Thermotolerant Guard Cell Protoplasts of Tree Tobacco Do Not Require Exogenous Hormones to Survive in Culture and Are Blocked from Reentering the Cell Cycle at the G1-to-S Transition.

Gushwa, Nathan N. and Hayashi, Derek and Kemper, Andrea and Abram, Beverly and Taylor, Jane E. and Upton, Jason and Tay, Chloe F. and Fiedler, Sarah and Pullen, Sam and Miller, Linnsey P. and Tallman, Gary (2003) Thermotolerant Guard Cell Protoplasts of Tree Tobacco Do Not Require Exogenous Hormones to Survive in Culture and Are Blocked from Reentering the Cell Cycle at the G1-to-S Transition. Plant Physiology, 132 (4). pp. 1925-1940. ISSN 0032-0889

Full text not available from this repository.

Abstract

When guard cell protoplasts (GCPs) of tree tobacco [Nicotiana glauca (Graham)] are cultured at 32°C with an auxin (1-napthaleneacetic acid) and a cytokinin (6-benzylaminopurine), they reenter the cell cycle, dedifferentiate, and divide. GCPs cultured similarly but at 38°C and with 0.1 µM ± -cis,trans-abscisic acid (ABA) remain differentiated. GCPs cultured at 38°C without ABA dedifferentiate partially but do not divide. Cell survival after 1 week is 70% to 80% under all of these conditions. In this study, we show that GCPs cultured for 12 to 24 h at 38°C accumulate heat shock protein 70 and develop a thermotolerance that, upon transfer of cells to 32°C, enhances cell survival but inhibits cell cycle reentry, dedifferentiation, and division. GCPs dedifferentiating at 32°C require both 1-napthaleneacetic acid and 6-benzylaminopurine to survive, but thermotolerant GCPs cultured at 38°C ± ABA do not require either hormone for survival. Pulse-labeling experiments using 5-bromo-2-deoxyuridine indicate that culture at 38°C ± ABA prevents dedifferentiation of GCPs by blocking cell cycle reentry at G1/S. Cell cycle reentry at 32°C is accompanied by loss of a 41-kD polypeptide that cross-reacts with antibodies to rat (Rattus norvegicus) extracellular signal-regulated kinase 1; thermotolerant GCPs retain this polypeptide. A number of polypeptides unique to thermotolerant cells have been uncovered by Boolean analysis of two-dimensional gels and are targets for further analysis. GCPs of tree tobacco can be isolated in sufficient numbers and with the purity required to study plant cell thermotolerance and its relationship to plant cell survival, growth, dedifferentiation, and division in vitro.

Item Type:
Journal Article
Journal or Publication Title:
Plant Physiology
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qh301
Subjects:
?? PLANT SCIENCEGENETICSPHYSIOLOGYQH301 BIOLOGY ??
ID Code:
9420
Deposited By:
Deposited On:
09 Jun 2008 12:15
Refereed?:
Yes
Published?:
Published
Last Modified:
20 Sep 2023 00:11