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Abstract— In this paper the recently introduced evolving 

fuzzy classifier method called eClass is studied in respect to its 

architecture and evolution of the fuzzy rule-base. The proposed 

classifier has an open/evolving structure and can start ‘from 

scratch’, learning and adapting to the new data samples. 

Alternatively, if an initial fuzzy rule-based classifier, generated 

beforehand in off-line mode or provided by the operator, exists 

then eClass can evolve this initial classifier in on-line mode. In 

other words, the fuzzy rule base will evolve incorporating new 

rules, modifying and/or, possibly, removing some of the 

previously existing ones. Additionally, the parameters of both, 

the antecedent and the consequent parts are adapted. Note that 

eClass can start with an empty rule-base, which is a unique 

feature of this approach. The proposed approach is free from 

user-specified parameters and the mechanism of forming new 

rules is very robust. In this paper, four different modelling 

architectures are described and compared. The architectures are 

based on i) unsupervised cluster partitions, eClassC; ii) Sugeno 

fuzzy models with singleton consequents, eClassA; iii) 

Takagi-Sugeno fuzzy models with linear consequent functions, 

eClassB; and iv) a multi-model classification architecture, where 

separate TS regression models are combined to form an overall 

classification output of the system, eClassM. A thorough 

comparison of the results when applying each of these 

architectures and the results using previously existing classifiers 

has been made using an online interactive self-adaptive image 

classification framework.  

Keywords: evolving fuzzy rule-based classifiers, 

incremental learning from scratch, Mountain and subtractive 

clustering, weighted recursive least squares. 

I. INTRODUCTION 

LASSIFICATION is a problem that is well studied and 

understood. One of the widely referenced texts is [1] 

where classification is treated in the context of pattern 

recognition. In [2] classification is considered in the light of 

statistical learning techniques. In [3] a study on fuzzy 

rule-based classifiers is given. There are numerous practical 

problems in industrial systems, robotics, defence, bio-medical 

and other application domains which call for classification, 

such as fault detection and isolation, early cancer diagnosis, 

product quality monitoring and control, machine health 

monitoring and prognostics, automatic target recognition, etc. 

[4,5].   

 The classifier can be considered as a  mapping from the 

feature domain onto the class labels domain. A number of 

different types of classifiers exists which use different 

approaches to perform this mapping such as: i) linear 

discriminant analysis [1]; ii) fuzzy rule-based classifiers [6], 

[7],[39]; iii) decision trees (e.g. C4.5 [31], CART [32]; iv) 

neural networks-based [8]; v) support vector machines [9], 

etc. Practically all of them assume training in batch mode 

(when all the training data are known including their class 

labels). In many practical applications, however, we deal with 

data streams coming from sensory readings or Internet etc. 

[3]. Additionally, even if the data is available off-line as in 

market basket analysis, genome data etc. the volume of this 

data is huge and prohibits the direct use of well established 

learning methods [4]. Very often storing the complete data is 

practically impossible. This requires addressing the problem 

of classification of streaming data in real-time [34]. 

It is well known that fuzzy rule-based systems are 

universal function approximators [35]; they are suitable for 

extracting interpretable knowledge. Therefore, they are 

viewed as a promising framework for designing effective and 

powerful classifiers. The type of classifiers that can be built 

using the recently introduced evolving fuzzy rule-based 

systems [10],[11] can be called evolving [12] which differs 

from ‘evolutionary’. Evolving fuzzy rule-based classifiers 

develop and adapt in on-line mode the non-linear 

classification surface. Evolutionary/genetic algorithms have 

recently been used for design of fuzzy rule-based systems in 

general [13] and classifiers in particular [6],[39]. They are 

based on the off-line optimization of one or more criteria in 

designing the fuzzy rule-base (classifier) using paradigms that 

stem from Nature such as mutation, crossover, and 

reproduction. Evolving in the sense that we use it in our paper 

and related works includes self-organising, self-developing in 

terms of the classifier (rule-base) structure. In this sense this 

paradigm can be considered as a higher level of adaptation 

(adaptation is usually related to parameters not to the structure 

of the systems [15]). Note, that similar principles were used by 

the authors in developing evolving classifiers also in [14] and 

[23]. The concept is taken further in this paper comparing to 

[14] by analysing different possible architectures of eClass. 

Comparing to [23] the backbone of the approach is different – 

we use here and in [14] the evolving fuzzy Takagi-Sugeno, 

eTS approach while in [23] we extended FLEXFIS [27] and 

its modification FLEXFIS-Mod [36] to the classification case 

(called FLEXFIS-Class), both families originally designed for 

fuzzy regression modelling tasks. The eTS family of evolving 

TS models (eTS, MIMO-eTS, exTS) has been recently 
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applied successfully to a number of identification [11,18], 

time-series prediction [18], fault detection [17], and control 

[19] problems.  

 In this paper four different architectures are presented, 

studied, and compared in Section II: i) eClassC –classification 

based on eClustering combined with nearest neighbour type 

of classification (so called ‘winner takes all’); ii) eClassA – 

evolving fuzzy rule-based classifier with zero order Sugeno 

consequents (singletons that represent the class labels); iii) 

eClassB – evolving fuzzy rule-based classifier with first order 

TS (locally linear) consequents; iv) eClassM – multiple model 

classifier. In Section III the methodology and algorithms for 

evolving these structures with sample-wise loaded data are 

presented.  

The experimental results demonstrated in Section IV 

include a well known benchmark problem and a real-life data 

of a self-adaptive online image classification framework. The 

results demonstrate that the proposed evolving fuzzy rule-base 

classifier, eClass in all of its modifications has a very good 

classification performance; it is computationally very 

efficient, and is, thus, suitable for real-time applications such 

as classification streaming data, robotic applications, e.g. 

target and landmark recognition, real-time machine health 

monitoring and prognostics, fault detection and diagnostics 

etc. This approach is transparent, linguistically interpretable, 

and applicable to both fully unsupervised and partially 

supervised learning. While the low order architectures 

(eClassC and eClassA) are computationally superior, with 

high transparency (low number of fuzzy rules and parameters) 

and simple structure, the performance of eClassB and 

eClassM are superior to all the other structures and to the 

previously existing classifiers. The multiple model structure, 

eClass M has similar performance to eClassA but a more 

complicated structure 

II. THE PROPOSED ARCHITECTURES OF ECLASS 

The proposed classifier, eClass uses fuzzy rule-bases as a 

framework. The antecedent part concerns the features and the 

consequent part differs for different types of eClass. The 

following general form of fuzzy rules is used: 

( )i
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nn

ii

ConseqTHEN

xisxANDANDxisxIFR )(...)(: **

11
  (1) 

where 
T

nxxxx ],...,,[ 21= is the vector of features;
i

R  

denotes the i
th

 fuzzy rule; i=[1, N]; N is the number of fuzzy 

rules; ( )*i

jj xisx denotes the j
th

 fuzzy set of the i
th

 fuzzy rule; 

j=[1,n]; 
*i

x is the prototype (focal point) of the i
th

  rule 

antecedent. 

Note that the type of the classifier depends on the type of 

the consequent and can be: 

a) Associated with the nearest cluster (eClassC) 

ii
ClusterConseq = , i=[1,N]           (1a) 

b) Zero order MIMO Takagi-Sugeno (TS) type [30] when 

the consequents are the class labels (eClassA):  
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M
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where L denotes a binary (0/1) class label;  

c) First order MIMO TS type [30] when the consequents are 

linear classifiers (eClassB): 
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d) M first order TS type classifiers (eClassM) when each 

classifier predicts the degree of membership to that class: 

        [ ][ ]Ti

n

iiTi

j xConseq 00201,1 ααα K=  (1c) 

where  i=[1,N]; j=[1,M]  

Note that the number of fuzzy rules, N is not necessarily the 

same as the number of classes, M. For eClassC the number of 

clusters formed, N can be more, less or equal to the number of 

classes, M. Since there are no labels provided (the learning is 

unsupervised) there is no direct link between the two. For 

eClass A, B, and M there is a requirement to have at least one 

fuzzy rule per class and, therefore, the following relation holds 

for these types of classifiers:  

        MN ≥ ; i=[1,N]; j=[1,M]  (2) 

The firing degree for each fuzzy rule is determined as a 

t-norm (a form to represent the logical AND) [21]:  
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where 
i

jµ is the membership value that describes the degree 

of association with the i
th

 prototype. We assume it to be of 

Gaussian form due to its generalization capabilities [1]: 
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where ij
d is the Euclidean distance between a sample 

and the prototype (focal point) of the i
th

 fuzzy rule; 
i

j
σ  is the 

spread of the membership function, which also represents the 

radius of the zone of influence of the fuzzy rule.  

The spread of the membership σ can be determined using 

the data scatter [18] per cluster:  
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where i=[1,n] is the number of clusters; )( *

, j

i
xxd  denotes 
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the distance from cluster centre to new sample assigned into 

this cluster.  

 

The scatter can be updated recursively by [14,18]: 
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The nearest neighbour (also known as ‘winner-takes-all’) 

classifier is used to determine the label of the winning class 

[13]: 

a. For eClassC the sample is associated with the 

nearest cluster (thus associating with its label if 

any, note we do not need to know this label): 

( ) ],1[;maxarg*
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Nij
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i
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=
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where j*∈[1,N] denotes the index of the winning cluster. 

b. For eClassA the label of the winning prototype is 

taken: 
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ττλ denotes the normalised 

firing level of the i
th

 fuzzy rule. 

c. For eClassB the label of the winning prototype is 

taken: 
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the multi-input-multi-output (MIMO) TS model used [30]. 

d. For eClassM the label of the winning prototype is 

also determined by (7c) but instead of one MIMO 

type TS classifier [14] we build M separate 

multi-input-single-output (MISO) TS classifiers 

per class. This procedure is also called fuzzy 

regression of an indicator matrix [23], as it acts on 

a specific transferred form of the original input 

data.  

III. METHODOLOGY AND PROCEDURE FOR EVOLVING THE 

CLASSIFIERS 

A. Methodology 

Evolving the fuzzy classifiers of eClass type can start ‘from 

scratch’ or from an initial classifier. eClassC stands out as a 

fully unsupervised classifier. As such it is a clustering 

algorithm, which is on-line and evolving (the number of 

clusters is not pre-specified). The algorithm is influenced by 

the Mountain [28] and subtractive clustering approaches [29]. 

It is described in more details elsewhere [11],[18]. The basic 

idea is to measure the potential of a prototype to become a new 

cluster centre and to compare this with the potentials of the 

existing cluster centres so far. The potential is a measure of 

data density (in the feature space for the case of a classifier). 

That is a prototype is formed around a representative sample 

with feature vector similar to which there are many other 

samples. Prototypes are also formed around samples that will 

ensure coverage of the feature space. 

 The three other types of classifiers (eClassA, eClassB, and 

eClassM) are based on the evolving TS type fuzzy rule-based 

systems of MIMO [30] or MISO [11] type with singletons 

(zero order) or linear (first order) outputs of the so called eTS 

family [11],[18],[30]. The fuzzy rule-base build in this way is 

used to approximate the classification surface by a non-linear 

regression over the features. In essence, this approach 

combines the evolving clustering as described above with a 

fuzzily weighted mixture of recursive least square (wRLS) 

estimators [11]. Details of this algorithm are also given 

elsewhere [11],[18],[30].  

A special contemplation regarding the application of the 

algorithms for learning  eTS model family [11], [18], and [30] 

follows from the definitions (7b) and (7c) of the eClassB and 

eClassM classifiers.  Since max aggregation of the normalized 

firing levels 
jλ  is used in the procedures for calculation of the 

winning prototype (7b) and (7c), it is reasonable to consider 

also max guided aggregation of the TS sub-system 

contributions during the learning phase.  This can be 

accomplished by replacing the conventional normalization of 

the firing levels of the rules: ],1[;/

1

Ni

N

j

j
ii == ∑

=

ττλ  

in the inferred TS model output: 

θψ T
y =                  

where [ ]TT
R

TT πππθ ,...,, 21= is a vector formed by the 

sub-model parameters and 
TT

eR
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e
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e xxx ],...,,[ 21 λλλψ =  is 

a vector of the inputs that are weighted by the normalized 

firing levels of the rules, iλ , i=[1,R], by a max-like 

normalization 

],1[i;/
N
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j
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αα ττλ ,  

where parameter α > 1 determines an increasing  level of 

max-like aggregation of the firing levels.   For higher values of 

α the higher firing levels iτ 's are reinforced providing higher 

weights iλ to the respective subsystems in the TS model.   

Therefore, the eTS learning algorithm is adapted to the 

classification objective.  For α = 1 the mean type aggregation 

of the subsystems that is characteristic for approximation type 

of applications of the eTS models occurs. 

Note that eClassC coincides with eClassA, if the class 

labels are known, because according to (7a) and (7b): 
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In case when the labels are not known (a fully unsupervised 

classification based on the nearest neighbour principle) the 

learning is based on all data samples. The learning when the 

labels are known (eClassA) is per class. 

B. Procedures 

In this paper we describe the procedures for each of the 

proposed evolving fuzzy rule-based classifiers. All algorithms 

have one characteristic in common: the rule evolution and 

update of the antecedents takes place in the feature space, i.e. 

clusters evolve if the new incoming data is highly descriptive 

or if it expands the coverage of the fuzzy rule-base. The major 

difference lies in the update scheme for the consequent parts. 

In eClassC it is virtually not existent as such; in eClassA it is a 

label, singleton that has an integer (binary) value; in eClassB 

and eClassM it is (locally linear).  

 

Algorithm 1 eClassC 

1) Initialise the classifier by either of: 

a. The first sample, x1 (assign potential P1:=1)  

b. An initial rule-base 

2) Start a loop while there are new data samples do: 

a. Read the feature vector, xk 

b. Associate the sample with the nearest 

cluster using (7a) 

c. Calculate its potential, Pk by [11,21]: 
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d. Update the potential of the existing cluster 

prototypes by [11,21]: 
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e. Compare the two and  

i. Add a new cluster  

  ( ) ( ) ],1[;)()()()( **
nixPxPORxPxPIF

i

kkk

i

kkk =∀<>  (10) 

ii. Replace a cluster  

( )],1[,;)(];,1[, 1 njjexNiiIF k

j

i =∀>=∃ −µ   (11) 

iii. ELSE do not change the cluster 

structure  

Algorithm 2 eClassA 

1) Initialise the classifier by either of: 

a. the first data sample per class with the pair 

(feature vector and the class label), 

z1=[x1,L1]. 

b. An initial rule-base. 

2) Start a loop while there are new data samples do: 

a. Read the feature vector, xk 

b. Determine the winning class using (7b) 

c. Calculate the potential of the pair, 

zk=[xk,Lk] using (8) in respect to zk 

d. Update the potential of the existing 

prototypes by (9) in respect to zk 

e. Compare the two and 

i. Add a new fuzzy rule IF (10)  

ii. Replace a rule IF (11) holds 

iii. ELSE do not change the rule-base 

f. Increment the time, k←←←←k+1 

Algorithm 3 eClassB differs from Algorithm 2 in step 2)b. 

only which is according to (7c) not (7b), whereas the linear 

parameters ija are updated by weighted recursive least 

squares (wRLS), exploiting local learning [18],[30], 

triggering more flexibility during learning and transparency of 

the consequent functions.  

Algorithm 4 eClassMM is based on Algorithm 3 applied to 

M separate multi-input-single-output (MISO) TS classifiers 

per class [23]. For classification that class is taken, whose 

corresponding output value is maximal (Figure 1).  

 

Figure 1 A graphical interpretation of eClassB and eClassM 

IV. EXPERIMENTAL RESULTS 

The proposed classifier, eClass was tested on a well known 

benchmark problem and on a real-life problem. It should be 

noted that despite the clearly off-line nature of these 

benchmark problems they were used to test the proposed 

classifier in order to have some comparison.  
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A. Wine Reproduction Data 

The commonly used benchmark problem Wine 

Reproduction data set [25] is tested in order to illustrate the 

level of performance of the proposed evolving classifiers in 

comparison with other popular classification algorithms. The 

data set contains the chemical analysis of wines derived from 

three different cultivars. There are three classes, 178 samples 

with 13 continuous numerical features available in the data 

set. Original order of the data set from [25] is used, and no 

prior feature selection is performed.  

The results of testing eClass with Wine data set are 

tabulated in Table I, along with results from some comparable 

classifiers. 

The result shows that eClassC and eClassA are more 

computational efficient and their rule bases have better 

interpretability; while the first order Takagi-Sugeno rule 

based, eClassB and eClassM have better accuracy of 

classification. Please note that the rule numbers listed for 

eClassM is the summation of rule numbers of each MISO 

sub-models. 

B. On-line Image Classification  

In this section an application example is given, which 

includes an automatically self-reconfigurable and adaptive 

fault detection framework for images which classifies each 

image as good or bad, and evolves the classifier upon 

operator's feedback and the data. The images are taken from 

an online production process with a high frequency with the 

aim to supervise the system, as they may show errors in a 

production process. This framework including 

pre-processing, segmentation and classification is shown in 

Figure 2. 

 

Fig 2. Dynavis framework for on-line images classification. 

 

In principle, each type of image may be processed through 

the classification framework as shown in Fig. 1. The only 

assumption is that a master image is available: the purpose is 

to generate deviation images by subtracting newly recorded 

images from the master one in order to be able to classify the 

image into good or bad (depending on the structure and 

characteristics of the deviation pixels). 

For the evaluation of our approaches we applied image data 

from a CD-imprint production process, where faults due to 

weak colours, wrong palettes etc. should be detected within a 

process frequency of about 1 Hz. The data stream comprises 

1164 images that were recorded one by one. eClass was 

evolved on-line starting ‘from scratch’, so it was able to 

classify from the second sample onwards. In order to compare, 

however, with the other approaches which require batch 

learning over certain data set we have evolved eClass with the 

first 776 images and stopped evolution (fixed the rule-base). 

With the remaining 388 samples we made classifications only 

(no learning and evolution). Seventeen aggregated features 

were extracted, describing the distribution, density, shape etc. 

of the pixel fragments in the deviation images. 

The miss-classification rates on this test data set are 

demonstrated in Table II. The superiority in terms of low 

computational costs (time), high precision, and low 

complexity (low number of fuzzy rules) of eClass family is 

clearly visible. 

V. CONCLUSIONS 

In this paper, four different fuzzy model architectures were 

presented, whose inner structures and parameters are evolved 

and incrementally updated. In this way, four different schemes 

based on eClass procedure were presented, namely: eClassC, 

eClassA, eClassB and eClassM.  

Both tests on Wine data and on the adaptive image data shows 

that the proposed techniques for training fuzzy rule-base classifiers 

have the advantage of that evolving its structure from scratch 

without losing much precision (classification rate). In the online 

evolving mode, the performance slightly deteriorates, but is 

comparable to the results of the well-known and renowned batch 

modelling approaches CART [32] and probabilistic NN [33]. The 

first order classifiers eClassB and eClassM have results of the same 

level of precision as the best of these classifiers. The results 

TABLE II 

RESULTS FOR ON-LINE IMAGE CLASSIFICATION 

 
Class. 

Rate 
# rules Total time, s 

CART [32] 91.24% - Off-line 

PNN [33] 90.46% - Off-line 

FLEXFISClass SM [23] 83.33% 39 1.58 

FLEXFISClass MM [23] 90.98% 62 3.56 

FLEXFISClass MM* [23] 91.24% 62 3.56 

eClassC 76.28% 12 0.05 * 

eClassA 79.70% 12 0.05 * 

eClassB 91.24% 7 0.28 * 

eClassM 91.24% 14 0.53 * 

*    Running time for the last 388 samples with fixed eClass model; the test is 

carried out on a laptop computer with a CPU 3.0GHz. 

 

TABLE I 

RESULTS FOR WINE DATA 

 Class. Rate # rules Total time, s  

iPCA [24] 80.3% 7* - 

Smooth Boost [26] 86.1% - - 

eClassC 63.48% 9 0.92** 

eClassA 90.45% 12 1.18** 

eClassB 94.38% 9 3.52** 

eClassM 97.19% 28 7.18** 

* number of eigen-values (note that they are not transparent as the fuzzy rules 

and do not represent the features directly) 

** The test is carried out on a laptop computer with a CPU 1.6GHz; the time is 

for processing all the data samples 
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demonstrate that the proposed evolving fuzzy rule-base classifier, 

eClass in any of its modifications has a very good classification 

performance; it is computationally very efficient, and is, thus, 

suitable for real-time applications such as classification streaming 

data, robotic applications, e.g. target and landmark recognition, 

machine health monitoring and prognostics, fault detection and 

diagnostics etc. This approach is transparent, linguistically 

interpretable, and applicable to both fully unsupervised and partially 

supervised learning. While the low order architectures (eClassC 

and eClassA) are computationally superior, with high transparency 

(low number of fuzzy rules and parameters) and simple structure, the 

performance of eClassB using multi-input- multi-output, MIMO TS 

is superior to all the other structures and to the previously existing 

classifiers. The multiple model structure, eClassM has similar 

performance to eClassA with MIMO TS but a more complicated 

structure.   
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