Lancaster EPrints

Particle precipitation during ICME-driven and CIR-driven geomagnetic storms

Longden, N. and Denton, Michael H. and Honary, Farideh (2008) Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. Journal of Geophysical Research, 113 (A06205). pp. 1-12. ISSN 0148-0227

[img]
Preview
PDF (art_894.pdf)
Download (9Mb) | Preview

    Abstract

    Interplanetary coronal mass ejections (ICME) and corotating interaction regions (CIR) alter the parameters of the solar wind and interplanetary magnetic field (IMF) that affect conditions in the Earth's magnetosphere and particle precipitation in the auroral zone. We perform a superposed epoch study of the effects of ICME-dominated and CIR-dominated solar wind on particle precipitation during geomagnetic storms. We use data from a set of 38 CIR events and 33 ICME events. Particle precipitation is inferred from cosmic noise absorption (CNA) recorded by the riometer at Abisko. The electron flux intensity at geosynchronous orbit close to the location of the riometer is taken from the synchronous orbit particle analyzer (SOPA) onboard the Los Alamos National Laboratory (LANL) satellite LANL-01A. The results show that mean CNA is more intense during the main phase of ICME-driven storms. In contrast, mean CNA remains elevated for a much longer period during CIR-driven storms indicating prolonged periods of particle precipitation. Enhanced CNA over a sustained period of time is observed during CIR-driven storms that are categorized as only weak or moderate in terms of the response that they drive in the Dst index (Dst >−100 nT). This result indicates that events which may be considered geomagnetically ineffective have a significant effect on particle precipitation in the auroral zone. The elevated CNA observed during CIR-driven storms is accompanied by elevated electron flux intensity, measured at geosynchronous orbit, over all channels in the 50–500 keV range at all local times.

    Item Type: Article
    Journal or Publication Title: Journal of Geophysical Research
    Additional Information: Copyright (2008) American Geophysical Union. Further reproduction or electronic distribution is not permitted
    Uncontrolled Keywords: riometer DCS-publications-id ; art-894 ; DCS-publications-credits ; iono-fa ; DCS-publications-personnel-id ; 91 ; 123 ; 5
    Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
    Departments:
    ID Code: 9388
    Deposited By: Dr Steve Marple
    Deposited On: 05 Jun 2008 17:59
    Refereed?: Yes
    Published?: Published
    Last Modified: 23 Jul 2014 14:53
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/9388

    Actions (login required)

    View Item