Abstract—In the last decade, machine learning based compilation has moved from an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements.

Index Terms—Compiler, Machine Learning, Code Optimisation, Program Tuning

I. INTRODUCTION

“Why would anyone want to use machine learning to build a compiler?” It’s a view expressed by many colleagues over the last decade. Compilers translate programming languages written by humans into binary executable by computer hardware. It is serious subject studied since the 50s [1], [2], [3] where correctness is critical and caution is a by-word. Machine-learning on the other hand is an area of artificial intelligence aimed at detecting and predicting patterns. It is a dynamic field looking at subject as diverse as galaxy classification [4] to predicting elections based on tweeter feeds [5]. When an opensource machine learning compiler was announced by IBM in 2009 [6], some wry slashdots commentators picked up on the AI aspect, predicting the start of sentient computers, global net and the war with machines from the Terminator film series.

In fact as we will see in this article, compilers and machine learning are a natural fit and have developed into an established research domain.

A. It’s all about optimisation

Compiler have two jobs – translation and optimisation. They must first translate programs into binary correctly. Secondly they have to find the most efficient translation possible. There are many different correct translations whose performance varies significantly. The vast majority of research and engineering practices is focussed on this second goal of performance, traditionally misnamed optimisation. The goal was misnamed because in most cases, till recently finding an optimal translation was dismissed as being too hard to find and an unrealistic goal.1 Instead it focussed on developing compiler heuristics to transform the code in the hope of improving performance but could in some instances damage it.

Machine learning predicts an outcome for a new data point based on prior data. In its simplest guise it can be considered a form of interpolation. This ability to predict based on prior information can be used to find the data point with the best outcome and is closely tied to the area of optimisation. It is at this overlap of looking at code improvement as an optimisation problem and machine learning as a predictor of the optima where we find machine-learning compilation.

Optimisation as an area, machine-learning based or otherwise, has been studied since the 1800s [8], [9]. An interesting question is therefore why has has the convergence of these two areas taken so long? There are two fundamental reasons. Firstly, despite the year-on year increasing potential performance of hardware, software is increasingly unable to realise it leading to a software-gap. This gap has yawned right open with the advent of multi-cores (see also Section VI-B). Compiler writers are looking for new ways to bridge this gap.

Secondly, computer architecture evolves so quickly, that it is difficult to keep up. Each generation has new quirks and compiler writers are always trying to play catch-up. Machine learning has the desirable property of being automatic. Rather than relying on expert compiler writers to develop clever heuristics to optimise the code, we can let the machine learn how to optimise a compiler to make the machine run faster, an approach sometimes referred to as auto-tuning [10], [11].

Machine learning is part of a tradition in computer science and compilation in increasing automation The 50s to 70s were spent trying to automate compiler translation, e.g. lex for lexical analysis [12] and yacc for parsing [13], the last decade by contrast has focussed on trying to automating compiler optimisation. As we will see it is not “magic” or a panacea for compiler writers, rather it is another tool allowing automation of tedious aspects of compilation providing new opportunities for innovation. It also brings compilation nearer to the standards of evidence based science. It introduces an experimental methodology where we separate out evaluation from design and considers the robustness of solutions. Machine learning based schemes in general have the problem of relying on black-boxes whose working we do not understand and hence trust. This problem is just as true for machine learning based compilers. In this paper we aim to demystify machine learning based compilation and show it is a trustworthy and exciting direction for compiler research.

The remainder of this article is structured as follows. We first give an intuitive overview for machine learning in compilers in Section II. We then describe how machine learning can be used to search for or to directly predict good compiler optimisations in Section III. This is followed by a comprehensive discussion in Section IV for a wide range of machine learning
models that have been employed in prior work. Next, in Section V, we review how previous work chooses quantifiable properties, or features, to represent programs. We discuss the challenges and limitations for applying machine learning to compilation, as well as open research directions in Section VII before we summarise and conclude in Section VIII.

II. OVERVIEW OF MACHINE LEARNING IN COMPILERS

Given a program, compiler writers would like to know what compiler heuristic or optimisation to apply in order to make the code better. Better often means execute faster, but can also mean smaller code footprint or reduced power. Machine learning can be used to build a model used within the compiler, that makes such decisions for any given program.

There are two main stages involved: learning and deployment. The first stage learns the model based on training data, while the second uses the model on new unseen programs. Within the learning stage, we need a way of representing programs in a systematic way. This representation is known as the program features [14].

Figure 1 gives an intuitive view how machine learning can be applied to compilers. This process which includes feature engineering, learning a model and deployment is described in the following sub-sections.

A. Feature engineering

Before we can learn anything useful about programs, we first need to be able to characterise them. Machine learning relies on a set of quantifiable properties, or features, to characterise the programs (Figure 1a). There are many different features that can be used. These include the static data structures extracted from the program source code or the compiler intermediate representation (such as the number of instructions or branches), dynamic profiling information (such as performance counter values) obtained through runtime profiling, or a combination of the both.

Standard machine learning algorithms typically work on fixed length inputs, so the selected prosperities will be summarised into a fixed length feature vector. Each element of the vector can be an integer, real or Boolean value. The process of feature selection and tuning is referred as feature engineering. This process may need to iteratively perform multiple times to find a set of high-quality features to build a accurate machine learning model. In Section V, we provide a comprehensive review of feature engineering for the topic of program optimisation.

B. Learning a model

The second step is to use training data to derive a model using a learning algorithm. This process is depicted in Figure 1b. Unlike other applications of machine learning, we typically generate our own training data. The compiler developer will select training programs which are typical of the application domain. For each training program, we calculate the feature values, compiling the program with different optimisation options, and running and timing the compiled binaries to discover the best-performing option. This process produces, for each training program, a training instance that consists of the feature values and the optimal compiler option for the program.

The compiler developer then feeds these examples to a machine learning algorithm to automatically build a model. The learning algorithms job is to find from the training examples a correlation between the feature values and the optimal optimisation decision. The learned model can then be used to predict, for a new set of features, what the optimal optimisation option should be.

Because the performance of the learned model strongly depends on how well the features and training programs are chosen, so that the processes of featuring engineering and training data generation often need to repeat multiple times.

C. Deployment

In the final step, the learned model is inserted into the compiler to predict the best optimisation decisions for new programs. This is demonstrated in Figure 1c. To make a prediction, the compiler first extracts the features of the input
Fig. 2: An OpenCL thread coarsening example reproduced from [15]. The original OpenCL code is shown at (a) where each thread takes the square of one element of the input array. When coarsened by a factor of two (b), each thread now processes two elements of the input array.

The advantage of the machine learning based approach is that the entire process of building the model can be easily repeated whenever the compiler needs to target a new hardware architecture, operating system or application domain. The model built is entirely derived from experimental results and is hence evidence based.

D. Example

As an example to illustrate these steps, consider thread coarsening [16] for GPU programs. This code transformation technique works by giving multiple work-items (or work elements) to one single thread. It is similar to loop unrolling, but applied across parallel work-items rather than across serial loop iterations.

Figure 2 (a) shows a simple OpenCL kernel where a thread operates on a work-item of the one-dimensional input array, in, at a time. The work-item to be operated on is specified by the value returned from the OpenCL get_global_id() API. Figure 2 (b) shows the transformed code after applying a thread coarsen factor of two, where each thread processes two elements of the input array.

Thread coarsening can improve performance through increasing instruction-level parallelism [17], reducing the number of memory-access operations [18], and eliminating redundant computation when the same value is computed in every work-item. However, it can also have several negative sideeffects such as reducing the total amount of parallelism and increasing the register pressure, which can lead to slowdown performance. Determining when and how to apply thread coarsening is non-trivial, because the best coarsening factor depends on the target program and the hardware architecture that the program runs on [17], [15].

Magni et al. show that machine learning techniques can be used to automatically construct effective thread-coarsening heuristics across GPU architectures [15]. Their approach considers six coarsening factors, (1, 2, 4, 8, 16, 32). The goal is to develop a machine learning based model to decide whether an OpenCL kernel should be coarsened on a specific GPU architecture and if so what is the best coarsening factor. Among many machine learning algorithms, they chose to use an artificial neural network to model4 the problem. Construing such a model follows the classical 3-step supervised learning process, described as follows.

a) Feature engineering: To describe the input OpenCL kernel, Magni et al. use static code features extracted from the compiler’s intermediate representation. Specifically, they developed a compiler-based tool to obtain the feature values from the program’s LLVM bitcode [19]. They started from 17 candidate features. These include things like the number of and types of instructions and memory level parallelism (MLP) within an OpenCL kernel. Table I gives the list of candidate features used in [15]. Typically, candidate features can be chosen based on developers’ intuitions, suggestions from prior works, or a combination of both. After choosing the candidate features, a statistical method called Principal Component Analysis (see also Section IV-B) is applied to map the 17 candidate features into 7 aggregated features, so that each aggregated feature is a linear combination of the original features. This technique is known as “feature dimension reduction” which is discussed at Section V-D2. Dimension reduction helps eliminating redundant information among candidate features, allowing the learning algorithm to perform more effectively.

b) Learning the model: For the work presented in [15], 16 OpenCL benchmarks were used to generate training data. To find out which of the six coarsening factors performs best for a given OpenCL kernel on a specific GPU architecture, we can apply each of the six factors to an OpenCL kernel and records its execution time. Since the optimal thread-coarsening factor varies across hardware architectures, this process needs to repeat for each target architecture. In addition to finding the best-performing coarsening factor, Magni et al. also extracted the aggregated feature values for each kernel. Applying these two steps on the training benchmarks results in a training dataset where each training example is composed of the optimal coarsening factor and feature values for a training kernel. The training examples are then fed into a learning algorithm

4In fact, Magni et al. employed a hierarchical approach consisting of multiple artificial neural networks [15]. However, these networks are trained using the same process.
compiler heuristic
available options
Cost function
Continue?
evaluate an option
quality metric
input
program
best-found option
No
Yes
input
program
Feature extraction
features
Predictive model
predicted option
(a) Use a cost function to guide compiler decisions

(b) Use a model to directly predict the decision

Fig. 3: There are in general two approaches to determine the optimal compiler decision using machine learning. The first one is to learn a cost or priority function to be used as a proxy to select the best-performing option (a). The second one is to learn a predictive model to directly predict the best option.

which tries to find a set of model parameters (or weights) so that overall prediction error on the training examples can be minimised. The output of the learning algorithm is an artificial neural network model where its weights are determined from the training data.

c) Deployment: The learned model can then be used to predict the optimal coarsening factor for unseen OpenCL programs. To do so, static source code features are first extracted from the target OpenCL kernel; the extracted feature values are then fed into the model which decides whether to coarsen or not and which coarsening factor should use. The technique proposed in [15] achieves an average speedup between 1.11x and 1.33x across four GPU architectures and does not lead to degraded performance on a single benchmark.

III. METHODOLOGY

One of the key challenges for compilation is to select the right code transformation, or sequence of transformations for a given program. This requires effectively evaluating the quality of a possible compilation option e.g. how will a code transformation affect eventual performance.

A naive approach is to exhaustively apply each legal transformation option and then profile the program to collect the relevant performance metric. Given that many compiler problems have a massive number of options, exhaustive search and profiling is infeasible, prohibiting the use of this approach at scale. This search based approach to compiler optimisation is known as iterative compilation [20], [21] or auto-tuning [10], [22]. Many techniques have been proposed to reduce the cost of searching a large space [23], [24]. In certain cases, the overhead is justifiable if the program in question is to be used many times e.g. in a deeply embedded device. However, its overhead is justifiable if the program in question is to be used many times e.g. in a deeply embedded device. However, its

thresholds to use to determine when to inline changes from one program to the other [27], [28].

Hand-crafted cost functions are widely used in compilers. Other examples include the work conducted by Wagner et al. [29] and Tiwari et al. [30]. The former combines a Markov model and a human-derived heuristic to statically estimate the execution frequency of code regions (such as function innovation counts). The later calculates the energy consumption of an application by assigning a weight to each instruction type. The efficiency of these approaches highly depend on the accuracy of the estimations given by the manually tuned heuristic.

The problem of relying on a hand-tuned heuristic is that the cost and benefit of a compiler optimisation often depends on the underlying hardware; while hand-crafted cost functions could be effective, manually developing one can take months or years on a single architecture. This means that tuning the compiler for each new released processor is hard and is often infeasible due to the drastic efforts involved. Because cost functions are important and manually tuning a good function is difficult for each individual architecture, researchers have investigated ways to use machine learning to automate this process.

In the next subsection, we review a range of previous studies on using machine learning to tune cost functions for performance and energy consumption – many of which can be applied to other optimisation targets such as the code size [31] or a trade-off between energy and runtime.

2) Cost functions for performance: The Meta Optimization framework [32] uses genetic programming (GP) to search for a cost function, \(y \leftarrow f(x) \), which takes in a feature vector,
x, and produces a real-valued priority, y. Figure 4 depicts the workflow of the framework. This approach is evaluated on a number of compiler problems, including hyperblock formation3, register allocation, and data prefetching, showing that machine learned cost functions outperform human-crafted ones. A similar approach is employed by Cavazos et al. find cost functions for performance and compilation overhead for a Java just-in-time compiler [33]. The COLE compiler [34] uses a variance of the GP algorithm called Strength Pareto Evolutionary Algorithm2 (SPEA2) [35] to learn cost functions to balance multiple objectives (such as program runtime, compilation overhead and code size). In Section IV-C, we describe the working mechanism of GP-like search algorithms.

Another approach to tune the cost functions is to predict the execution time or speedup of the target program. The Qilin compiler [36] follows such an approach. It uses curve fitting algorithms to estimate the runtime for executing the target program of a given input size on the CPU and the GPU. The compiler then uses this information to determine the optimal loop iteration partition across the CPU and the GPU. The Qilin compiler relies on an application-specific function which is built on a per program base using reference inputs. The curve fitting (or regression – see also Section IV) model employed by the Qilin compiler can model with continuous values, making it suitable for estimating runtime and speedup. In [37], this approach is extended, which developed a relative predictor that predicts whether an unseen predictor will improve significantly on a GPU relative to a CPU. This is used for runtime scheduling of OpenCL jobs.

The early work conducted by Brewer proposed a regression-based model to predict the execution of a data layout scheme for parallelization, by considering three parameters [38]. Using the model, their approach can select the optimal layout for over 99% of the time for a Partial Differential Equations (PDE) solver across four evaluation platforms. Other previous works also use curve fitting algorithms to build a cost function to estimate the speedup or runtime of sequential [39], [40], [41], OpenMP [42], [43], [44], and more recently for deep learning applications [45].

3) Cost functions for energy consumption: In addition to performance, there is an extensive body of work investigates ways to build energy models for software optimisation and hardware architecture design. As power or energy readings are continuous real values, most of the prior work on power modelling use regression-based approaches.

Linear regression is a widely used technique for energy modeling. Benini et al. developed a linear regression-based model to estimate power consumption at the instruction level [46]. The framework presented by Rethinagiri et al. [47] uses parameterised formulas to estimate power consumption of embedded systems. The parameters of the formulas are determined by applying a regression-based algorithm to reference data obtained with hand-crafted assembly code and power measurements. In a more recent work, Schürmans et al. also adopt a regression-based method for power modelling [48], but the weights of the regression model are determined using standard benchmarks instead of hand-written assembly programs.

Other works employ the artificial neural network (ANN) to automatically construct power models. Curtis-Maury et al. develop an ANN-based model to predict the power consumption of OpenMP programs on multi-core systems [49]. The inputs to the model are hardware performance counter values such as the cache miss rate, and the output is the estimated power consumption. Su et al. adopt a similar approach by developing an ANN predictor to estimate the runtime and power consumption for mapping OpenMP programs on Non-Uniform Memory Access (NUMA) multi-cores. This approach is also based on runtime profiling of the target program, but it explicitly considers NUMA-specific information like local and remote memory accesses per cycle.

B. Directly predict the best option

While a cost function is useful for evaluating the quality of compiler options, the overhead involved in searching for the optimal option may still be prohibitive. For this reason, researchers have investigated ways to directly predict the best compiler decision using machine learning for relatively small compilation problems.

Monsifrot et al. pioneered the use of machine learning to predict the optimal compiler decision [14]. This work developed a decision tree based approach to determine whether it is beneficial to unroll a loop based on information such as the number of statements and arithmetic operations of the loop. Their approach makes a binary decision on whether to unroll a loop but not how many times the loop should be unrolled.

\(\text{负荷} \)
Later, Stephenson and Amarasinghe advanced [14] by directly predicting the loop unroll factor [50] by considering eight unroll factors, (1, 2, . . . , 8). They formulated the problem as a multi-class classification problem (i.e. each loop unroll factor is a class). They used over 2,500 loops from 72 benchmarks to train two machine learning models (a nearest neighbor and a support vector machines model) to predict the loop unroll factor for unseen loops. Using a richer set of features than [14], their techniques correctly predict the unroll factor for 65% of the testing loops, leading to an average, a 5% improvement for the SPEC 2000 benchmark suite.

For sequential programs, there is extensive work in predicting the best compiler flags [51], [52], code transformation options [53], or tile size for loops [54], [55]. This level of interest is possibly due to the restricted nature of the problem, allowing easy experimentation and comparison against prior work.

Directly predicting the optimal option for parallel programs is harder than doing it for sequential programs, due to the complex interactions between the parallel programs and the underlying parallel architectures. Nonetheless, there are works on predicting the optimal number of threads to use to run an OpenMP program [44], [56], the best parameters to used to compile a CUDA programs for a given input [57] the thread coarsening parameters for OpenCL programs for GPUs [15]. These papers show that supervised machine learning can be a powerful tool for modelling problems with a relatively small number of optimisation options.

IV. MACHINE LEARNING MODELS

In this section, we review the wide range of machine learning models used for compiler optimisation.

There are two major subdivisions of machine learning techniques that have previously been used in compiler optimisations: supervised and unsupervised learning. Using supervised machine learning, a predictive model is trained on empirical performance data (labelled outputs) and important quantifiable properties (features) of representative programs. The model learns the correlation between these feature values and the optimisation decision that delivers the optimal (or nearly optimal) performance. The learned correlations are used to predict the best optimisation decisions for new programs. Depending on the nature of the outputs, the predictive model can be either a regression model for continuous outputs or a classification model for discrete outputs.

In the other subdivision of machine learning, termed unsupervised learning, the input to the learning algorithm is a set of input values merely – there is no labelled output. One form of unsupervised learning is clustering which groups the input data items into several subsets. For example, SimPoint [58], a simulation technique, uses clustering to pick represent program execution points for program simulation. It does so by first dividing a set of program runtime information into groups (or clusters), such that points within each cluster are similar to each other in terms of program structures (loops, memory usages etc.). It then chooses a few points of each cluster to represent all the simulation points within that group without losing much information.

There are also techniques that sit at the boundary of supervised and unsupervised learning. These techniques refine the knowledge gathered during offline learning or previous runs using empirical observations obtained during deployment. We review such techniques in Section IV-C. This sections concludes with a discussion of the relative merits of different modelling approaches for compiler optimisation.

A. Supervised learning

1) Regression: A widely used supervised learning technique is called regression. This technique has been used in various tasks, such as predicting the program execution time input [36] or speedup [37] for a given input, or estimating the tail latency for parallel workloads [59].

Regression is essentially curve-fitting. As an example, consider Figure 5 where a regression model is learned from five data points. The model takes in a program input size, \(X \), and predicts the execution time of the program, \(Y \). Adhering to supervised learning nomenclature, the set of five known data points is the training data set and each of the five points that comprise the training data is called a training example. Each training example, \((x_i, y_i) \), is defined by a feature vector (i.e. the input size in our case), \(x_i \), and a desired output (i.e. the program execution time in our case), \(y_i \). Learning in this context is understood as discovering the relation between the inputs \((x_i) \) and the outputs \((y_i) \) so that the predictive model can be used to make predictions for any new, unseen input features in the problem domain. Once the function, \(f \), is in place, one can use it to make a prediction by taking in a new input feature vector, \(x \). The prediction, \(y \), is the value of the curve that the new input feature vector, \(x \), corresponds to.

There are a range of machine learning techniques can be used for regression. These include the simple linear regression model and more advanced models like support vector machines (SVMs) and artificial neural networks (ANNs). Linear regression is effective when the input (i.e. feature vectors) and
determining the loop unroll factor [14], [68], deciding the profitability of using GPU acceleration [66], [69], and selecting the optimal algorithm implementation [70]. The advantage of a decision tree is that the learned model is interpretable and can be easily visualised. This enables users to understand why a particular decision is made by following the path from the root node to a leaf decision node. For example, Figure 6 depicts the decision tree model developed in [66] for selecting the best-performing device (CPU or GPU) to run an OpenCL program. To make a prediction, we start from the root of the tree; we compare a feature value (e.g. the communication-computation ratio) of the target program against a threshold to determine which branch of the tree to follow; and we repeat this process until we reach a leaf node where a decision will be made. It is to note that the structure and thresholds of the tree are automatically determined by the machine learning algorithm, which may change when we target a different architecture or application domain.

Decision trees make the assumption that the feature space is convex i.e. it can be divided up using hyperplanes into different regions each of which belongs to a different category. This restriction is often appropriate in practice. However, a significant drawback of using a single decision tree is that the model can over-fit due to outliers in the training data (see also Section IV-D). Random forests have therefore been proposed to alleviate the problem of over fitting. Random forests are an ensemble learning method [72]. As illustrated in Figure 7, it works by constructing multiple decision trees at training time. The prediction of each tree depends on the values of a random vector sampled independently on the feature value. In this way, each tree is randomly forced to be insensitive to some feature dimensions. To make a prediction, random forests then aggregate the outcomes of individual trees to form an overall prediction. It has been employed to determine whether to inline a function or not [73], delivering better performance than a single-model-based approach. We want to highlight that random forests can also be used for regression tasks. For instances, it has been used to model energy consumption of OpenMP [74] and CUDA [75] programs.

Logical regression is a variation of linear regression but is often used for classification. It takes in the feature vector and calculates the probability of some outcome. For example, Cavazos and O’Boyle used logical regression to determine
the optimisation level of Jike RVM. Like decision trees, logical regression also assumes that the feature values and the prediction has a linear relation.

More advanced models such as SVM classification has been used for various compiler optimisation tasks [44], [77], [78]. SVMs use kernel functions to compute the similarity of feature vectors. The radial basis function (RBF) is commonly used in prior works [44], [79] because it can model both linear and non-linear problems. It works by mapping the input feature vector to a higher dimensional space where it may be easier to find a linear hyper-plane to well separate the labelled data (or classes).

Other machine learning techniques such as Kernel Canonical Correlation Analysis and naive Bayes have also been used in prior works to predict stencil program configurations [80] or detect parallel patterns [81].

3) Deep neural networks: In recent years, deep neural networks [82] have been shown to be a powerful tool for tackling a range of machine learning tasks like image recognition [83], [84] and audio processing [85]. DNNs have recently used to model program source code [86] for various software engineering tasks (see also Section VI-C), but so far there is little work of applying DNNs to compiler optimisation. A recent attempt in this direction is the DeepTune framework [76], which uses DNNs to extract source code features (see also Section V-C).

The advantage of DNNs is that it can compactly represent a significantly larger set of functions than a shallow network, where each function is specialised at processing part of the input. This capability allows DNNs to model the complex relationship between the input and the output (i.e. the prediction).

As an example, consider Figure 8 that visualizes the internal state of DeepTune [76] when predicting the optimal thread coarsening factor for an OpenCL kernel (see Section II-D). Figure 8 (a) shows the first 80 elements of the input source code tokens as a heatmap in which each cell’s color reflects an integer value assigned to a specific token. Figure 8 (b) shows the neurons of the first DNN for each of the four GPU platforms, using a red-blue heatmap to visualize the intensity of each activation. If we have a close look at the heatmap, we can find that a number of neurons in the layer with different responses across platforms. This indicates that the DNN is partly specialised to the target platform. As information flows through the network (layers c and d in Figure 8), the layers become progressively more specialised to the specific platform.

One of the hurdles for applying DNNs to compiler optimisation is that DNNs typically require a large amount of examples to learn over; and unlike other domains such as image recognitions and machine translations where there are millions of labelled data readily available, compiler developers typically only have access to a dozen of benchmarks and have to generate the training data themselves. The recent work conducted by Cummins et al. [87] shows that it is possible to learn from open source repositories like GitHub to automatically generate an unbound number of high-quality OpenCL benchmarks. If this technique can be applied to other programming languages and application domains and
we can find ways to reduce the cost of generating program training data, we can then greatly extend the reach of DNNs to compiler-based code optimisation.

B. Unsupervised learning

Unlike supervised learning models which learn a correlation from the input feature values to the corresponding outputs, unsupervised learning models only take it the input data (e.g. the feature values). This technique is often used to model the underlying structure of distribution of the data.

Clustering is a classical unsupervised learning problem. The k-means clustering algorithm [88] groups the input data into k clusters. For example, in Figure 9, a k-means algorithm is used to group data points into three clusters on a 2-dimensional feature space. The algorithm works by grouping data points that are close to each other on the feature space into a cluster. K-means is used to characterise program behaviour [58], [89]. It does so by clustering program execution into phase groups, so that we can use a few samples of a group to represent the entire program phases within a group. K-means is also used in the work presented in [90] to summarise the code structures of parallel programs that benefit from similar optimisation strategies. In addition to k-means, Martins et al. employed the Fast Newman clustering algorithm [91] which works on network structures to group functions that may benefit from similar compiler optimisations [92].

Principal Component Analysis (PCA) is a statistical method for unsupervised learning. This method has been heavily used in prior work to reduce the feature dimension [93], [23], [94], [95], [15]. Doing so allows us to model a high-dimensional feature space with a smaller number of representative variables which, in combination, describe most of the variability found in the original feature space. PCA is often used to discover the common pattern in the datasets in order to help clustering exercises. It is used to select representative programs from a benchmark suite [93], [96]. In Section V-D, we discuss PCA in further details.

Autoencoders are a recently proposed artificial neural network architecture for discovering the efficient codings of input data in an unsupervised fashion [97]. This technique can be used in combination of a natural language model to first extract features from program source code and then find a compact representation of the source code features [98]. We discuss autoencoders in Section V-D when reviewing feature dimensionality reduction techniques.

C. Online learning

1) Evolutionary search: Evolutionary algorithms (EAs) or evolutionary computation like genetic algorithms, genetic programming and stochastic based search have been employed to find a good optimisation solution from a large search space. An EA applies a principles inspired by biological evolution to find an optimal or nearly optimal solution for the target problem. For instance, the SPIRAL auto-tuning framework uses a stochastic evolutionary search algorithm to choose a fast formula (or transformation) for signal processing applications [99]. Li et al. use genetic algorithms to search for the optimal configuration to determine which sorting algorithm to use based on the unsorted data size [100]. The Petabricks compiler offers a more general solution by using evolutionary algorithms to search for the best-performing configurations for a set of algorithms specified by the programmer [101].

As an example, consider how an EA can be employed in the context of iterative compilation to find the best compiler flags for a program [23], [34], [103]. Figure 10 depicts how an EA can be used for this purpose. The algorithm starts from several populations of randomly chosen compiler flag settings. It compiles the program using each individual compiler flag sequence, and uses a fitness function to evaluate how well a compiler flag sequence performs. In our case, a fitness function can simply return the reciprocal of a program runtime measurement, so that compiler settings that give faster execution time will have a higher fitness score. In the next epoch, the EA algorithm generates the next populations of compiler settings via mechanisms like reproduction (crossover) and mutation among compiler flag settings. This results in a new generation of compiler flag settings and the quality of each setting will be evaluated again. In a mechanism analogous to natural selection, a certain number of poorly performing compiler flags within a population are chosen to die in each generation. This process terminates when no further improvement is observed or the maximum number of generations is reached, and the algorithm will return the best-found program binary as a result.

Three are three key operations in a classical EA algorithm: selection, crossover and mutation. The probability of an optimisation option being selected for dying is often inversely proportional to its fitness score. In other words, options that are relatively fitter (e.g. give faster program runtime) are more likely to survive and remain a part of the population after selection. In cross-over, a certain number of offsprings are produced by mixing some existing optimisation options (e.g.
combine supervised learning and evolutionary algorithms [23], [104] – by first using an offline learned model to predict the most promising areas of the design space (i.e. to narrow down the search areas), and then searching over the predicted areas to refine the solutions. Moreover, instead of predicting where in the search space to focus on, one can also first prune the search space to reduce the number of options to search over. For example, Jantz and Kulkarni show that the search space of phase ordering can be greatly reduced if we can first remove phases whose application order is irrelevant to the produced code [105]. Their techniques are claimed to prune the exhaustive phase order search space size by 89% on average.

2) Reinforcement learning: Another class of online learning algorithms is reinforcement learning (RL) which is sometimes called “learning from interactions”. The algorithm tries to learn how to maximise the rewards (or performance) itself. In other words, the algorithm needs to learn, for a given input, what is the correct output or decision to take. This is different from supervised learning where the correct input/output pairs are presented in the training data.

Figure 11 illustrates the working mechanism of RL. Here the learning algorithm interacts with its environment over a discrete set of time steps. At each step, the algorithm evaluates the current state of its environment, and executes an action. The action leads to a change in the state of the environment (which the algorithm can evaluate in the next time step), and produces an immediate reward. For examples, in a multi-tasking environment, a state could be the CPU contention, and which processor cores are idle, an action could be where to place a process, and a reward could be the overall system throughput. The goal of RL is to maximize the long-term cumulative reward by learning an optimal strategy to map states to actions.

RL is particularly suitable for modelling problems that have an evolving natural, such as dynamic task scheduling, where the optimal outcome is achieved through a series of actions. RL has been used in prior research to schedule RAM memory traffics [106], selecting software component configurations at runtime [107], and configure virtual machines [108]. An early work of using RL for program optimisation was conducted by Lagoudakis and Littman [109]. They use RL to find the cut-off point to switch between two sorting algorithms, quickSort and insertionSort.

Compiler phase ordering determines at which order a set of compiler optimisation passes should be applied to a given program.
An interesting RL based approach for scheduling parallel OpenMP programs is presented in [110]. This approach predicts the best number of threads for a target OpenMP program when it runs with other competing workloads, aiming to make the target program run faster. This approach first learns a reward function offline based on static code features and runtime system information. The reward function is used to estimate the reward of a runtime scheduling action, i.e. the expected speedup when assigning a certain number of processor cores to an OpenMP program. In the next scheduling epoch, this approach uses the empirical observation of the applications speedup to check if the reward function was accurate and the decision was good, and update the reward function if the model is found to be inaccurate.

In general, RL is an intuitive and comprehensive solution for autonomous decision making. But its performance depends on the effectiveness of the value function, which estimates the immediate reward. An optimal value function should lead to the greatest cumulative reward in the longer term. For many problems, it is difficult to design an effective value function or policy, because the function needs to foresee the impact of an action in the future. In recent years, deep learning techniques have been used in conjunct with RL to learn a value function. The combined technique is able to solve some problems that were deem impossible in the past [111]. However, how to combine deep learning with RL to solve compilation and code optimisation problems remains an open question.

D. Discussions

What model is best, is the $64,000 question. The answer is: it depends. More sophisticated techniques may provide greater accuracy but they require large amounts of labelled training data - a real problem in compiler optimisation. Techniques like linear regression and decision trees require less training data compared to more advanced models like SVMs and ANNs. Simple models typically work well when the prediction problem can be described using a feature vector that has a small number of dimensions, and when the feature vector and the prediction is linearly correlated. More advanced techniques like SVMs and ANNs can model both linear and non-linear problems on a higher dimensional feature space, but they often require more training data to learn an effective model. Furthermore, the performance of a SVM and an ANN also highly depends the hyper-parameters used to train the model. The optimal hyper-parameter values can be chosen by performing cross-validation on the training data. However, how to select parameters to avoid over-fitting while achieving a good prediction accuracy remains an outstanding challenge.

Choosing which modelling technique to use is non-trivial. This is because the choice of model depends on a number of factors: the prediction problem (e.g. regression or classification), the set of features to use, the available training examples, the training and prediction overhead, etc. In prior works, the choice of modelling technique is largely relied on developer experience and empirical results. Many of the studies in the field of machine learning based code optimisation do not fully justify the choice of the model, although some do compare the performance of alternate techniques.

One technique that has seen little investigation is the use of Gaussian Processes [112]. Before the recent widespread interest in deep neural networks, these were a highly popular method in many areas of machine learning [113]. They are particular powerful when the amount of training data is sparse and expensive to collect. They also automatically give a confidence interval with any decision. This allows the compiler writer to trade off risk vs reward depending on application scenario,

Using a single model has a significant drawback in practice. This is because a one-size-fits-all model is unlikely to precisely capture behaviors of diverse applications, and no matter how parameterized the model is, it is highly unlikely that a model developed today will always be suited for tomorrow. To allow the model to adapt to the change of the computing environment and workloads, ensemble learning was exploited in prior works [71], [114], [115]. The idea of ensemble learning is to use multiple learning algorithms, where each algorithm is effective for particular problems, to obtain better predictive performance than could be obtained from any of the constituent learning algorithm alone [116], [117]. Making a prediction using an ensemble typically requires more computational time than doing that using a single model, so ensembles can be seen as a way to compensate for poor learning algorithms by performing extra computation. To reduce the overhead, fast algorithms such as decision trees are commonly used in ensemble methods (e.g. Random Forests), although slower algorithms can benefit from ensemble techniques as well.

V. Feature Engineering

Machine learning based code optimisation relies on having a set of high-quality features that capture the important characteristics of the target program. Given that there is an unbounded number of potential features, finding the right set is a non-trivial task. In this section, we review how previous work chooses features, a task known as feature engineering.

A. Feature representation

Various forms of program features have been used in compiler-based machine learning. These include static code structures [118] and runtime information such as system load [114], [119] and performance counters [51].

1) Static code features: Static program features like the number and type of instructions are often used to describe a program. These features are typically extracted from the compiler intermediate representation [44], [27], [50], [78] in order to avoid using information extracted from dead code.
Table III gives some of the static code features that were used in previous studies. Raw code features are often used together to create a combined feature. For example, one can divide the number of load instructions by the number of total instructions to get the memory load ratio. An advantage of using static code features is that the features are readily available from the compiler intermediate representation.

2) Other static features: Singer and Veloso represent the FFT in a split tree [120]. They extract from the tree a set of features, by counting the number of nodes of various types and quantifying the shape of the tree. These tree-based features are then used to build a neural network based cost function that predicts which of the two FFT formulas runs faster. The cost function is used to search for the best-performing transformation.

Park et al. present a unique graph-based approach for feature representations [121]. They use a SVM where the kernel is based on a graph similarity metric. Their technique requires hand coded features at the basic block level, but thereafter, graph similarity against each of the training programs takes the place of global features. Maillie shows that spatial based information, i.e. how instructions are distributed within a program, extracted from the program’s data flow graph could be useful features for machine learning based compiler optimisation [122]. Nobre et al. also exploit graph structures for code generation [24]. Their approach targets the phase ordering problem. The order of compiler optimisation passes is represented as a graph. Each node of the graph is an optimisation pass and connections between nodes are weighted in a way that sub-sequences with higher aggregated weights are more likely to lead to faster runtime. The graph is automatically constructed and updated using iterative compilation (where the target program is compiled using different compiler passes with different orders). A design space exploration algorithm is employed to drive the iterative compilation process.

3) Dynamic Features: While static code features are useful and can be extracted at static compile time (hence feature extraction has no runtime overhead), they have drawbacks. For examples, static code features may contain information of code segments that rarely get executed, and such information can confuse the machine learning model; some program information such as the loop bound depends on the program input, which can only obtained during execution time; and static code features often may not precisely capture the application behaviour in the runtime environment (such as resource contention and I/O behaviour) as such behaviour highly depends on the computing environment such as the number of available processors and co-running workloads.

As illustrated in Figure 12, dynamic features can be extracted from multiple layers of the runtime environment. At the application layer, we can obtain information like loop iteration counts the cannot be decided at compile time, dynamic control flows, frequently executed code regions, etc. At the operating system level, we can observe the memory and I/O behaviour of the application as well as CPU load and thread contention, etc. At the hardware level, we can use performance counters to track information like how many instructions have been executed and of what types, and the number of cache loads/stores as well as branch misses, etc.

Hardware performance counter values like executed instruction counts and cache miss rate are therefore used to understand the application’s dynamic behaviours [51], [123]. These counters can capture low-level program information such as data access patterns, branches and computational instructions. One of the advantage of performance counters is that they capture how the target program behave on a specific hardware and avoid the irrelevant information that static code features may bring in. In addition to hardware performance counters, operating system level metrics like system load and I/O contention are also used to model an application’s behavior [37], [119]. Such information can be externally observed without instrumenting the code, and can be obtain during off-line profiling or program execution time. While effective, collecting dynamic information could incur prohibitively overhead and the collected information can be noisy due to competing workloads and operating system scheduling [124] or even subtle settings of the execution environment [125]. Another drawback of performance counters and dynamic features is that they can only capture the application’s past behavior. Therefore, if the application behaves significantly different in the future due to the change of program phases or inputs, then the prediction will be drawn on an unreliable observation. As such, dynamic and static features are often used in combination in prior works in order to build a robust model.

B. Reaction based features

Cavazos et al. present a reaction-based predictive model for software-hardware co-design [126]. Their approach profiles the target program using several carefully selected compiler options to see how program runtime changes under these options for a given micro-architecture setting. They then use the program “reactions” to predict the best available application speedup. Figure 13 illustrates the difference between a reaction-based model and a standard program feature based model. A similar reaction-based approach is used in [127] to predict speedup and energy efficiency for an application that is parallelised thread-level speculation (TLS) under a given micro-architectural configuration. Note that while a reaction-based approach does not use static code features, developers must carefully select a few settings from a large number of candidate options for profiling, because poorly chosen options can significantly affect the quality of the model.

C. Automatic feature generation

As deriving good features is a time-consuming task, a few methods have been proposed to automatically generate features...
from the compiler’s intermediate representation (IR) [128], [68]. The work of [68] uses GP to search for features, but required a huge grammar to be written, some 160kB in length. Although much of this can be created from templates, selecting the right range of capabilities and search space bias is non-trivial and up to the expert. The work of [128] expresses the space of features via logic programming over relations that represent information from the IRs. It greedily searches for expressions that represent good features. However, their approach relies on expert selected relations, combinators and constraints to work. Both approaches closely tie the implementation of the predictive model to the compiler IR, which means changes to the IR will require modifications to the model. Furthermore, the time spent in searching features could be significant for these approaches.

The first work to employ neural network to extract features from program source code for compiler optimisation is conducted by Cummin et al. [76]. Their system, namely DeepTune, automatically abstracts and selects appropriate features from the raw source code. Unlike prior work where the predictive model takes in a set of human-crafted features, program code is used directly in the training data. Programs are fed through a series of neural network based language models which learn how code correlates with the desired optimisation options (see also Figure 8). Their work also shows that the properties of the raw code that are abstracted by the top layers of the neural networks are mostly independent of the optimisation problem. While promising, it is worth mentioning that dynamic information such as the program input size and performance counter values are often essential for characterising the behaviour of the target program. Therefore, DeepTune does not completely remove human involvement for feature engineering when static code features are insufficient for the optimisation problem.

D. Feature selection and dimension reduction

Machine learning uses features to capture the essential characteristics of a training example. Sometimes we have too many features. As the number of features increase so does the number of training examples needed to build an accurate model [129]. Hence, we need to limit the dimension of the feature space. In compiler research, commonly, an initial large, high dimensional candidate feature space is pruned via feature selection [50], or projected into a lower dimensional space [15]. In this subsection, we review a number of feature selection and dimension reduction methods.

1) Feature selection: Feature selection requires understanding how does a particular feature affect the prediction accuracy. One of the simplest methods for doing this is applying the Pearson correlation coefficient. This metric measures the linear correlation between two variables and is used in numerous works [130], [53], [118], [90] to filter out redundant features by removing features that have a strong correlation with an already selected feature. It has also been used to quantify the relation of the select features in regression. One obvious drawback of using Pearson correlation as a feature ranking mechanism is that it is only sensitive to a linear relationship.

Another approach for correlation estimation is mutual information [126], [131], which quantifies how much information of one variable (or feature) can be obtained through another variable (feature). Like correlation coefficient, mutual information can be used to remove redundant features. For example, if the information of feature, \(x \), can be largely obtained through another existing feature, \(y \), feature \(x \) can then be taken out from the feature set without losing much information on the reduced feature set.

Both correlation coefficient and mutual information evaluate each feature independently with respect to the prediction. A different approach is to utilise regression analysis for feature ranking. The underlying principal of regression analysis is that if the prediction is the outcome of regression model based on the features, then the most important features should have the highest weights (or coefficients) in the model, while features uncorrelated with the output variables should have weights close to zero. For example, LASSO (least absolute shrinkage and selection operator) regression analysis is used in [132] to remove less useful features to build a compiler-based model to predict performance. LASSO has also been used for feature selection to tune the compiler heuristics for the TRIPS processor [133].

In general, feature selection remains an open problem for machine learning, and researchers often follow a “trial-and-error” approach to test a range of methods and feature candidates. This makes automatic feature selection framework like FEAST [134] and HERCULES [135] attractive. The former framework employs a range of existing feature selection
methods to select useful candidate features, while the latter searches for the most important static code features from a set of pre-defined patterns for loops.

2) Feature dimensionality reduction: While feature selection allows us to select the most important features, the resulted feature set can still be too large to train a good model, especially when we only have a small number of training examples. By reducing the number of dimensions, the learning algorithm can often perform more efficiently on a limited training dataset. Dimension reduction is also important for some machine learning algorithms such as KNN to avoid the effect of the curse of dimensionality [136].

PCA is a well-established feature reduction technique [137]. It uses orthogonal linear transformations to reduce the dimensionality of a set of variables i.e. features in our case.

Figure 14 demonstrates the use of PCA to reduce the number of dimensions. The input in this example is a three-dimensional space defined by M_1, M_2 and M_3, as shown in Figure 14 (a). Three components: PC_1, PC_2 and PC_3, which account for the variance of the data, are firstly calculated. Here, PC_1 and PC_2 contribute most to the variance of the data and PC_3 accounts for the least variance. Using only PC_1 and PC_2, one can transform the original, three-dimensional space into a new, two-dimensional coordinate system (as illustrated in Figure 14b) while preserving much of the variance of the original data.

PCA has been used in many prior compiler research works for feature reduction [93], [23], [53], [94], [90], [95], [138], [15]. It has also been used in prior works to visualise the working mechanism of a machine learning model, e.g. to show how benchmarks can be grouped in the feature space [119], by projecting features from a high-dimensional space into a 2-dimensional space.

We want to stress that PCA does not select some features and discard the others. Instead, it linearly combines the original features to construct new features that can summarise the list of the original features. PCA is useful when there is some redundancy in the raw features, i.e. some of the features are correlated with one another. Similar feature reduction methods include factor analysis and linear discriminant analysis (LDA), which all try to reduce the number of features by linearly combining multiple raw features. However, PCA seems to be the most popular feature reduction method used in compiler research, probably due to its simplicity.

An alternative way of reducing the number of features used is via an autoencoder [139]. It is a neural network that finds a representation (encoding) for a set of data, by dimensionality reduction. Autoencoders works by learning an encoder and a decoder from the input data. The encoder tries to compress the original input into a low-dimensional representation, while the decoder tries to reconstruct the original input based on the low-dimension representations generated by the encoder. As a result, the autoencoder has been widely used to remove the data noise as well to reduce the data dimension [140].

Autoencoders have been applied to various natural language processing tasks [97], often being used together with DNNs. Recently, it has been employed to model program source code to obtain a compact set of features that can characterise the input program source [141], [142], [87], [76], [143].

VI. Scope

Machine learning has been used to solve a wide range of problems, from the early successful work of selecting compiler flags for sequential programs, to recent works on scheduling and optimising parallel programs on heterogeneous multi-cores. In this section, we review the types of problems that have been exploited in prior works.

A. Optimize sequential programs

Early works for machine learning in compilers look at how, or if, a compiler optimisation should be applied to a sequential program. Some of the previous studies build supervised classifiers to predict the optimal loop unroll factor [68], [50] or to determine whether a function should be inlined [27], [33]. These works target a fixed set of compiler options, by representing the optimisation problem as a multi-class classification problem – where each compiler option is a class. For example, Leather et al. [68] considered a loop unroll factor between 0 and 15 (16 configurations in total), treating each candidate unroll factor as a class; they compiled and profiled each training program by trying all 16 configurations to find out the best loop unroll factor for each program, and then learned a decision tree model from the training data.

There are other compiler problems where the number of possible options is massive. For instance, the work presented in [53] considers 54 code transformations of GCC. While these options are only a subset from the over 100s transformations provided by GCC, the resulted combinatorial compiler configurations lead to a space of approximately 10^{34}. Although it is possible to build a classifier to directly predict the optimal setting from a large space, to learn an effective model would require a large volume of training programs in order to have an adequate sampling over the space. Doing so is difficult because (a) there are only a few dozen common benchmarks available...
and (b) compiler developers need to generate the training data themselves.

Evolutionary algorithms like generic search are often used to explore a large design space (see also Section IV-C1). Prior works have used evolutionary algorithms to solve the phase ordering problem (i.e. at which order a set of compiler transformations should be applied) [144], [145], [146], determining the compiler flags during iterative compilation [147], [148], [149], [150], selecting loop transformations [151], and tuning algorithmic choices [101], [11], etc.

B. Optimise parallel programs

How to effectively optimise parallel programs has received significant attentions in the past decade, largely because the hardware industry has adopted multi-core design to avoid the power wall [152]. While multi- and many-core architectures provide the potential for high performance and energy-efficient computing, the potential performance can only be unlocked if the application programs are suitably parallel and can be made to match the underlying heterogeneous platform. Without this, the myriad cores on multi-core processors and their specialised processing elements will sit idle or poorly utilised. To this end, researchers have extended the reach of machine learning to optimise parallel programs.

A line of research in parallel program optimisation is parallelism mapping. That is, given an already parallelised program, how to map the application parallelism to match the underlying hardware to make the program runs as fast as possible or be as energy-efficient as possible. Zhang et al. developed a decision tree based approach to predict the scheduling policy to use for an OpenMP parallel region [153]. The work presented in [44] employs two machine learning techniques to predict the optimal number of threads as well as the scheduling policy to use for OpenMP parallel loop. Specifically, it uses a regression-based ANN model to predict the speedup of a parallel loop when it runs with a given number of threads (to search for the optimal number threads), and a SVM classifier to predict the scheduling policy. There are also works use machine learning to determine the optimum degree of parallelism for transactional memory [154] and hardware source allocation [155], or to select a code version from a pool of choices to use [156]. Castro et al. developed a decision tree classifier to predict the thread mapping strategy in the context of software transactional memory [157]. Jung et al. constructed a ANN based predictor to select an effective data structure on a specific micro-architecture [158].

The work presented in [90] and [159] is a unique approach for applying machine learning to map complex parallel programs with unbounded parallel graph structures. The work considers the question of finding the optimal graph structure of a streaming program. The idea was that rather than trying to predict a sequence of transformations over an unbounded graph, where legality and consistency is a real problem, we should consider the problem from the dual feature space. The work showed that it is possible to predict the best target feature (i.e. the characteristics that an ideal transformed program should have) which then can be used to evaluate the worth of candidate transformed graphs (without compiling and profiling the resulted graphs) in the original feature space.

The Petabricks project [101], [160], [161] developed at MIT takes an evolutionary approach for program tuning. The Petabricks compiler employs genetic search algorithms to tune algorithmic choices. Due to the expensive overhead of the search, much of auto-tuning is done at static compile time. Their work shows that one can utilise the idle processors on a multi-core systems to perform online tuning [162], where half of the cores are devoted to a known safe program configuration, while the other half are used for an experimental program configuration. In this way, when the results of the faster configuration are returned, the slower version will be terminated.

There is also an extensive body of work on how to optimise programs on heterogeneous multi-core systems. One of the problems for heterogeneous multi-core optimisation is to determine when and how to use the heterogeneous processors. Researchers have used machine learning to build classifiers to determine which processor to use [66] and at which clock frequency the processor should operate [78], [163]. Others used regression techniques to build curve fitting models to search for the sweet spot for work partitioning among processors [36] or a trade-off of energy and performance [164].

Another line of research combines compiler-based analysis and machine learning to optimise programs in the presence of competing workloads. This research problem is important because programs rarely run in isolation and must share the computing resources with other co-running workloads. In [165] and [166], an ANN model based on static code features and runtime information was built to predict the number of threads to use for a target program when it runs with external workloads. Later in [114] an ensemble learning based approach was used, which leads to significantly better performance over [165]. In [114] several models are firstly trained offline; and then one of the model is selected at runtime, taking into consideration the competing workloads and available hardware resources. The central idea is that instead of using a single monolithic model, we can use multiple models where each model is specialised for modeling a subset of applications or a particular runtime scenario. Using this approach, a model is used when its predictions are effective.

Some recent works developed machine learning models based on static code features and dynamic runtime information to schedule OpenCL programs in the presence of GPU contention. The work presented in uses SVM classification to predict the work partition ratio between the CPU and GPU when multiple programs are competing to run on a single GPU [167]. The work described in [37] aims to improve the overall system throughput when there are multiple OpenCL programs competing to run on the GPU. They developed an ANN model to predict the potential speedup for running an OpenCL kernel on the GPU. The speedup prediction is then used as a proxy to determine which of the waiting OpenCL tasks get to run on the GPU and at which order.

The approaches presented in [168] and [169] target task co-location in a data center environment. They use compiler based code transformations to reduce the contention for multiple co-
running tasks. A linear regression model was employed to calculate the contention score of code regions based on performance counter values. Then, a set of compiler-based code transformations is applied to reduce the resource demands of highly contentious code.

C. Other research problems

There are many works have demonstrated that machine learning is a powerful technique in performance and cost modelling [170], [171], [172], [45], and in task and resource scheduling [173], [155], [174], [175]. We envision that many of these techniques can be used to provide evidences to support runtime program optimisations through e.g. just-in-time compilation.

While not directly target code optimisation, compiler based code analysis and machine learning techniques have been used in conjunction to solve various software engineering tasks. These include detecting code similarities [176], [177], automatic comment generation [178], mining API usage patterns [179], [180], predicting program properties [181], code de-obfuscation for malware detection [182], etc. It is worth mentioning that many of these recent works show that the past development knowledge extracted from large code bases such as GitHub are valuable for learning an effective model. There were two recent studies performed by Cummin et al., which mine Github to synthesise OpenCL benchmarks [87] and code extract features from source code [76]. Both studies demonstrate the usefulness of large code bases and deep learning techniques for learning predictive models for compiler optimisations. We envision that the rich information in large open source code bases could provide a powerful knowledge base for training machine learning models to solve compiler optimisation problems, and deep learning could be used as an effective tool to extract such knowledge from massive program source code.

VII. DISCUSSION

One of the real benefits of machine learning based approaches is that it forces an empirical driven approach to compiler construction. New models have to be based on empirical data which can then be verified by independent experimentation. This experiment – hypothesis – test cycle is well known in the physical sciences but is a relatively new addition compiler construction.

As machine learning based techniques require a sampling of the optimisation space for training data, we typically know the best optimisation for any program in the training set. If we exclude this benchmark from training, we therefore have access to an upper bound on performance or oracle for this program. This immediately lets us know how good existing techniques are. If they are 50% of this optimum or 95% of this optimum immediately tells us whether the problem is worth exploring.

Furthermore we can construct naive techniques – e.g. a random optimisation and see its performance. If this performed a number of times, it will have an expected value of the mean of the optimisation speedups. We can then demand that any new heuristic should outperform this – though in our experience there have been cases where state-of-the art work was actually less than random.

A. Not a panacea

This article has by and large been very upbeat about the use of machine learning. However, there are number of hurdles to overcome to make it a practical reality and opens up new questions about optimisation.

Training cost is an issue that many find alarming. In practise the cost is much less than a compiler writer and techniques like active learning can be employed to reduce overhead of training data generation [183], [184], [185], [186]. Although its true to say that generating many differently compiled programs executing and timing them is entirely automatic, finding the right data requires careful consideration. If the optimisations explored have little positive performance on the programs then there is nothing worth learning.

The most immediate problem continues to be gathering enough sufficient high quality training data. Although there are numerous benchmark sites publicly available, the number of programs available is relatively sparse compared to the number a typical compiler will encounter in its lifetime. This is particular true in specialist domains where there may not be any public benchmarks. Automatic benchmark generation work will help here, but the larger issue of the structure of the the program space remain.

A really fundamental problem is that if we build our optimisation models based purely on empirical data, then we must guarantee that this data is correct and representative; we must learn the signal not the noise. Peer review of machine learning approach is difficult. Black box modelling prevents the quality of the model from being questioned unlike hand-crafted heuristics. In a sense reviewers now have to scrutinise that the experiments were fairly done. This means all training and test data must be publicly available for scrutiny. This is common practise in other empirical sciences. The artefact evaluation committee is an example of this [187], [188].

Although the ability to automatically learn how to best optimise an application and adapt to change is a big step forward, machine learning can only learn form what is provided by the compiler writer. Machine learning can not invent new program transformations to apply nor can it derive analysis that determines whether or not a transformation is legal – all of this is beyond its scope.

B. Will this put compiler writer out of a job?

In fact machine learning based compilation will paradoxically lead to a renaissance in compiler optimisation. Compiler have become so complex that adding a new optimisation or compiler phase can lead to performance regressions. This in turn has led to a conservative mind set where new transformations are not considered if they may rock the boat. The core issue is that systems are so complex that is impossible to know for sure when to use or not such an optimisation. Machine learning can remove this uncertainty by automatically determining when an optimisation is profitable. This now
free the compiler writer to develop ever more sophisticated techniques. He/she does not need to worry about how they interfere with other optimisations – machine learning looks after this. We can now develop optimisations that will typically only work for specific domains, and not worry about coordinating their integration into a general purpose system. It allows different communities to develop novel optimisations and naturally integrate them. So rather than closing down the opportunity for new ideas, it opens up new vistas.

C. Open research directions

Machine learning has demonstrated its utility as a means of automating compiler profitability analysis. It will continue to be used for more complex optimisation problems and is likely to be the default approach to selecting compiler optimisations in the coming decade.

The open research directions go beyond predicting the best optimisations to apply. One central issue is what does the program space look like? We know that programs with linear array accesses inside perfect loop nests need different treatment compared to, say, distributed graph processing programs. If we could have a map that allows us to measure distances between programs, then we could see whether there are regions that are well served by compiler characterise and other regions that are sparse and currently ignored. If we could do the same for hardware, then we may be better able to design hardware likely to be of use for emerging applications.

Can machine learning also be applied to compiler analysis? For instance is it possible to learn dataflow or point-to-analysis? As deep learning has the ability to automatically constructs features, can we find a set of features that are common across all optimisations and analyses. Can we learn the ideal compiler intermediate representation?

VIII. Conclusion

This paper has introduced machine learning based compilation and described its power in determining an evidence based approach to compiler optimisation. It is the latest stage in fifty years of compiler automation. Machine learning based compilation is now a mainstream compiler research area and over the last decade or so, has generated a large amount of academic interest and papers. While it is impossible to provide a definitive catalogue of all research, we have tried to provide a comprehensive and accessible survey of the main research areas and future directions. Machine learning is not a panacea. It can only learn the data we provide. Rather than, as some fear, it dumbs down the role of compiler writers, it opens up the possibility of much greater creativity and new research areas.

References

