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ABSTRACT
A direct comparison between continuous and discrete forms of analysis of control and stability is investigated
theoretically and numerically. We demonstrate that the continuous method provides a more energy-efficient
means of controlling the switching of a periodically-driven class-B laser between its stable and unstable pulsing
regimes. We provide insight into this result using the close correspondence that exists between the problems of
energy-optimal control and the stability of a steady state.
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1. INTRODUCTION
Investigation of the stability and control of a lasing mode addresses an important problem in the applied theory of
lasers.1 It is one that can also be mapped onto an analysis of bursting behavior arising in population dynamics.2

In a more general context such an analysis describes a fundamental problem in the theory of nonlinear dynamical
systems.3, 4 It is potentially of relevance in biology where switching takes place between distinct regimes of
behaviour, e.g. in cardiac and cortical systems. While the topic is thus of broad interdisciplinary interest,
laser systems can provide especially reliable and convincing tests of the new theoretical concepts. In general,
the problem can be analyzed within either one of two theoretical and experimental frameworks: using either
continuous or discrete time, with corresponding descriptions of the system dynamics in terms of either continuous
flows or maps. Both methods have been extensively tested in application to laser systems. For example, a special
protocol was been developed for the feedback control of steady generation in Nd lasers that have a tendency to
self-pulsing.5 To get over the uncertainty in switching, the methods of stochastic resonance together with an
additional weak periodic modulation have been proposed.6, 7 The targeting of stable and unstable orbits has been
discussed8 and achieved experimentally by the use of a single large amplitude perturbation in a loss-modulated
CO2 laser9, 10 with special attention being paid to minimization of the duration of the transient processes.

However, a direct comparison between these two general methods for the analysis of stability and control
of a steady state has not so far been considered, which is perhaps surprising given its broad interdisciplinary
implications.

In this paper we consider, both theoretically and numerically, a direct comparison between the continuous
and discrete forms of control of the lasing mode in class B lasers. In particular, we demonstrate that the two
methods give estimates of the activation “energy” and of the energy of the control function that differ by an
order of magnitude. We use the duality of the control and stability problems discussed in our earlier work11, 12

to provide insight into the origin of this difference.
In particular, we investigate the energy-optimal control of switching in a periodically-driven class-B laser

between its stable and unstable pulsing regimes. Coexistence of nonstationary states can be realized experimen-
tally in lasers e.g. by periodic modulation of intracavity loss9, 13 or of pumping rate.14–19 Here we study the
later case because it is more suitable for class B solid-state lasers including microchip lasers and semiconductor
lasers.
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2. CONTINUOUS MODEL AND MAP

Our analysis is based on single-mode rate equations
{

du
dt = vu(y − 1),
dy
dt = q + k cos(ωt)− y − yu + f(t),

(1)

where u and y are proportional to the density of radiation and carrier inversion respectively, v is the ratio of
the photon damping rate in the cavity to the rate of carrier inversion relaxation, the cavity loss is normalized to
unity, and the pumping rate has a constant term q and a periodic component; k and ω are the amplitude and
frequency of the external periodic modulation. The additive unconstrained control function is f(t).

For class-B lasers the parameter v is large, v ∼ 103 − 104, and provides for regimes of the spiking type
under deep modulation of the pumping rate. Solutions can be obtained from the corresponding two-dimensional
Poincaré map20:

{
ci+1 = q + G(ci, ψi)e−T + K cos(ωT + ψi) + fi,
ϕi+1 = ϕi + ωT,mod 2π,

(2)

where G(ci, ψi) = ci − g − q −K cos ψi, K = k(1 + ω2)−1/2, and ψi = ϕi − arctan(ω). The control function fi is
now defined in discrete time. Functions g = g(ci) and T = T (ci, ϕi) are positive roots of the equations

g − ci(1− exp(−g)) = 0,

(q − 1)T + G(ci, ψi)(1− e−T ) + Kω−1[sin(ωT + ψi)− sin ψi] = 0,

respectively. Variables ci, ϕi correspond to the inversion of population y(ti) and to the phase of modulation
ϕi = ωti, mod 2π at the moments ti of pulse onset when u(ti) = 1, u̇(ti) > 0, g(ci) denotes the energy of the
pulse, and T (ci, ϕi) gives the time interval between sequential pulses. The map has been derived by asymptotic
integration of Eqs.(1) to an accuracy of O(v−1). It is therefore valid for q, k, ω ¿ v and ci > 1 + O(v−1).

For each iteration of the map one can find characteristics directly comparable with experimental measure-
ments: the phase of the modulation signal at the moment of the spike and the interval between pulses, the energy
of the spike and its maximal intensity given by umax = 1 + v[ci − 1− ln(ci)].

The fixed points of the map determine spiking solutions of the period multiple to the period of driving,
Tn = nTM , n = 1, 2, ... where the period of driving is TM = 2π/ω. They are born through a saddle-node
bifurcation at the modulation threshold level

ksn =
√

1 + ω2[q − Cn − gn(eTn − 1)−1]. (3)

The stable cycles undergo a period-doubling bifurcation if the modulation level exceeds

kpd =
√

1 + ω2

ω
(q − 1)

[
1 + 2π

(
qnTn

12

)2

+ O(T 4
n)

]
. (4)

In this way we determine analytically the regions where generalized multistability is realized as the coexistence
of a number of cycles, and we can approximate the location of saddles and stable cycles in the phase space.

3. CONTROL PROBLEM

We now consider the problem of controlled migration between the stable and saddle cycles that are related to
the saddle-node bifurcation (3) and which are of the same amplitude and period. Specifically, we will study
migration from the stable cycle C3 to the saddle cycle S3. As mentioned above, such a process can be proposed
for the phase-coding information scheme because these cycles differ from each other only by virtue of their phase
relationship to the modulation signal. Within the framework of the method proposed, switching between stable
cycles with different periods and amplitudes can be also considered quite generally for an amplitude coding
scheme as well as for a combination of phase and amplitude coding.



Two different forms of the control force f(t) are considered: one is continuous fc(t) in time; and the other
is a sequence of discrete impulses fd(t) =

∑
i A

∫
fiδ(t − τi)dt, τi ∈ [ti + τc], applied at the moments when the

system crosses the Poincaré section u(ti) = 1, u̇(ti) > 0, i.e. coinciding with the laser spikes. Here A is a constant
defined experimentally to transform the map force fi to the control force fd(t) for the continuous system (1);
τc is the duration of an impulse of amplitudes Afi. In other words, in the case of the discrete impulse force we
first solve the control problem for the map (2) and then apply our results for the system (1) by determination of
the constant A. We must note that for the selected Poincaré section u(ti) = 1, u̇(ti) > 0 the duration of control
pulses τc should be less than or comparable with the duration of the laser spikes ∼ v; in the opposite case the
map (2) with the force fi is not valid.

The following energy-optimal control problem is considered: How can the system (1) with unconstrained
control function fc(t) or fd(t) be steered between coexisting states such that the ”cost” functional Jc or Jd

Jc = inf
f∈F

1
2

∫ t1

t0

f2(t)dt, Jd = inf
f∈F

1
2

N∑

i=1

f2
i (5)

is minimized? Here t1 (or N) is unspecified and F is the set of control functions.

The solution of this problem is in general a very complicated task. It was shown in our earlier research,11, 21

however, that if a solution of the control problem (ū(t),q(t)) exists, then it can be identified with the solution
of the corresponding problem of optimal fluctuational escape, and Pontryagin’s Hamiltonian (see e.g.22) of the
control theory can be identified with the Wentzel-Freidlin Hamiltonian4 of the theory of fluctuations. This inter-
relationship is intuitively clear because, in thermal equilibrium (D = 4ΓkBT ), the probability of fluctuations is
determined by the minimum work from the external source needed to produce the given change in the thermo-
dynamic quantities ρ ∝ exp(−Rmin/kBT ).23 It was therefore suggested that the optimal control function ū(t)
can be found via statistical analysis of the optimal fluctuational force.11, 21, 24, 25 Similar ideas are applicable to
the analysis of the control problem in maps.26 In this technique the control functions f(t) and fi in (1) and (2)
are replaced by additive white Gaussian noise and the dynamics of the system is followed continuously. Several
dynamical variables of the system and the random force are recorded simultaneously, and the statistics of all
actual trajectories along which the system moves in a particular subspace of the coordinate space is then ana-
lyzed.27–29 The so-called prehistory probability distribution of these trajectories that move the system from the
equilibrium state to the remote state is sharply peaked about the optimal fluctuational path, thereby providing a
solution to the control problem. We note, that this technique provides an experimental approach to the solution
of the control problem, which is especially useful from the point of view of practical applications.

In the case of continuous control, it is useful to change variables

ε = v−1/2, τ = ε−1t, Ω = εω,

z = ε−1(y − 1), x = ln u.

Following the Pontryagin theory of optimal control, we then reduce the energy-minimal migration task to bound-
ary problems for the Hamilton equation (cf.11, 21)

ẋ = z,

ż = q − 1 + k cos(Ωτ)− ex(1 + εz)− εz + p2,

ṗ1 = p2e
x(1 + εz),

ṗ2 = −p1 + p2ε(1 + ex), (6)

with the boundary conditions

x(τs) = xs, z(τs) = zs, p1(τs) = 0, p2(τs) = 0, (7)
x(τe) = xe, z(τe) = ze, p1(τe) = 0, p2(τe) = 0, (8)

where {xs, zs, τs} and {xe, ze, τe} are initial and final states correspondingly, with τs → −∞ and τe →∞.
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Figure 1. (a) Basins of attraction for the flow system (1). Time realizations of the coordinate x(t) (b) and control force
f(t) (c) are shown during migration from C3 to S3. The stable cycle C3 and saddle cycle S3 are marked by “×” and “•”
respectively.



The solution of the continuous control problem for transitions C3 → S3 was found by application of a
combination of the statistical approach discussed above and the numerical solution of the boundary problem for
the Hamiltonian system (6). The Poincarè cross-section for the system (1) and corresponding solution of the
control problem for transitions C3 → S3 (x(τ), p2(τ)) are shown in Fig. 1.

Numerical simulations confirm that the control function f(τ) = p2(τ) obtained induces migration from the
cycle C3 to the cycle S3 in the optimal regime. Similar results are obtained for transition C2 → S2.

In the case of discrete time control the Pontryagin theory of optimal control can be extended to obtain an
area-preserving map:

ci+1 = q + G(c,ψi)e−T + K cos(ωT + ψi) + pc
i+1

ϕi+1 = ϕi + ωT, mod2π,
(

pc
i+1

pϕ
i+1

)
=

(
∂ci+1
∂ci

∂ci+1
∂ϕi

∂ϕi+1
∂ci

∂ϕi+1
∂ϕi

)−1 (
pc

i

pϕ
i

)
(9)

with the boundary conditions:
{

cs = cs, ϕs = ϕs, pc
s = 0, pϕ

s = 0,
ce = ce, ϕe = ϕe, pc

e = 0, pϕ
e = 0,

(10)

where s = −∞ and e = ∞ are initial and final time moments.

The corresponding boundary value problem (9), (10) for transitions C3 → S3 can be solved using either the
statistical approach or a shooting method. However, because of the complexity of the map, the accuracy of both
methods is limited and only allows us to identify a nearly optimal discrete control function.

The results of such an analysis for the transition C3 → S3 in the map (2) are shown in Fig. 2. The statistical
approach gives superior results, the corresponding energy Jstat ≈ 8.1 × 10−3, being less than the energy found
by the shooting method, Jshoot ≈ 9.3 × 10−3 (and twice smaller then the energy of a single control pulse
Jsingle = 1.6× 10−2). Similar results are obtained from analysis of the optimal transition C2 → S2.

In the next step we defined experimentally a value of the constant A for all the types of pulsed control
function considered, in order to apply the map results to the continuous system (1). The results are summarized
in the Table 1.

Numerical analysis has also revealed the dependence of the energy of the discrete control function fd(t) on
the duration of the control pulses τc. It was found that there is an optimal duration τopt

c for which the total
energy of the control function has a minimum. Note that the optimal duration is still less than the duration of
the laser spike, so that the map (2) is applicable.

4. DISCUSSION: DISCRETE PULSES VERSUS CONTINUOUS CONTROL

A direct comparison between continuous and different discrete methods of control is given in Table 1. It follows
from our analysis (see Table 1) that continuous control is considerably more efficient energetically then the
discrete form of control. In turn a discrete control function consisting of a sequence of pulses (multi-pulsed force)
is more efficient then single pulse control function. That can be explained by the small duration τ of impulses
of discrete force. As can be seen in Table 1 the energies of the discrete control functions can be decreased
by several order of magnitude by optimization of impulse duration and the location of the impulse. But the
optimized energy of the discrete control function still exceeds the energy of the continuous force by three orders
of magnitude.

Thus we see that, although the continuous and discrete models of a laser describe very well the system
dynamics on larger time scales and provide quantitatively similar basins of attractions for the stable limit cycles,
estimates of stability and of the energies of optimal control functions may differ by orders of magnitude. One
of possible reason for this lies in the particular form of control function fi in the map (2): we choose the force
that is additive in the map. So we can expect another conclusion for other form of control function fi. The
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Figure 2. (a) Basins of attraction of stable limit cycles of the map (2). (b) Migration trajectory of map (2), and (c)
realizations of the control force inducing migration from the cycle C3 to the cycle S3. Dashed lines and marker “+”
correspond to solution of boundary problem, the full line and “◦”s indicate the solution based on fluctuational prehistory
analysis.



Transition Jc JH
d Jp

d Ji Jopt
d Jopt

i Jpnew
d Jnew

i

C3 → S3 0.00004 0.1338 0.08275 0.1607 0.0505 0.00275 0.000077 0.000103

Table 1. The energy of the optimal control function for controlling migration between cycles in the continuous system
(1) (in dimensionless units). Jc corresponds to the continuous function obtained by solution of the boundary problem
(7)-(8) for the system (6). The energies JH

d and Jp
d correspond to multi-pulsed control functions determined by solving

the boundary problem (10) for the map (2) and by prehistory approach respectively. The energy Ji corresponds to a
single pulse function. The energies JH

d , Jp
d and Ji were determined for very short-duration control pulses τc ¿ TM . Here

TM is the period of the external pumping. The ultra-short time duration τc is used to approximate a δ-function. The
energies Jopt

d and Jopt
i correspond to the multi-pulsed and single-pulse control functions, correspondingly, with an optimal

duration τopt
c . The energies Jpnew

d and Jnew
i were determined for the map (11) and correspond to a multi-pulsed and

single-pulse control functions, respectively.
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Figure 3. Time realizations of coordinate x(t) (a) and control force f(t) (b) are shown during migration from C3 to S3.
The control function was obtained by prehistory analysis of the map (11). The stable cycle C3 and saddle cycle S3 are
marked by ”×” and ”•” correspondingly.



alternative form can be identified through a detailed inspection of the continuous function f(t) in Fig. 1(c). It
is seen that the force f(t) has a rather complex structure, but that it can be fitted by a sequence of pulses. The
duration of these pulses is close to the period of the cycle C2 or to the time interval between laser spikes, i.e.
it is ∼ 3TM , TM is the period of external driving. Further we note that external driving changes the value of
pump, i.e. the parameter q. This observation allows us to suggest a new form of control for the map:





ci+1 = qi + G(ci, ψi, qi)e−T + K cos(ωT + ψi) + fi,
ϕi+1 = ϕi + ωT,mod 2π,
qi+1 = qi + fi,

(11)

here the value of q is constant between the Poincaré sections and it changes at the moment of the cross-section.
For this map (11) we formulate the same boundary problem as for the map (2), we can use the same method
to determine the control function. The results of a prehistory analysis (Fig. 3) and the result for single pulse
in the map 11) are presented in two last columns of Table 1. The energy of the control function is significantly
decreased but it is still nearly twice as large as the energy of the continuous function.

Summarizing, we have found the energy-optimal control function for effecting migration of a B-class laser
from its stable limit cycle to a saddle cycle, for both continuous and discrete forms of control. This allowed
us to compare directly the efficiency of the two technique and to show that continuous control provides a more
energy-efficient form of control as compared to discrete control, and that it provides more accurate estimates
of the stability of quasi-stable states. Moreover analysis of the shape of the continuous function allows us to
suggest the discrete control function that approaches continuous efficiency. We note that specific targeting of
the periodic orbits has been achieved experimentally by single-shot short-lived perturbation of intracavity losses
in a CO2 laser30, 31 that can be described by the continuous and discrete laser equations used in this paper. The
results obtained can be directly verified in experiment, therefore, and applied e.g. to the phase coding information
scheme.
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