Twisting of Earth's Neutral Sheet and its Response to Changes in the IMF B_y Component

N. A. Case¹, A. Grocott¹, C. Martin¹, S. Haaland², and T. Nagai³

¹Lancaster University, Lancaster, UK; ²Birkeland Centre for Space Science, University of Bergen, Norway; ³Tokyo Institute of Technology, Tokyo, Japan

1. Introduction

We have collated over 25 years of magnetic field, electric field, and velocity data from the Cluster, Cluster Double Star, and THEMIS spacecraft missions to elucidate large-scale patterns in the terrestrial magnetosphere, particularly those relating to magnetospheric asymmetries. In this work, we analyze the twisting of Earth's magnetosatellite, driven by the interplanetary magnetic field (IMF) B_y component. By filtering the spacecraft data to the region where the tailward directed field and the returning earthward field are at their closest, known as the neutral sheet, we can determine the twist of the tail using six measurements of the local magnetic field. Furthermore, by then filtering these data by IMF orientation, we can determine the effect of the IMF on the tail twisting.

2. Motivation

One of the biggest challenges in predicting the influence of the solar wind, and the embedded IMF, on the dynamics of the magnetosphere is derived from the inherent time dependence of the coupled system. For example, previous studies have shown that the IMF introduces asymmetries in the tail (e.g. Cowley et al., 1981), and these are particularly driven by coupling with a B_y dominated IMF (e.g. Nishida et al., 1998). Yet significant uncertainty remains as to the extent and timeframe over which IMF B_y influences magnetospheric dynamics, including control over auroral morphology.

3. Earth's neutral sheet

The neutral sheet is the plane that separates the northern and southern lobe regions of the magnetosphere. The neutral sheet is characterized by a strong cross-tail current that flows along the sheet, and it is defined by the condition $B_z = 0$. The neutral sheet's position is affected by the IMF orientation, with B_y related to the degree of twisting in the neutral sheet.

4. 60min average magnetotail $B_y < 3R_e$

Mean B_y component of the local magnetic field in the neutral sheet region ($|B_z| < 3R_e$) under IMF B_y dominated intervals. Assuming no twisting of the tail, one should expect an average $B_y = 0$. However, under B_y dominated intervals:

- Eastward IMF ($B_y > 0$):
 - Average $B_y = 0.05$
 - Average $B_y = 0.05$

- Westward IMF ($B_y < 0$):
 - Average $B_y = -0.05$
 - Average $B_y = -0.05$

This result is consistent with past studies (e.g. Tenford et al., 2016) and suggests that asymmetric flux loading drives a twisted magnetotail.

5. Magnetotail lobe flow measurements

To test the hypothesis that asymmetric flux loading is responsible for the tail twist, we analyzed the flow in the magnetotail lobes during eastward and westward IMF intervals.

6. IMF B_y switching

Using a method similar to Tenford et al. (2016), we identify intervals where the IMF B_y switches polarity (e.g. $B_y < 0$ to $B_y > 0$) where the B_y component switches between "on" and "off" modes (e.g. $B_y < 0$ to $B_y = 0$).

For a switch to have taken place we require that the both the 60 min and 20 min average IMF B_y component was $>2nT$ (or $<2nT$) before the switch and both these averages were $<2nT$ (or $>2nT$) after the switch. For the "off" states, the average $B_y > 0.5$ nT for both averaging lengths.

Using two averaging lengths ensures a quick transition and period of sustained orientation.

Example of $B_y > 0$ to $B_y < 0$ and $B_y > 0$ to $B_y < 0$ are shown.

7. Example neutral sheet data

Example 1: A flappy neutral sheet fly-through

In this first example, we provide an example of spacecraft crossing into the different lobes. Associated with this crossing is a reversal in orientation of the local B_y component.

All data are 1 min resolution and are centered around an IMF B_y switch (details at the top of the plot). The red vertical line indicates the time of the unpropagated IMF B_y switch.

Example 2: A sudden switch

In this second example, the spacecraft is expected to have remained in the same lobe (based on its coordinates) yet we see a reversal in orientation of the local B_y component.

8. Unanswered questions and future study

Using large collated data sets, we have shown the statistical effect of the IMF B_y component in creating a twisted magnetotail and have shown how the neutral sheet twist can be identified in local magnetic field data. By combining the data from many example cases, we aim to address the statistical response time of the neutral sheet twist to changes in the orientation of the IMF B_y component.

By utilizing data from multiple spacecraft in different orbits to perform superposed epoch type analyses, we will isolate temporal variations in the morphology to elucidate the timescales of the solar wind influence. In addition, interpretation of our results in the context of MHD model simulations, will aid in the derivation of a 4-D picture of the magnetosphere and feed into development of the MHD models.

7. References:

This strongly suggests that the spacecraft have recorded the neutral twisting over them. See red star on flow diagram in section 4.