MPEP is the solution of this boundary-value problem
that minimizes the costs4d. It is known that, in the phase
space, the MPEP is a heteroclinic trajectory connectingS1
andS3 f37–41g. In general, the location of this trajectory is a
very complicated problem, due to the singular shape of the
unstable manifold ofS1 f40–42g and the presence of mul-
tiple local minima of the energyf43g. The key step in per-
forming the minimization and solving the boundary-value
problem is the description of the family of solutions of Eq.
s3d on the unstable manifold ofS1 by the use of an appro-
priate number of parametersf44g. In the vicinity of S1, the
unstable manifold is a plane in the phase space. It can be
described by introduction of a linear constraint between the

coordinates and “momenta”lW =MdxW, wheredxW represents the
displacement fromS1. M is a real matrix. In order to calcu-
late the coefficients in theM matrix, the systems3d is ex-
panded aboutS1 to give

dxn+1 = Adxn + ln,

ln+1 = A−1Tln, s6d

whereA is the Jacobian matrix of the original map calculated
in S1.

The eigenvalues for the maps6d area1, a2, a1
−1, a2

−1. The
stable eigenvectors associated with the contracting eigenval-
ues are calledes1 andes2, where the indexs indicates stable.
The unstable eigenvectors are denoted byeu1 andeu2. A ge-
neric point on the unstable manifold can be written as a
combination ofeu1 andeu2,

SxW

lW
D = cu1SeWu1x

eWu1l

D + cu2SeWu2x

eWu2l

D . s7d

Here uWu1,2x and eu1,2l represent thex and l components of
the eigenvectorseWu1,2. Writing the vectorsx andl explicitly,
using their componentsx,y,lx,ly, one obtains a set of linear
equations,

Sx

y
D = Seu1x eu2x

eu1y eu2y
DScu1

cu2
D ,

Slx

ly
D = Seu1lx

eu2lx

eu1ly
eu2ly

DScu1

cu2
D .

Use of standard linear algebra techniques yields a linear re-

lationship betweenxW andlW ,

M = Seu1lx
eu2lx

eu1ly
eu2ly

DSeu1x eu2x

eu1y eu2y
D−1

. s8d

Thus a single trajectory in the pattern of solutions can be
defined by providing its initial conditions in the coordinate
space and the corresponding momenta can be obtained using
the matrix M. The whole family of trajectories on the un-
stable manifold can be defined by supplying a region of ini-
tial conditions in a neighborhood ofS1. A possible choice can
be, for example, the area included between two circles cen-
tered inS1 with radii r1 and r2 chosen so as to include all
possible trajectories in the pattern. The parameters used to
describe a single trajectory can be the angular position and
the distancer1ø r , r2 from S1. The evolution of a trajectory
is followed until it exits the boundary and the escape “en-
ergy” is then recorded. In this way, the “energy” is defined as
a real function in the space of parameters. For the systems1d,
the parameter space is diffeomorphf45g to a torusT2, i.e., it
can be mapped into a torusT2 using an invertible functionh
such thath and h−1 are C`. The “energy” function can be
very wild and singularf44g but a minimization is neverthe-
less still possible. The MPEP found by this method is shown
in Fig. 1. It can be seen that the MPEP predicted by the
Hamiltonian theory coincides with that obtained by statistical
analysis of the escape trajectories in Monte Carlo simula-
tions. Note that no action is required to bring the system to
another attractor after it has reached the accessible orbit on
the FBB.

D. Structure of the escape path inside the FBB

An analysis of the structure of escape paths inside the
FBB has shown that the homoclinic saddle points play a key

FIG. 2. Details of the escape process:x is a point inside the
accessible basin of attractionV1, fsxd is the noise-free image ofx,
andy is the point on the boundarydV that minimizes the “energy”
cost;y* is anothersnonoptimald point in V2 sthe set of all points in
the space is inaccessible fromV1d. The units are dimensionless.
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role in its formation. In the systems1d, we observe an infinite
sequence of saddle-node bifurcations of period 3, 4, 5, 6,
7,…, at parameter valuesd3,d4,d5,d6,d7¯, caused by
tangencies of the stable and unstable manifolds of the saddle
point O at the origin. The homoclinic orbits appearing as a
result of these bifurcations were classified earlier asoriginal
saddles, and it was also shown that their stable and unstable
manifolds cross each other in a hierarchical sequencef29g. It
is this deterministic structure of the manifolds of the original
saddles that determines the fluctuational escape mechanism
across the LD FBB. Indeed, to escape from a CA, the system
must first cross the stable manifold of the accessible orbit,
and then the stable manifolds of the other original saddles, in
a predetermined hierarchical sequence. Once the system
crosses the stable manifold of a saddle orbit, it relaxes noise-
free to the corresponding orbit, which it then leaves along its
unstable manifold. Therefore, the hierarchical interrelation
between original saddles involved in the escape has to be
closely linked to eigenvalues of the Jacobian at these saddles
salso known asmultipliers of the periodic orbitf46gd, char-
acterizing their local stability with respect to motion on the
manifolds.

To quantify this interrelation, we introduce a parameter

m =
log rstsxid
log runsxid

, s9d

where rstsxid and runsxid are the multipliers of the saddle
point xi corresponding to the stable and unstable directions,
respectively. This conclusion accords with the fact that the
natural measureh on a two-dimensional chaotic nonattract-
ing set is concentrated along its unstable manifold and can be
represented via unstable eigenvalues of unstable orbits:
hsCd=o1/ logrunsxid, whereC is the region of phase space
containing the chaotic saddle,runsxid is the multiplier corre-
sponding to the unstable manifold, and the summation is
over all the unstable orbitsxi in C f47g scf. f48gd. Calcula-
tions have shown that, for the original saddles of periods 3,
4, 5, 6, 7, 8,… in Eq. s1d, the following hierarchical sequence
of index m values occurs:m3=3.339,m4=3.080,m5=2.999,
m6=2.339,m7=1.958, andm8=1.539. Moreover, the values
of m corresponding to the other homoclinic saddle cycles are
close to zero. Correspondingly, the probability of finding the
system in their neighborhood tends to zero. Our studies of
the effect of noise on this deterministic structure proceeded
via analysis of relaxational trajectories inside the LD FBB.
They have shown that homoclinic tangle is robust to noise-
induced perturbations: the addition of noise caused only a
small increase in the probability for the system to escape via
saddle cycles of large period, increasing the time of wander-
ing inside the homoclinic tanglef23g.

III. FLUCTUATIONAL TRANSITIONS AND “FRACTAL-
FRACTAL 0 BASIN BOUNDARY CRISIS

A. Henon map

To illustrate the above mechanism of transition across the
LD FBB, let us consider the situation when the heteroclinic
chain shown in Fig. 3 is broken, for instance, between the

saddles of period 3 and 4. Such a situation leads to the so-
called “fractal-fractal” boundary metamorphosis of the LD
FBB observed for the first time in the Henon map,

xn+1 = A − xn
2 − Jyn + jn

1, s10d

yn+1 = xn + jn
2,

which we treated as a model excited by two statistically in-
dependent Gaussian noise sources whose correlation func-
tions arekjn

s1,2djm
s1,2dl=2Ddnm. It is well known that the noise-

free systems10d is of a generic character, and that it can
demonstrate a rich variety of bifurcations and basin transfor-
mations. In particular, the “fractal-fractal” basin boundary
metamorphosis which manifests itself as a sudden jump of
the basin boundary inwards, into the open neighborhood con-
taining the attractor, is observed for certain values of control
parametersf29g. In our studies, we fixed parameterJ=0.3
and varied parameterA within the range 1.38øAø1.405. As
can be seen from Fig. 4sad, the basin boundary separating the
basin of attraction of the stable orbit from the basin of attrac-
tion of infinity is fractal forA=1.38; its fractal dimension is
1.53. There exists an accessible boundary point of period 4
sS4d, whose stable manifold detaches the open neighborhood
from the LD FBB. The unstable manifold of the accessible
point S4 has two branches. One of these slices through the
basin boundary at a Cantor set of points, while the other lies
entirely in the open neighborhood and does not touch the
stable manifold of the same accessible boundary point until
the crisis. At the valueA>1.396 where it becomes tangent
and then crosses the stable manifold, the saddle pointS4
ceases to be the accessible orbit leading to the crisis of the
LD FBB and causing the observed sudden jump of the
boundary inside the white regionfsee Fig. 4sbdg. At the same
value, the unstable manifold of the saddle point of period 3

FIG. 3. Illustration of the hierarchical heteroclinic intersections
between the stable and unstable manifolds of the original saddles.
The units are dimensionless.
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sS3d, lying inside the white region, crosses the stable mani-
fold of the saddleS4 and joins the homoclinic structure
forming the LD FBB. After the transition, the saddle pointS3
becomes an accessible boundary point, whereas the pointS4
becomes buried in the basin boundary. The exchange of ac-
cessible orbits is the essence of the “fractal-fractal9 boundary
metamorphosisf29g.

Now, let us consider noise-induced escape through the LD
FBB in the systems10d for the control parameter valueA
=1.38, preceding the “fractal-fractal” boundary crisis. As we
already mentioned above, the saddle pointS3 lies inside the
basin of attraction ofC2 whose unstable manifold also lies
entirely inside that basin. To find the optimal escape path, we
used the same technique as before, monitoring the system
s10d all the time during the iteration process and collecting
both the escape trajectories and the corresponding realiza-
tions of noise inducing the fluctuational transitions fromC2
to infinity. An analysis of the collected escape trajectories
shows that escape always occurs via the saddle pointS3 and
the accessible boundary pointS4. Points forming the optimal
escape path fromC2 to the LD FBB are shown in Fig. 5sad.
To understand why escape trajectories always pass through
S3, which does not belong to the boundary, we calculated its
stable manifold which, as seen from Fig. 5sad, lies entirely
inside the basin ofC2 and is positioned closer to the attractor
than the LD FBB. For this reason, the only way for the
systems10d to reach LD FBB is to cross, first, the stable
manifold of the saddleS3 and then, second, move to the LD
FBB crossing it at accessible boundary pointS4.

To find the MPEP in the limit ofD→0, we repeated the
procedure described in Sec. II for the following enlarged
system:

xn+1 = A − xn
2 − Jyn + ln

x,

yn+1 = xn + ln
y,

ln+1
x = ln

y,

ln+1
y = − sln

x + 2xnln
yd/J, s11d

considering as boundary conditions the stable pointC2 and
the accessible boundary pointS4. The results of our calcula-
tions are presented in Fig. 5sad. The MPEP starting fromC2
reaches, first, the saddle pointS3 and then goes to the LD
FBB, crossing it at the pointS4. Further relaxation does not
require any external force and is governed by the homoclinic
tangle. Its hierarchical structure is characterized by the fol-
lowing values of the parameterm: m3=3.5076,m4=2.7699,
m5=2.5396, andm6=2.3898. It is clearly seen from Fig. 5
that the MPEP coincides with the optimal escape path com-
puted from the Monte Carlo simulations. Thus, there are two
heteroclinic trajectories in the phase space of the systems12d
connecting pointsC2 and S4. The first one connects the
saddle pointsC2 andS3, while the second one connectsS3
and S4. Thus it seems that, in the presence of noise, the
saddle pointS3 starts to play the role of an accessible bound-
ary point instead ofS4.

We also calculated the optimal fluctuational force moving
our system to the LD FBB for two different values of the
control parameterA corresponding to the states before and
after the “fractal-fractal” boundary crisis. The results of our
calculations are presented in Fig. 5sbd. It can be seen that,
before the boundary crisis, the systems10d still needs to be

FIG. 4. sColor onlined sad The LD FBB separating the stable point of period 2slabeled asC2d from the attractor at infinity, atA
=1.38, before the “fractal-fractal” basin boundary metamorphosissdimensionless unitsd. The unstable manifold of the saddle point of period
3 sS3d and the stable manifold of the accessible boundary point of period 4sS4d, indicated by the solid lines, do not intersect.sbd The LD
FBB atA=1.405 after the “fractal-fractal” boundary crisis. The saddle pointS3 has become the accessible boundary point, andS4 lies inside
the LD FBB which has jumped inside the open neighborhood containing the stable pointC2.
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excited to move from the saddleS3 to the boundary pointS4,
whereas after the crisis it does not. Apparently, this fact is
caused by the absence of any deterministic structure able to
sustain the transition before the boundary crisis.

FIG. 6. sColor onlined sad Stroboscopic sVt
=0,2p /V ,4p /V , . . .d section of the systems12d before the
“fractal-fractal” basin boundary crisis atG=1, a=10, b=100, V
=3.76, andA=0.9 sdimensionless unitsd. Two coexisting stable
points of period 2 are indicated by filled triangles. Their basins of
attraction are colored in white and gray, respectively. The stable
manifolds of the saddle pointsS3 andS4 sindicated by filled circlesd
are shown by the solid thin lines. The optimal escape path obtained
from the Monte Carlo simulations withD=3310−5 is shown by the
thick solid line.sbd The same stroboscopic section after the bound-
ary crisis atA=0.915. All other parameters have the same values as
in the previous figure. The optimal escape path obtained from the
simulations withD=2310−5 is shown by the thick solid line.

FIG. 5. sad sColor onlined The LD FBB of the systems10d
before the boundary crisisA=1.38. The stable manifold of the
saddle pointS3 sindicated by crossesd shown by the solid lines. The
optimal escape path obtained from the Monte Carlo simulations
with D=1.3310−3 is shown by the thick solid line, while points
belonging to the MPEP are shown by open circles.sbd The x coor-
dinates of the optimal escape paths beforessolid lined and after
sdashed lined the “fractal-fractal” boundary crisis atA=1.405. scd
The optimal fluctuational forces calculated beforesblack filled
squaresd and after sopen circlesd the crisis. All units are
dimensionless.

FLUCTUATIONAL TRANSITIONS ACROSS DIFFERENT… PHYSICAL REVIEW E 71, 046203s2005d

046203-7



B. Duffing oscillator

A similar situation is observed for the periodically driven
Duffing oscillator excited by white Gaussian noise,

ẍ + Gẋ − ax + bx3 = A cosVt + Î2Djstd, s12d

whereG is the coefficient of dissipation,a andb are param-
eters defining the shape of a potential,A andV are the am-
plitude and frequency of external force, andD is the intensity
of the noisejstd. It is known that for some values of control
parameters, the noise-free systems12d can demonstrate the
same type of boundary crisis as the Henon map considered
above. Using the same technique as before, we calculated the
optimal escape paths for the two different values of the driv-
ing amplitude corresponding to the states before and after the
“fractal-fractal” boundary crisis. The results of our calcula-
tions are pictured in Fig. 6. As is clearly seen from this
figure, the systems12d moves to the FBB via saddle points
S3 andS4 before the crisis, while after that it jumps via point
S3 only. The close correspondence between results obtained
for the two different kinds of systems allows us to conclude
that, under the influence of noise, the saddle pointS3 ac-
quires the features of an accessible boundary point. How-
ever, this saddle point does not belong to the FBB. This fact
does not allow us to claim that weak noise can induce a
“fractal-fractal” boundary crisis. However, taking into ac-
count the significant influence ofS3 on the escape process,
we may speak about anoisy precursorof the crisis on the LD
FBB, which manifests itself in observed structure of the op-
timal escape path.

We remind the reader that the notion of anoisy precursor
was originally introduced by Wiesenfieldf49g during studies
of noisy dynamical systems near bifurcations. It is well
known that dynamical systems are very sensitive to fluctua-
tions near a bifurcation point. It was shown that even weak
noise is able to induce the appearance of additional peaks in
a power spectrum of response of a noisy dynamical system
indicating its proximity to the bifurcation point. It is also
known that the response of a dynamical system near bifur-
cation can be characterized by a bell-shaped dependence of
the signal-to-noise ratio on the noise intensity. It is this fact
that allows one to speak of coherence resonance at the noisy
precursor of a bifurcationf50g. However, all previous studies
were concerned with the different bifurcations of attractors
themselves, whereas in many real situations dynamical insta-
bilities can also be caused by bifurcations of the basins of
attractionf51g. Our above results clearly show that analysis
of the structure of the optimal escape paths allows us to draw
a conclusion about the presence of an instability caused by
bifurcation of the basin boundary.

IV. FLUCTUATIONAL TRANSITIONS
ACROSS AN LC FBB

We now consider the same escape problem, but in an
system possessing a LC FBB. This type of FBB is generally
observed in two-dimensional noninvertible analytic and
nonanalytic mapsf4,52g. We will take as our model a typical
nonanalytic quadratic map driven by noise,

xn+1 = xn
2 − yn

2 + axn + jn
1,

yn+1 = 2xnyn + axn + byn + jn
2, s13d

wherejn
1, jn

2 are statistically independent sources of white,
Gaussian noise of zero mean that are of equal intensityD.
For the chosen values of the control parametersa=0.7, b
=0.5, this map has stable points at the origin and at infinity,
separated by the LC FBB. The boundary contains an infinite
set of repelling points and no saddle points. It is the Julia set
homeomorphic to a circle. To find the boundary condition on
the LC FBB and the optimal escape path, we use exactly the
same technique as in the case of the LD FBB, above. The
results of our calculations are presented in Fig. 7. As can
clearly be seen from this figure, the systems13d leaves the
stable pointO at the origin along a unique optimal escape
path and approaches the LC FBB at the unique point shown
in Fig. 7sad. Moreover, our calculations have shown that the
optimal fluctuational forcefsee Fig. 7sbdg becomes equal to
zero at this moment.

FIG. 7. sad The locally connected FBBssolid closed curved,
unstable node of period 9scrossesd, and points on the optimal es-
cape path obtained from the Monte Carlo simulationssfilled circlesd
with D=5310−3. Points of the MPEP are shown by empty squares.
sbd Thex ssolid lined andy sdashed lined components of the optimal
fluctuational force. All units are dimensionless.
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According to our previous results, this means that the sys-
tem s13d reached the boundary at this point, and its further
relaxation to infinity is noise-free and completely specified
by the deterministic structure of the FBB. Our calculations
have shown that the boundary pointA corresponds exactly to
the repelling boundary point of period 9, which plays the role
of the unique boundary condition on this LC FBB. Moreover,
our studies have shown that this repelling point plays the role
of the boundary condition over a wide range of the control
parametersa andb. Note that noise-induced escape from the
attractor surrounded by an LC FBB in Eq.s13d was consid-
ered earlier in the pioneering work of Grassbergerf15g, who
succeeded in calculating the optimal escape path, albeit with-
out finding the boundary condition on the LC FBB or the
mechanism of escape.

To find the MPEP, we treated the following enlarged sys-
tem:

xn+1 = xn
2 − yn

2 + axn + ln
x,

yn+1 = 2xnyn + axn + byn + ln
y,

ln+1
x = fs2xn + bdln

x + 2ynlng/A,

ln+1
y = f− s2yn + adln

x + s2xn + adln
yg/A, s14d

supplemented by the boundary conditions at the steady point
O and at the repeller of period 9. HereA=s2xn+ads2xn

+bd+2yns2yn+ad is the determinant of the Jacobian written
for the systems13d. As is seen from Fig. 7sad, the MPEP
coincides almost perfectly with the optimal path obtained
from the Monte Carlo simulations.

V. CONCLUSIONS

We have studied fluctuational transitions between coexist-
ing regular attractors separated by both LD and LC FBBs.
We have shown that an accessible point on the FBB plays the
role of a unique boundary condition for both types of FBB.

Our statistical analyses of fluctuational trajectories have
yielded solutions of the boundary-value problem for both
types of FBB, and have revealed the optimal fluctuational
forces moving the systemss1d ands13d from one attractor to
the other. We were also able to find the unique optimal es-
cape path in both cases. The original saddles forming the
homoclinic structure of the systems1d play a key role in the
formation of the escape paths inside the LD FBB, and the
difference in their local stability defines the hierarchical re-
lationship between them. We have also considered fluctua-
tional transitions in a dynamical system exhibiting a “fractal-
fractal” boundary crisis. It is shown that noise can effectively
move the accessible boundary point inside the domain of
attraction, giving rise to a noisy precursor of the boundary
crisis that manifests itself in the structure of the optimal es-
cape path. We have generalized the notion of a noisy precur-
sor to the case of a bifurcation of the basin boundary. The
results obtained can be applied directly to the other maps and
flows having the same type of FBB.

We emphasize that similar behavior is expected for fluc-
tuational transitions between chaotic attractors separated by
FBBs f23g. It has therefore become possible to predict a
scenario of escape through a fractal boundary using a deter-
ministic analysis of the FBB structure. Furthermore, recent
resultsf22g have shown that the boundary conditions at cha-
otic attractors can also be related to the homoclinic structure,
and thus found deterministically. Among a variety of pos-
sible applications, we would mention a new method of chaos
control in the presence of fluctuations that can now be de-
velopedf53g.
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