Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties

Xianbin Liu, Jing Chen, Barbara A. Maher, Baocheng Zhao, Wei Yue, Qianli Sun, Zhongyuan Chen

PII: S0169-555X(16)31113-8
DOI: doi:10.1016/j.geomorph.2017.11.023
Reference: GEOMOR 6238

To appear in: Geomorphology

Received date: 23 November 2016
Revised date: 27 November 2017
Accepted date: 27 November 2017

Please cite this article as: Liu, Xianbin, Chen, Jing, Maher, Barbara A., Zhao, Baocheng, Yue, Wei, Sun, Qianli, Chen, Zhongyuan, Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties, Geomorphology (2017), doi:10.1016/j.geomorph.2017.11.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties

Xianbin Liu¹, Jing Chen¹*, Barbara A. Maher², Baocheng Zhao³, Wei Yue¹, Qianli Sun¹, Zhongyuan Chen¹

1) State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
2) Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, LA1 4YQ, UK
3) Shanghai Institute of Geological Survey, Shanghai 200072, China

*Corresponding author: jchen@geo.ecnu.edu.cn

State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Phone No.: 86-21-62232706

Abstract

The evolution of the Yangtze River, and specifically how and when it connected to the East China Sea, has been hotly debated with regard to possible linkages with the so-called ‘Cenozoic Topographic Reversal’ (tectonic tilting of continental east China in the Cenozoic) and particularly the relationship to the uplift history of the Tibetan Plateau. Resolving this key question would shed light on the development of large Asian rivers and related changes in landforms and monsoon climate during this interval. Here, we use the magnetic properties of both Plio-Quaternary sediments in the Yangtze delta and of surficial river sediments to identify a key mid-late Quaternary switch in sediment source-sink relationships. Our results reveal a fundamental shift in sediment
magnetic properties at this time; the upper 145 m of sediment has magnetic mineral concentrations 5 to 10 times higher than those of the underlying late Pliocene/early Quaternary sediments. We show that the distinctive magnetic properties of the upper core sediments closely match those of surficial river sediments of the upper Yangtze basin, where the large-scale E’mei Basalt block (2.5 x 10^5 km^2) is the dominant magnetic mineral source. This switch in sediment magnetic properties occurred at around the Jaramillo event (~1.2-1.0 Ma), which indicates that both the westward extension of the proto-Yangtze River into the upper basin and completion of the connection to the East China Sea occurred no later than at that age.

Keywords: Yangtze River; Plio-Quaternary stratigraphy; sediment magnetic properties; magnetic susceptibility; sediment source-sink; Cenozoic topographic reversal.
1. Introduction

The evolution of large (continental-scale) rivers has been the focus of much international research in past decades in relation to tectonic, climatic, and base-level changes (Said, 1981; Hoorn, 1994; Clark et al., 2004). In particular, the development of large Asian rivers has attracted much attention, reflecting their associations with Cenozoic Tibetan Plateau uplift, which has had a key influence on both Asian landforms and monsoon climate during this period (Fig. 1A; Brookfield, 1998; Clark et al., 2004; Wang et al., 2005; Clift et al., 2006).

Early studies of the Yangtze River discussed its formation in relation to the complicated tectono-geomorphological processes that affected the Chinese continental craton. Those studies hypothesized that the river previously (age undetermined) drained southward into the South China Sea along the present course of the Red River (Song Hong) in the upper Yangtze basin (Fig. 1A; Wang, 1985; Brookfield, 1998). Subsequently, the proto-Yangtze river was captured at Shigu (Fig. 1B), the first-bend of the upper basin ~150 km above the Red River’s headwaters. It was suggested that proto-Yangtze capture was driven by disruption of the paleo-drainage and topographic movement in relation to tilting of the southwestern Yangtze craton (Wang, 1985; Clark et al., 2004). This tectono-geomorphological process, accompanied by immense tectonic subsidence of the mid-lower Yangtze basin, is thought to have eventually induced the river to flow eastward into the East China Sea, traversing a distance of ~6300 km (Fig. 1A, B).

The Three Gorges Valley of the upper Yangtze River, another key
geomorphological location, links the upper plateau and the mid-lower Yangtze fluvial plain system (Fig. 1B). The proto-Yangtze could only have become connected to the East China Sea with the opening of the Three Gorges Valley. Dating of a series of terraces in the Three Gorges (by electron spin resonance) indicates that the oldest terrace formed at ~1.16 Ma (Li et al., 2001). Furthermore, basaltic gravels in the mid-Pleistocene alluvial fan deposits of the middle Yangtze basin (i.e. below the Three Gorges Valley) have been attributed to an upper Yangtze basin source (Xiang et al., 2007), which implies an opening of the Three Gorges at ~1.1 Ma. Richardson et al. (2010) suggested that the onset of incision of Three Gorges Valley was linked to orogenic erosion and associated river capture processes in central China, dated at 40-45 Ma. The final date of opening of Three Gorges Valley remains disputed.

In recent years, numerous studies have sought to explore the evolution of eastward connection of the Yangtze River to the sea by using a range of sediment provenance proxies on delta sediment cores, especially monazite age patterns and detrital zircon U-Pb ages (Fan et al., 2005; Yang et al., 2006; Zheng et al., 2013; Gu et al., 2014; Yue et al., 2016). Although effective, these proxies demonstrate generic linkages to potential rock sources in the river basin and uncertainties remain (cf. Malusà et al., 2016). Of note, the westward extension of the river and its connection to the sea has been dated variably, ranging from ca. 23 to 1.0 Ma (cf. Gu et al., 2014).

Iron-bearing minerals are sensitive to environmental change in relation to sediment source, transport, and deposition in the absence of substantial authigenesis and post-depositional alteration (Thompson and Oldfield, 1986). Hence, sediment magnetic
properties have been used widely in studies of paleoenvironmental change and sediment provenance (Liu et al., 2012). Here, we use this approach to examine the spatiotemporal distribution of magnetic properties of long cores and of surficial Yangtze River sediments to identify diagnostic magnetic properties for use as sediment tracers. We then match sedimentary magnetic signatures to specific sediment sources in the Yangtze River basin. Finally, we determine, by magnetostratigraphy, the timing of eastward connection of the Yangtze River to the sea. Our magnetic approach is complemented by independent, integrated analysis of sedimentary facies and foraminiferal assemblages.

2. Study area

The Yangtze River is ~6300 km long, with an immense drainage basin area of ~1.8 x 10^6 km^2. The river drains from west to east, emptying into the East China Sea, across the three major topographic steps of the Chinese continent (Fig. 1A, B). The river basin can be divided into the upper, middle and lower reaches on the basis of geomorphologic features.

The upper reach covers an area of ~1.0 x 10^6 km^2 from its source in the Tibetan Plateau to the end of the Three Gorges Valley at Yichang. Within this upper reach, the elevation ranges between 2000 and 4000 m above mean sea level (Fig. 1A, B). Rock exposures predominantly comprise Paleozoic-Mesozoic carbonate and clastic sedimentary rocks (Changjiang Water Resources Commission, 1999). A large-scale Mesozoic basaltic outcrop, the E’mei Basalt block (2.5 x 10^5 km^2), occurs exclusively
in the upper basin (Fig. 1B). The main tributaries that join the upper Yangtze mainstream include the Yalong River, Min River, Jialing River, Wu River and Tuo River (Fig. 1B). The middle Yangtze River reach is ~950 km in length, extending from Yichang to Hukou (Fig. 1B).

This middle reach is a typical meandering river system with an extensive floodplain covering an area of 0.68 x 10^6 km^2 extending from Yichang to Hukou (Fig. 1B). The Han River, Dongting Lake, and Poyang Lake are the three main flows that join the Yangtze mainstream in this area (Fig. 1B). Below Hukou is the lower Yangtze reach, which extends about 930 km to the East China Sea. No major tributaries adjoin this reach, except Taihu Lake in the lower delta plain (Fig. 1B, C). The middle and lower Yangtze basin is dominated primarily by Paleozoic-Mesozoic sedimentary rocks and unconsolidated Quaternary sediments, with some intermediate-acidic igneous rocks and metamorphics (Changjiang River Water Resources Commission, 1999). Finally, the extensive delta system at the Yangtze River mouth covers an area of >25,000 km^2 (Fig. 1C).

3. Data and methods

A continuous sediment core (LQ11), which was 301-m long and penetrated the Plio-Quaternary strata to bedrock, was recovered by rotary drilling from the southern Yangtze delta plain (Fig. 1C). The core was split in the laboratory, one half for sampling and the other for archiving. The sediment core was photographed (Fig. S1) and logged continuously, with descriptions made of lithology, sediment color, bedding stratification,
root traces, and bioturbation.

A total of 279 samples were taken for grain size analysis with a sampling interval of ~1.0 m. A laser particle size analyzer (CoulterLQ-100) was used to measure sediment particle sizes from 0.02 to 2000 µm at the State Key Laboratory for Estuarine and Coastal Research (SKLEC), East China Normal University, Shanghai. Samples were pre-treated with H₂O₂ and HCl to remove organic matter and carbonate, respectively. Sodium hexametaphosphate (NaPO₃)₆ was added to disaggregate samples via ultrasonic dispersion prior to analysis.

A total of 539 oriented samples were taken for paleomagnetic analysis at sampling intervals of ~30 cm in fine-grained sediment, and ~1.0 m in sandy sediment. No samples were taken in gravelly sands, which often occurred in the mid-lower part of the core. Paleomagnetic analysis followed standard procedures: 1) stepwise thermal demagnetization was done using an ASC TD-48 thermal demagnetizer, from room temperature to 585/680°C with a measurement interval of 10-50°C; 2) sediment remanent magnetizations were measured with a 2-G Enterprises cryogenic magnetometer in a magnetically shielded room (<150 nT) at the Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China. Demagnetization results were evaluated by orthogonal diagrams (Zijderveld, 1967) and the characteristic remanent magnetization (ChRM) was determined by principal component analysis (Kirschvink, 1980).

A total of 277 core samples were taken for sediment magnetic property measurements. Magnetic susceptibility (χlf and χhf) was measured using a Bartington
Instruments MS2 Susceptibility Meter at low (0.47 kHz) and high (4.7 kHz) frequencies. Anhysteretic remanent magnetization (ARM) was measured using a DTECH 2000 demagnetizer with a peak alternating field (AF) of 100 milliTesla (mT) and direct current (DC) bias field of 0.05 mT. Isothermal remanent magnetizations (IRM) were imparted using an MMPM10 pulse magnetizer. Samples were first subjected to a DC field of 1 T, to generate a ‘saturation’ IRM (SIRM), followed by application of a −300 mT backfield. All remanences were measured with a Minispin magnetometer. $S_{-300}$ was calculated as: $S_{-300} = (SIRM - IRM_{-300\text{mT}})/(2\times SIRM)$ (Bloemendal et al., 1992).

Representative core samples with large $\chi_{lf}$ fluctuations ($<15 \times 10^{-8} \text{m}^3\text{kg}^{-1}$ and $>60 \times 10^{-8} \text{m}^3\text{kg}^{-1}$) were selected for additional measurements, including 12 samples for IRM acquisition curves and high-temperature magnetization (Ms–T curves) measured at SKLEC; 3 samples for scanning electron microscope (SEM) observation and energy-dispersive spectra (EDS) analysis at Yuyi Analytic, Shanghai, China. IRM acquisition curves were obtained using stepwise increasing fields 50, 100, 200, 300, 500, 800, and 1000 mT. First-order reversal curve (FORC) analysis (Pike et al., 1992) for 8 samples was made using with a Princeton Measurements Corporation vibrating sample magnetometer (VSM 3900) at Baoji University of Arts and Sciences. For each sample, 150 FORCs were measured with fields up to $\sim 300$ mT, an averaging time of 200 ms and a smallest field increment of 1.2-1.5 mT. Data were processed using the algorithm of Heslop and Roberts (2012) with a smoothing factor (SF) of 5.

Forty one core samples were tested for total organic carbon (TOC) content using potassium dichromate oxidation-ferrous sulphate titrimetry. Sixty-five surficial river
sediment samples were taken from 15 sites located in the mainstream and major tributaries of the Yangtze River (Fig. 1B). One exposed basalt sample was also taken from the E’mei Basalt block (Fig. 1B). Magnetic measurements followed the same procedures as used for core samples.

In addition, 163 samples were taken from sediment core LQ11 for foraminifera identification using a binocular microscope (Wang, 1985; Zheng and Fu, 2001). Seven representative Plio-Quaternary sediment cores with magnetic susceptibility and OSL, ESR, U-series, $^{14}$C dating were collected from the Yangtze delta (Figs. 1C, 3; Qiu and Li, 2007; Wang et al., 2008; Chen et al., 2014; Gu et al., 2014). The Plio-Quaternary Zhoulao core was also collected from the middle Yangtze basin and has a detailed rock magnetic property record including $\chi_{lf}$, $\chi_{ARM}$, and SIRM (Fig. 1B; Zhang et al., 2008). Data from these cores provide additional information for the present study.

4. Results

Sediment core LQ11 and other collected cores provide information on the chronostratigraphy, lithology, and sedimentary facies of the study area (Figs. 2, 3). Results are detailed below.

4.1 Chronostratigraphy

In general, demagnetization data for representative samples in core LQ11 have a relatively straightforward unidirectional trajectory toward the origin of demagnetization diagrams from 200-300°C to 585/680°C (Fig. 4). The demagnetization behavior indicates that magnetite is the main ChRM carrier for most
samples, and that hematite is also an important ChRM carrier for some samples (Fig. 4). 326 out of 539 paleomagnetic samples (60%) yield reliable ChRM directions according to two criteria that at least 4 consecutive demagnetization steps must be used to define the ChRM and the maximum angular deviation (MAD) must be <15°.

Paleomagnetic analysis of the LQ11 sediments reveals the (normal polarity) Gauss epoch at a depth between 300 and 252 m and the (reversed polarity) Matuyama epoch between 252 and 112 m; hence, the Pliocene/Pleistocene boundary occurs at 252 m (2.60 Ma) (Fig. 2). The Olduvai and Jaramillo subchrons are recognized at depths of 186-159.9 m and 145.2-120.8 m, respectively. The normal polarity Brunhes epoch is evident above 112 m (Fig. 2).

Although gravelly sands occur frequently in the mid-lower part of sediment core LQ11, which inevitably affects paleomagnetic sampling and data quality, the comparability of our paleomagnetic chronology with other publishedchronostratigraphic data, including OSL, ESR, U-series, and $^{14}$C dating from other cores provides a reliable baseline for Plio-Quaternary division of sediments in the study area (Fig. 3; Qiu and Li, 2007; Wang et al., 2008; Chen et al., 2014).

4.2 Lithology

A thick, basal, reddish Pliocene mudstone rests unconformably on regional bedrock at a depth of 301-252 m (Figs. 2, S1). The mean grain size of the mudstone ranges from 7 to 24 µm. The Early Pleistocene strata (252-112 m) contain at least 3-4 sedimentary cycles consisting of basal yellowish-grey gravelly sands and coarse sand,
topped by greyish brown fine sediments (sand, silt, and clay) (Figs. 2, S1). The mean grain size of the coarse sand units ranges from 450 μm (maximum) to 9.1 μm (minimum). Large-scale cross-stratification was evident in these sand units. For the Middle Pleistocene sediments (112-67.6 m), yellowish-grey gravelly sands (minor in proportion) alternate with coarse to fine sand units. Cross-stratification is also frequent in these units (Figs. 2, S1). Mean grain size ranges from 480 to 18 μm. The Late Pleistocene strata (67.6-41.3 m) consist of thick, cyclic units, comprising greyish coarse sands, topped by thick, grey fine sand and silt (299.6-18.7 μm mean grain size) (Figs. 2, S1). Wavy and horizontal bedding prevail in this Late Pleistocene material. Fine sand and silty clay, or clayey silt, occur from 41.3 to 0 m in Holocene strata (100.2-9.7 μm mean grain size). A thin layer (42.20-41.30 m) of stiff muds separates the Holocene sediment from the underlying Late Pleistocene material (Figs. 2, S1). Shell fragments (often of brackish origin, e.g. Tellina jedoensis, Gulalius, Retusa, etc.; Qiu and Li, 2007) occur in the late Pleistocene-Holocene strata. Sand-mud couplets, formed as horizontal bedding in tidal flat facies, are common in the Late Quaternary strata (Fig. S1).

4.3 Magnetic properties of sediment core LQ11

Temporal variations of magnetic susceptibility (χlf), together with other magnetic properties divide the Plio-Quaternary sediments of core LQ11 into two major portions (Fig. 5A). Low and relatively unvarying χlf values (mostly <15 x 10^-8 m^3 kg^-1) occur in the lower part of the core (301-145 m). This low magnetic mineral content is associated with low SIRM and S-300 and high χARM/χlf, and χARM/SIRM values. In marked contrast,
high $\chi_I$ values occur as 3 large-amplitude intervals in the upper portion of the core (145-0 m) (Fig. 5A). These high $\chi_I$ values are accompanied by high SIRM and S$_{-300}$ and low $\chi_{ARM}/\chi_I$ and $\chi_{ARM}/$SIRM values (Fig. 5A).

The magnetic mineralogy throughout core LQ11 is dominated by magnetite, as indicated by Ms–T curves with a major decrease near 580°C for most representative samples (Fig. 6a-d). The magnetite has characteristic pseudo-single domain (PSD)/multi-domain (MD) behavior (Roberts et al., 2000, 2014), revealed by FORC diagrams with more divergent contours along the Hu axis (>60 mT) and a low coercivity distribution along the Hc axis (<80 mT) (Fig. 6e-h). A lesser contribution from hematite is evidenced by a slight magnetization decrease up to 680°C (Fig. 6a-d). SEM observations and O and Fe peaks in EDS results also indicate that the magnetic minerals consist mainly of iron oxides (Fig. 6i-l).

4.4 Magnetic properties of surficial river sediments

Magnetic property variations in surficial sediments of the major tributaries and main stream of the Yangtze River are shown in Fig. 7. Among the tributaries, the Yalong River, which flows across the E’mei Basalt block in the upper Yangtze basin, has the highest $\chi_I$ value (272 x $10^{-8}$ m$^3$/kg) (Figs. 1B, 7). Notably high $\chi_I$ values (200-230 x $10^{-8}$ m$^3$/kg) also occur both at the confluence of the Yalong River and Jinsha River at Yibin (Figs. 1B, 7) and just below the Three Gorges Valley (Figs. 1B, 7). The Tuo River tributary of the upper Yangtze has a moderately high $\chi_I$ (140 x $10^{-8}$ m$^3$/kg) (Figs. 1B, 7). In contrast, the tributaries of the mid-lower Yangtze are all
characterized by extremely low $\chi_{lf}$ values ($5-70 \times 10^{-8} m^3/kg$) (Figs. 1B, 7). SIRM variations in surficial river sediments mirror this $\chi_{lf}$ pattern. SIRM maxima reach values $>5000 \times 10^{-5} Am^2/kg^{-1}$ in the Yalong River tributary, which contrasts with other tributaries ($67-1300 \times 10^{-5} Am^2/kg^{-1}$) (Fig. 7). In the upper tributaries, $\chi_{ARM}/\chi_{lf}$ and $\chi_{ARM}/SIRM$ have low values (Fig. 7). Conversely, higher values of these ratios are evident for tributaries of the mid-lower Yangtze (Fig. 7). $S_{-300}$ values for surficial sediments from the upper tributaries are slightly higher than those of the mid-lower Yangtze (Fig. 7). For the basalt rock sample, $\chi_{lf}$ is $1086.7 \times 10^{-8} m^3/kg$ and SIRM can reach $155776 \times 10^{-5} Am^2/kg^{-1}$, which is significantly higher than that of all surficial river sediments. $\chi_{ARM}/\chi_{lf}$ and $\chi_{ARM}/SIRM$ are $9.59$ and $6.69 \times 10^{-5} m/A$, respectively, and the $S_{-300}$ value is $0.99$ for the basalt (Fig. 7).

A negative correlation of $\chi_{lf}$ to $\chi_{ARM}/SIRM$ for all samples (both from core sediment, basalt, and surficial sediment) is shown in Fig. 8A; down-core IRM acquisition curves also indicate low coercivities for samples above a depth of 145 m and high coercivities below that depth (Fig. 8B).

4.5 TOC

TOC contents vary from 0.01 to 3.06% throughout core LQ11, with occasional peaks (Fig. 9). Low TOC values are observed both in Pliocene (0.25-0.33%) and Pleistocene sediment (0.01-1.65%). Occasionally high TOC values occur in the Holocene sediment (0.19-3.06%) (Fig. 9).
4.6 Foraminifera

We identify benthic foraminifera (*Pseudorotalia indopacifica*) at 65 m in core LQ11 (Fig. 2). Large numbers of foraminifera occur almost continuously from 48 to 0 m, except at 42.20-41.30 m (stiff muds of the last Glacial Maximum) (Fig. 2). Most identified foraminifera in this part of the core are shallow marine and estuarine species, e.g. *Ammonia confertitest*, *Ammonia tepida*, *Cribrorotalia porisuturalis*, etc.

5. Discussion

5.1 Magnetic property changes in core LQ11: sediment provenance

Magnetic properties of sediments can be affected by changes in particle size distribution (Hatfield and Maher, 2009), post-depositional diagenesis (Roberts, 2015), including *in situ* magnetic mineral formation (Hounslow and Maher, 1999; Roberts, 2015), and sediment provenance (Liu et al., 2012). Particle size varies considerably throughout both the lower and upper core sections, which reflects progressive evolution of sedimentary environments and facies (as below). However, particle size variations appear to have little if any systematic relationship with sediment magnetic properties (Figs. 2, 9). Post-depositional reductive diagenesis generally occurs in various sedimentary facies (Roberts, 2015). It is most likely that high peaks of TOC and SIRM/χᵢ in some sediment layers in LQ11 imply greigite formation through diagenetic processes (Fig. 9). However, FORC diagrams, Ms-T curves, and EDS analysis confirm that magnetite is still dominant in these layers (Fig. 6). Diagenesis has not erased detrital magnetic signal in core LQ11. Therefore, sediment provenance is apparently
responsible for magnetic property changes throughout both the lower and upper core sections of LQ11.

5.2 Magnetic properties: passive sediment tracer for Yangtze River connection to the sea

The sediment magnetic properties in core LQ11 undergo a shift at a depth of 145 m from low and relatively invariable magnetic mineral concentrations to higher concentrations (Figs. 2, 5A). This step change in ferrimagnetic mineral content above 145 m is evidenced by a distinctive combination of magnetic properties. High $\chi_{lf}$, SIRM, and $S_{-300}$ values, which are indicative of magnetite-like remanence acquisition behavior, are associated with coarse ferrimagnetic grain sizes, as indicated by low $\chi_{ARM}/\chi_{lf}$ and $\chi_{ARM}/$SIRM values (Fig. 5A). In contrast, the lower portion (below 145 m) of core LQ11 has much lower ferrimagnetic mineral contents that are characterized by finer magnetic mineral grain sizes, and higher hematite concentrations. This major magnetic transition is evident (from $\chi_{lf}$ logs) in many other sediment cores in the study area (Fig. 3). Similar contrasts in upper vs lower core magnetic properties were also confirmed in detail in core SG7 from the Yangtze delta (Fig. 5A, B; Tao, 2007).

The distinctive magnetic properties (high $\chi_{lf}$, SIRM, and $S_{-300}$, and low $\chi_{ARM}/\chi_{lf}$ and $\chi_{ARM}/$SIRM) of the upper LQ11 sediments can be compared with those of modern river sediments (Fig. 7). A good match is found with strongly magnetic surficial sediments of the upper Yangtze basin where the river has cut through the E’mei Basalt block (Figs. 1B, 5A, 7). Progressive down-river dilution of this magnetically-distinctive
upper basin source is evident in space and time because the mid-lower basin tributaries supply relatively weakly magnetic source materials (Figs. 7, 8A, 8B). $\chi_{lf}$ of both the down-river sediments and upper core sediments declines (lower ferrimagnetic mineral concentrations) as $\chi_{ARM}/SIRM$ increases (magnetic grain size becomes finer). In contrast, the low $\chi_{lf}$, SIRM, and $S_{-300}$, and high $\chi_{ARM}/\chi_{lf}$ and $\chi_{ARM}/SIRM$ values of the lower Pliocene/early Quaternary sediments in core LQ11 appear similar to those of surficial river sediments of the mid-lower Yangtze basin (Figs. 7, 8A, 8B). Variable mixing of mid-lower basin sources and sediments sourced from the Zhe-Min uplift, along the coast of eastern China, likely contribute to magnetic variability of the lower sediments in core LQ11 (Figs. 1A, 5A, 7A, 8A; Cao et al., 2016). The magnetic contrast between the upper and lower core sediments is also evident in their patterns of remanence acquisition. The upper core sediments have soft (easily-magnetized) behavior; which reflects lower sediments are magnetically harder, which reflects lower magnetite and higher hematite concentrations (Fig. 8B; Thompson and Oldfield, 1986).

The transition in magnetic properties characterized by high $\chi_{lf}$, SIRM, and $S_{-300}$ and low $\chi_{ARM}/SIRM$ values in the upper portion of core LQ11 reflects the onset of sediment supply to the Yangtze delta from the extensive ($\sim 2.5 \times 10^5$ km$^2$) E’mei Basalt block (Fig. 1B). This distinctive magnetic source crops out exclusively in the upper basin, i.e. above the Three Gorges Valley. In contrast, the low ferrimagnetic mineral contents in the lower LQ11 sediments reflect the absence of this major magnetic source and, hence, these sediments are interpreted to pre-date opening of the Three Gorges Valley. The paleomagnetic chronology of core LQ11 indicates that this major change in
sediment provenance in the proto-Yangtze drainage basin occurred near the base of the Jaramillo subchron at ~1.2-1.0 Ma (Figs. 2, 5A).

High χlf has been reported previously for the upper portion of a Quaternary sediment core (Zhoulao, ZLC) from immediately below the Three Gorges Valley, in the mid-Yangtze reach (Figs. 1B, 5C; Zhang et al., 2008). In accord with the LQ11 sequence, this magnetic transition was dated to ~1.2 Ma (Zhang et al., 2008).

Our identification of the upper basin E’mei Basalt block as a key magnetic source is critical. First, our dating confirms the arrival of a new strongly-magnetic basaltic sediment source, thereafter providing the unique gateway for opening of the Three Gorges Valley. Second, synchronous appearance of this new, distinctive sediment source in Yangtze delta sediments indicates that westward extension and connection of the Yangtze River to the East China Sea was complete at this time. These results also accord with recent geochemical studies of detrital magnetite, elemental compositions, and Th-U-Pb ages of monazite (Yang et al., 2006; Gu et al., 2014; Yue et al., 2016).

5.3 Tectonic subsidence recorded by sedimentary facies: geological forcing of the proto-Yangtze connection to the sea

Independent of our magnetic interpretation, the temporal sequence of sedimentary facies and environmental changes recorded by core LQ11, and many other cores in the study area, provides a record of tectono-geomorphologic evolution of the Yangtze catchment. The unconformable basal contact with igneous and sedimentary Paleozoic-Mesozoic bedrock indicates the existence of local uplands in eastern China (Wang,
and an erosional and/or weathering hiatus prior to the Late Pliocene onset of terrestrial deposition in the present-day delta. Basal Late Pliocene sediments in core LQ11 (300.5-252 m) are reddish mudstones, which indicate lacustrine deposition under a relatively warm and/or arid climate. Thick Early Pleistocene sedimentary cycles (252-112 m) comprise basal gravelly sands topped by silty clay, which reflects alluvial-fan deposition (Figs. 2, S1). Thinning, fining and the appearance of cross-stratification in Middle Pleistocene sediments (112-67.6 m) indicate a gradual change from alluvial to fluvial deposition (Figs. 2, S1). Cyclic Late Pleistocene sediments (67.6-41.3 m), with basal coarse sands to fine sand and silt on top, are associated with the episodic appearance of marine foraminifera, from 65 m upward (Figs. 2, S1). Our previous study of a neighboring sediment core, CH1, ~20 km north of LQ11, indicates the continuous presence of foraminifera from ~85 m upward (Chen et al., 1997). These data indicate Late Pleistocene marine transgression along the coast near the Yangtze River mouth (Fig. 2; Qiu and Li, 2007). The study area was briefly exposed subaerially, as marked by the stiff muds of the LGM (42.20-41.30 m) when global sea level fell (Figs. 2, S1; Chen et al., 2008). The Yangtze delta of the study area formed only in the Holocene.

Sedimentary facies changes, from upland alluvial/fluvial environments to a coastal/deltaic setting, are consistent with continuous tectonic subsidence, which affected much of the east coast of China since the early Quaternary (Chen and Stanley, 1995). Subsidence of the study area coincided with submergence of the Zhe-Min uplift (Fig. 1A) on the East China Sea shelf, which was initiated in the early Quaternary (Yi et al., 2014). This subsidence was controlled by collision between the Eurasian and the
Pacific plates, in contrast with Tibetan Plateau uplift in western China, which was driven by collision between the Indian and Eurasian plates. This so-called Cenozoic Topographic Reversal (Fig. 1A, B; Wang, 1990) provided the continental-scale forcing for evolution of local river basins in the lower Yangtze to be gradually connected westward to the upper Yangtze basin.

5.4 The northern Yangtze delta coast: a possible earlier site of proto-Yangtze connection to the sea

Of note, the northern Yangtze delta plain was suggested to be the early route for proto-Yangtze flow into the sea (Fig. 1C; Chen and Stanley, 1995). Geological surveys indicate that the northern Yangtze was a semi-closed (seaward open) basin during the Neogene time, during which thick (>1000 m) terrestrial consolidated sediments were deposited (Chen and Stanley, 1995). Therefore, the proto-Yangtze connection to the sea along northern coast presumably occurred earlier than movement to the present position of river mouth area, which could be inferred from limited magnetic work on the northern delta region (Shu et al., 2008). Future Cenozoic sediment magnetic analyses in the northern delta region will offer a potential answer to this unresolved question.

6. Conclusions

Mineral magnetic and paleomagnetic properties of the Plio-Quaternary sediment sequence from the present-day Yangtze delta provide key information about the source and timing of a fundamental shift in sediment provenance and river basin evolution.
Late Pliocene/Early Quaternary sediments are weakly magnetic, and were sourced from Paleozoic-Mesozoic sedimentary rocks and Quaternary sediments in eastern China. The switch to more abundant and coarser magnetic minerals at ~1.2–1.0 Ma reflects westward extension of the Yangtze, via the opening of the Three Gorges Valley, and the onset of sediment supply from a new, upper-basin source, with a strongly magnetic signal from the E’mei basalt. Magnetic analysis of modern surficial river sediments confirms similarly strong magnetic properties between the upper LQ11 sediment and those of upper Yangtze basin sediments. Our chronostratigraphic evidence indicates that both the new sediment source and the connection to the East China Sea were initiated no later than ~1.2-1.0 Ma.

Acknowledgements

This project was supported financially by the National Natural Science Foundation of China (Grant No. 41620104004 and 41771226) and Chinese Postdoctoral Science Foundation (Grant No. 1350229054). We are grateful to Andrew P. Roberts and an anonymous reviewer for their constructive comments and language improvement.
Figure captions

Figure 1 A) Locations of large Asian rivers in relation to the Tibetan Plateau. B) The Yangtze River basin, with: the large-scale E’mei Basalt block in the upper Yangtze basin (above the Three Gorges Valley) indicated by red arrows; tributaries and sampling sites: ① Shigu; ② Yalong River (YLR); ③ Dadu River (DDR); ④ Min River (MR); ⑤ Jinsha River (JSR); ⑥ Tuo River (TR); ⑦ Jialing River (JLR); ⑧ Three Gorges (Yichang); ⑨ Yuan River (YR); ⑩ Xiang River (XR); ⑪ Han River (HR); ⑫ Dongting Lake (DTL); ⑬ Gan River (GR); ⑭ Poyang Lake (PYL); ⑮ River Mouth; the E’mei Basalt site (star); Zhoulao Core (ZLC), from the middle Yangtze basin, below the Three Gorges Valley (Zhang et al., 2008). The Cenozoic Topographic Reversal of the eastern China continent is modified after Wang (1990). C) Sites of sediment cores on the delta coast. The shaded zone off the Yangtze River mouth represents the Tertiary Zhe-Min uplift. Surficial samples, QT, OJ, and MJ (Fig. 1A) were taken from the exposure of the Zhe-Min uplift along the coast (Cao et al., 2016). The arrow in C indicates another possible route of the proto-Yangtze connection to the sea.

Figure 2 Magnetostratigraphy, magnetic susceptibility ($\chi_{lf}$), lithology, grain size, foraminifera, and sedimentary facies of core LQ11. The geomagnetic polarity timescale (GPTS) is from Cande and Kent (1995). Only the samples with MAD < 15° are shown. N2: Pliocene; Q1: Early Pleistocene; Q2: Middle Pleistocene; Q3: Late Pleistocene; Q4: Holocene.

Figure 3 Magnetic susceptibility profiles for sediment cores from the Yangtze delta.
Noted is the high (white background) and low (gray background) magnetic susceptibility in the upper and lower portions of Plio-Quaternary sediments (Age data: core SG1, Qiu and Li, 2007; core SG7, Wang et al., 2008; core PD, Chen et al., 2014; magnetic susceptibility and lithology data: Gu et al., 2014). N2 and Q1-4 are as in Figure 2.

Figure 4 Orthogonal projections of progressive thermal demagnetization results for representative samples of core LQ11. Open and closed circles indicate projections onto the vertical and horizontal planes, respectively. The numbers indicate temperatures in °C. NRM is natural remanent magnetization.

Figure 5 Comparison of magnetic properties of sediments from cores (A) LQ11, (B) SG7 (Tao, 2007), and (C) ZLC collected from the middle Yangtze (Zhang et al., 2008), and correlation of the magnetic transition at ~1.2-1.0 Ma BP.

Figure 6 (a-d) Thermomagnetic curves (black: heating curves; gray: cooling curves), (e-h) First-order reversal curve (FORC) diagrams, (i, k) scanning electron microscope images and (j, l) energy-dispersive spectra for representative samples in core LQ11.

Figure 7 Distribution of magnetic properties of surficial Yangtze sediments with comparison to the E’mei Basalt and Zhe-Min uplift (①-⑮). ★, and QT, OJ, and MJ see Fig. 1). Samples sourced from tributaries with carbonate and sedimentary rocks have much lower $\chi_{lf}$ than those in which basalt is widely distributed in the catchment.

Figure 8 A) Magnetic susceptibility ($\chi_{lf}$, which is broadly indicative of magnetite
concentration) vs. \( \chi_{\text{ARM}}/\text{SIRM} \) (higher values indicate finer magnetite grain sizes) for the E’mei Basalt sample, upper and lower core sediments, and surficial river sediments. B) IRM acquisition curves for the E’mei basalt and upper and lower core sediments.

Figure 9 Relationship of TOC and mean sediment grain size with magnetic properties of core LQ11. Magnetic property changes throughout the upper and lower core sections have no clear relationship to grain size and TOC variations.
References


Hoorn, C., 1994. An environmental reconstruction of the paleo Amazon River system


Figure 1
Figure 2
Figure 3
Figure 4

(a) 23.4 m  
   scale: $1 \times 10^3$ A/m

(b) 52.4 m  
   scale: $1 \times 10^3$ A/m

(c) 150.6 m  
   scale: $5 \times 10^4$ A/m

(d) 198.9 m  
   scale: $5 \times 10^4$ A/m

(e) 212.2 m  
   scale: $1 \times 10^4$ A/m

(f) 268.0 m  
   scale: $5 \times 10^4$ A/m
Figure 5
Figure 6
Figure 7
Figure 8

(A) Plot showing the variation of $\chi_a$ (10$^{-5}$ m/kg) vs. $\chi_{\text{total}}$/SIRM (10$^{-3}$ m/A) with different symbols representing different basaltic categories.

(B) Graph illustrating the IRM/SIRM ratio vs. field strength (mT) with different symbols indicating the core depth and magnetite dominated regions.

Legend:
- Basalt
- Upper basin
- Mid-lower basin
- Upper core
- Lower core

Core depths:
- 154.5 m
- 171.9 m
- 184 m
- 205.5 m
- 238.3 m
- 255 m
- 292.5 m
Figure 8
Highlights

1. Sediment magnetic fingerprints are presented for the modern upper Yangtze.

2. We present a reliable Plio-Quaternary magnetostratigraphy for the Yangtze delta.

3. Connection of Yangtze River to East China Sea occurred no later than ~1.2-1.0 Ma