Lancaster EPrints

Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake.

Hamilton-Taylor, J. and Smith, E.J. and Davison, W. and Sugiyama, M. (2005) Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake. Geochimica and Cosmochimica Acta, 69 (8). pp. 1947-1960. ISSN 0016-7037

[img]
Preview
PDF (GCA_69_1947-1960.pdf)
Download (271Kb) | Preview

    Abstract

    Vertical profiles of the dissolved and particulate (>0.45 μm) concentrations of Fe, Mn, Co, Ni, Cu, Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in-situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancillary measurements. The combined data were interpreted with the aid of an equilibrium speciation model (WHAM6), incorporating metalhumic interactions and a surface-complexation description of binding to Fe and Mn oxides. The behavior of all the metals was related in different ways to the position of the O2-H2S interface and to Fe and Mn redox cycling. In the region of the O2-H2S interface the behavior of Co and to a lesser degree Ni was dominated by Mn redox cycling. Ba behavior was dominated by the biogenic precipitation and dissolution of barite and to a lesser degree by Mn redox cycling. The behavior of Al was linked to both Mn and Fe redox cycling, although the extent of binding to the oxides and to humic substances was poised with respect to pH. Unlike the other metals, the profiles of Pb and Cu showed little variation above the dissolved sulfide maximum, but modeling indicated that binding of Pb was significant to both Mn and Fe oxides. The featureless nature of the Cu profiles in the upper part of the water column was linked to its overriding association with dissolved humic substances. Below the dissolved sulfide maximum, Co, Ni, Ba, Cu, Pb and Mn were all affected by sulfide precipitation, probably through a common association with FeS. In the case of Co, Ni, Cu and Pb, inverse relationships between the measured dissolved and particulate concentrations were attributed to the coexistence of both filterable and nonfilterable FeS particles and associated mass balance effects. The observed behavior of the metals in relation to the role played by Fe and Mn oxides was generally consistent with WHAM6 predictions. The model predictions highlighted the fact that trace metal speciation in general, and binding to Mn and Fe oxides in particular, can be highly sensitive to the variations in solution conditions found in freshwater systems.

    Item Type: Article
    Journal or Publication Title: Geochimica and Cosmochimica Acta
    Additional Information: The final, definitive version of this article has been published in the Journal, Geochimica Cosmochimica Acta, 69 (8), 2005, © ELSEVIER.
    Subjects: Q Science > QD Chemistry
    Departments: Faculty of Science and Technology > Lancaster Environment Centre
    Faculty of Science and Technology > Engineering
    ID Code: 92
    Deposited By: Dr John Hamilton-Taylor
    Deposited On: 20 Oct 2005
    Refereed?: Yes
    Published?: Published
    Last Modified: 26 Jul 2012 18:33
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/92

    Actions (login required)

    View Item