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Tropical reef systems are transitioning to a new era in which the interval between 39 

recurrent bouts of coral bleaching is too short for a full recovery of mature 40 

assemblages.  We analyzed bleaching records at 100 globally-distributed reef locations 41 

over the past four decades, from 1980 to 2016. The median return-time between pairs of 42 

severe bleaching events has diminished steadily since 1980, and is now only six years. As 43 

global warming has progressed, tropical sea surface temperatures are warmer now 44 

during current La Niña conditions than they were in El Niño events three decades ago. 45 

Consequently, as we transition to the Anthropocene, coral bleaching is occurring more 46 

frequently in all El Niño Southern Oscillation phases, increasing the likelihood of 47 

annual bleaching in coming decades.   48 

The average surface temperature of our planet has risen by close to 1oC since the 1880s (1), 49 

and global temperatures in 2015 and 2016 were the warmest since instrumental records began 50 

in the 19th century (2). Recurrent regional-scale (>1000 km) bleaching and mortality of corals 51 

is a modern phenomenon caused by anthropogenic global warming (3-10). Bleaching prior to 52 

the 1980s was recorded only at a local scale of a few tens of kilometres, due to small-scale 53 

stressors such as freshwater inundation, sedimentation, or by unusually cold or hot weather 54 

(3-5).  Bleaching occurs when the density of algal symbionts, or zooxanthellae 55 

(Symbiodinium spp.), in the tissues of a coral host diminishes due to environmental stress, 56 

revealing the underlying white skeleton of the coral (8). Bleached corals are physiologically 57 

and nutritionally compromised, and prolonged bleaching over several months leads to high 58 

levels of coral mortality (11, 12). 59 

Here, we compiled de novo the history of recurrent bleaching from 1980-2016 for 100 60 

globally-distributed coral reef locations in 54 countries, using a standardized protocol to 61 

examine patterns in the timing, recurrence and intensity of bleaching episodes, including the 62 

latest global bleaching event in 2015-2016 (Supplementary Table S1). Our findings reveal 63 
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that coral reefs have entered the distinctive human-dominated era characterized as the 64 

Anthropocene (13-15), in which the frequency and intensity of bleaching events is rapidly 65 

approaching unsustainable levels.  At the spatial scale we examined (Supplemental Figure X), 66 

the number of years between recurrent severe bleaching events has diminished five-fold in 67 

the past 3-4 decades, from 25-30 years in the early 1980’s to once every 5.9 years in 2016. 68 

Across the 100 locations, we scored 300 bleaching episodes as severe, i.e. affecting more 69 

than 30% of corals at a scale of 10s to 100s of kilometres, and a further 312 as moderate 70 

(<30% of corals bleached).  Our analysis indicates that coral reefs have moved from a period 71 

prior to 1980 when regional-scale bleaching was exceedingly rare or absent (3-5), to an 72 

intermediary phase beginning in the 1980s when global warming increased the thermal stress 73 

of strong El Niño events, leading to global bleaching events. Finally, in the past two decades 74 

many additional regional-scale bleaching events are occurring outside of El Niño conditions, 75 

affecting more and more former spatial refuges and threatening the future viability of coral 76 

reefs. 77 

Increasingly, climate-driven bleaching is occurring in all El Niño Southern Oscillation 78 

(ENSO) cycles phases, because as global warming progresses, average tropical sea surface 79 

temperatures are warmer today under La Niña conditions than they were during El Niño 80 

events only three decades ago (Fig. 1). Since 1980, 58% of severe bleaching events have been 81 

recorded during four strong El Niño events (in 1982-1983, 1997-1998, 2009-2010 and 2015-82 

2016) (Fig. 2A), with the remaining 42% occurring during hot summers in other ENSO 83 

phases.  Inevitably, the link between El Niño as the predominant trigger of mass bleaching 84 

(3-5) is diminishing as global warming continues (Fig. 1) and as summer temperature 85 

thresholds for bleaching are increasingly exceeded throughout all ENSO phases. 86 
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The 2015-2016 bleaching event affected 75% of the globally-distributed locations we 87 

examined (Fig. 2A, Fig. 3), and is therefore comparable in scale to the then unprecedented 88 

1997-1998 event, when 74% of the same 100 locations bleached. In both periods, sea surface 89 

temperatures were the warmest on record in all major coral reef regions (2, 16).  As the 90 

geographic footprint of recurrent bleaching spreads, fewer and fewer potential refuges from 91 

global warming remain untouched (Fig. 2B), and only six of the 100 locations we examined 92 

have escaped severe bleaching so far(Fig. 2B, Supplementary Table S1).  93 

Following the extreme bleaching recorded in 2015-16, the median number of severe 94 

bleaching events experienced across our study locations is now three since 1980 (Fig. 2C). 95 

Eighty-eight percent of the locations that bleached in 1997-1998 have since bleached severely 96 

at least once again. Since 1980, 31% of reef locations have experienced four or more (up to 97 

nine) severe bleaching events (Fig. 2C), as well as many moderate episodes (Supplementary 98 

Table S1). Globally, the annual risk of bleaching (both severe and more moderate events) has 99 

increased by a rate of approximately 3.9% per annum (Supplemental Fig. S1), from an 100 

expected 8% of locations in the early 1980s to 31% in 2016. Similarly, the annual risk of 101 

severe bleaching has also increased, at a slightly faster rate of 4.3% per annum, from an 102 

expected 4% of locations in the early 1980’s to 17% in 2016 (Supplemental Fig. S1). This 103 

trend corresponds to a 4.6-fold reduction in estimated return-times of severe events, from 104 

once every 27 years in the early 1980s to every 5.9 years in 2016. Thirty-three percent of 105 

return-times between recurrent severe bleaching events since 2000 have been just one, two or 106 

three years (Fig. 2D).  107 

Our analysis also reveals strong geographic patterns in the timing, severity and return-times 108 

of mass bleaching (Fig. 4). The Western Atlantic, which has warmed earlier than elsewhere 109 

(16, 17), began to experience regular bleaching early, with an average of 4.1 events per 110 

location prior to 1998, compared with 0.4 to 1.6 in other regions (Fig. 4, Supplemental Fig. 111 
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S1). Furthermore, widespread bleaching (affecting >50% of locations) has now occurred 112 

seven times since 1980 in the Western Atlantic, compared to three times for both Australasia 113 

and the Indian Ocean, and only twice in the Pacific. Over the entire period, the number of 114 

bleaching events has been highest in the Western Atlantic, with an average of 10 events per 115 

location, 2-3 times more than other regions (Fig. 4).  116 

In the 1980s, bleaching risk was highest in the Western Atlantic, followed by the Pacific, 117 

with the Indian Ocean and Australasia having the lowest bleaching risk. However, bleaching 118 

risk increased most strongly over time in Australasia and the Middle East, at an intermediate 119 

rate in the Pacific, and slowly in the Western Atlantic (Fig. 4, Supplemental Fig. S2B, 120 

Supplemental Tables S2 and S3). The return-times between pairs of severe bleaching events 121 

is declining in all regions (Supplemental Fig. S2C), with the exception of the Western 122 

Atlantic where most locations have escaped a major bleaching event since 2010 (Fig. 2D). 123 

We tested the hypothesis that the number of bleaching events that have occurred so far at 124 

each location is positively related to the amount of post-industrial warming of sea surface 125 

temperatures that has been experienced there (Supplemental Fig. S3). However, we found no 126 

significant relationship for any of the four geographic regions, consistent with each bleaching 127 

event being caused by a short–lived episode of extreme heat (16, 18, 19) that is superimposed 128 

on much smaller long-term warming trends. Hence, the long-term predictions of future 129 

average warming of sea surface temperatures (17) are also unlikely to provide an accurate 130 

projection of bleaching risk or the location of spatial refuges over the next century.  131 

In coming years and decades, climate change will inevitably continue to increase the number 132 

of extreme heating events on coral reefs, and further drive down the return-times between 133 

them. Our analysis indicates that we are already approaching a scenario where every hot 134 

summer, with or without an El Niño event, has the potential to cause bleaching and mortality 135 
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at a regional scale. The time between recurrent events is increasingly too short to allow a full 136 

recovery of mature coral assemblages, which generally takes 10-15 years for the fastest 137 

growing species and far longer for the full complement of life histories and morphologies of 138 

older assemblages (20-23). Areas that have so far escaped severe bleaching are likely to 139 

decline further in number (Fig. 2B), and the size of spatial refuges will diminish. These 140 

impacts are already underway with slightly less than 1oC of global average warming. Hence, 141 

1.5oC or 2oC of warming above pre-industrial conditions will inevitably contribute to further 142 

degradation of the world’s coral reefs (18). The future condition of reefs, and the ecosystem 143 

services they provide to people, will depend critically on the trajectory of global emissions 144 

and on our diminishing capacity to build resilience to recurrent high-frequency bleaching 145 

through management of local stressors (15), before the next bleaching event occurs.  146 
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MOVE TO SM: Although several global databases of bleaching records are available 219 

(notably ReefBase, reefbase.org), they suffer from intermittent or lapsed maintenance, and 220 

from uneven sampling effort across both years and locations (7). The time-spans of five 221 

earlier global studies of coral bleaching range from 1870-1990 (3), 1960-2002 (4), 1973-2006 222 

(5), 1980-2005 (6), and 1985-2010 (7). None of these studies accounted fully for the scale of 223 

bleaching observations, or for bias in the locations and timing of bleaching records. 224 

For example, following bleaching along the Great Barrier Reef in 1998, 2002 and 2016, 29% 225 

of individual reefs have bleached three times, and only 9% remain unaffected (25). 226 

 227 

 228 

 229 

 230 
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Fig. 1. Global warming throughout ENSO cycles. Sea surface temperature anomalies from 231 

1871-2016, relative to a 1961-1990 baseline, averaged across 1,670 1-degree latitude by 232 

longitude boxes containing coral reefs between latitudes of 31oN and 31oS..  Data points 233 

differentiate El Niño (red triangles), La Niña (blue triangles) and El Niño Southern 234 

Oscillation neutral periods (black squares). Ninety-five percent confidence intervals are 235 

shown for non-linear regression fits for years with El Niño and La Niña conditions (red and 236 

blue shading, respectively). 237 

 238 

  239 
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 240 

 241 

Fig. 2. Temporal patterns of recurrent coral bleaching. (A) Number of 100 pan-tropical 242 

locations that have bleached each year from 1980 to 2016. Black bars indicate severe 243 

bleaching affecting >30% of corals, and white bars depict moderate bleaching of <30% of 244 

corals. (B) Cumulative number of severe and total bleaching events since 1980 (red; right 245 

axis), and depletion of locations through time that remain free of any or severe bleaching 246 

(blue; left axis). (C) Frequency-distribution of number of severe (black) and total bleaching 247 

events (red) per location. (D) Frequency distribution of return-times (number of years) 248 

between successive severe bleaching events from 1980-1999 (white bars) and 2000-2016 249 

(black bars). 250 



14 
 

 251 

Fig. 3. The global extent of mass-bleaching of corals in 2015-2016. Symbols show 100 252 

reef locations that were assessed: red – severe bleaching affecting >30% of corals; orange – 253 

moderate bleaching affecting <30% of corals; blue circles – no significant bleaching 254 

recorded. See Supplemental Table 1 for further details. 255 

  256 
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 257 

Fig. 4. Geographic variation in the timing and intensity of coral bleaching, from 1980-258 

2016. (A) Australasia (32 locations). (B) Indian Ocean (24 locations). (C) Pacific Ocean (22 259 

locations). (D) The Western Atlantic (22 locations). For each region, black bars indicate the 260 

percentage of locations that experienced severe bleaching, affecting >30% of corals. White 261 

bars indicate the percentage of locations per region with additional moderate bleaching 262 

affecting <30% of corals. 263 


