
Chapter 1

MCMC for State Space Models

Paul Fearnhead

1.1 Introduction: State-space models

In this chapter we look at MCMC methods for a class of time-series models, called state-

space models. The idea of state-space models is that there is an unobserved state of interest

the evolves through time, and that partial observations of the state are made at successive

time-points. We will denote the state by X and observations by Y , and assume that our

state space model has the following structure:

Xt|{x1:t−1, y1:t−1} ∼ p(xt|xt−1, θ), (1.1.1)

Yt|{x1:t, y1:t−1} ∼ p(yt|xt, θ). (1.1.2)

Here, and throughout, we use the notation x1:t = (x1, . . . , xt), and write p(·|·) for a generic

conditional probability density or mass function (with the arguments making it clear which

conditional distribution it relates to). To fully define the distribution of the hidden state we

further specify an initial distribution p(x1|θ). We have made explicit the dependence of the
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2 CHAPTER 1. STATE SPACE MODELS

model on an unknown parameter θ, which may be multi-dimensional. The assumptions in

this model are that, conditional on the parameter θ, the state model is Markov, and that we

have a conditional independence property for the observations: observation Yt only depends

on the state at that time, Xt.

For concreteness we give three examples of state-space models:

Example 1: Stochastic Volatility

The following simple stochastic volatility model has been used for modelling the time-

varying variance of log-returns on assets. For fuller details see Hull and White (1987) and

Shephard (1996). The state-space model is

Xt|{x1:t−1, y1:t−1} ∼ N(φxt−1, σ
2),

where |φ| < 1, and with initial distribution X1 ∼ N(0, σ2/(1 − φ2)), and

Yt|{x1:t, y1:t−1} ∼ N(0, β2 exp{xt}).

The parameters of the model are θ = (β, φ, σ). The idea of the model is that the variance of

the observations depends on the unobserved state, and the unobserved state is modelled by

an AR(1) process.

Example 2: Discrete Hidden Markov Model

A general class of models occurs when the underlying state is a discrete-valued Markov

model, with a finite state-space. Thus we can assume without loss of generality that Xt ∈
{1, 2, . . . , K} and that the model for the dynamics of the state (1.1.1) is defined by a K ×K

transition matrix P . Thus for all i, j ∈ {1, . . . , K}:

Pr(Xt = j|Xt−1 = i, x1:t−2, y1:t−1) = Pij. (1.1.3)

Usually it is assumed that the distribution for X1 is given by the stationary distribution

of this Markov chain. The observation equation (1.1.2) will depend on the application, but
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there will be K observation regimes (depending on the value of the state). Thus we can

write

Yt|{xt = k, x1:t−1, y1:t−1} ∼ fk(yt|θ). (1.1.4)

The parameters of this model will be the parameters of (1.1.4) and the parameters of the

transition matrix P .

Examples of such models include models of Ion-channels (Ball and Rice, 1992; Hodgson,

1999), DNA sequences (Boys et al., 2000), and speech (Juang and Rabiner, 1991).

Example 3: Changepoint Model

Changepoint models partition the data into homogeneous regions. The model for the

data is the same within each region, but differs across regions. Changepoint models have

been used for modelling stock prices (Chen and Gupta, 1997), climatic time-series (Beaulieu

et al., 2007; Lund and Reeves, 2002), DNA sequences (Didelot et al., 2007; Fearnhead, 2008)

and neuronal activity in the brain (Ritov et al., 2002), amongst many other applications.

A simple changepoint model can be described as a state-space model with the following

state equation:

Xt|{x1:t−1, y1:t−1} =







xt−1 with probability 1 − p

Zt otherwise,

where the Zts are iid random variables with density function pZ(·|φ). Initially X1 = Z1, and

the observation equation is given by

Yt|{x1:t, y1:t−1} ∼ p(yt|xt).

The parameters of this model are θ = (p, φ), where p governs the expected number of

changepoints in the model, and φ the marginal distribution for the state at any time.

We will focus on models for which we can calulate, for any t < s

Q(t, s) =

∫

(

s
∏

i=t

p(yi|x)

)

pZ(x|φ)dx. (1.1.5)
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This is the marginal likelihood of the observations yt:s, given that the observations come

from a single segment. The functions Q(t, s) depend on φ, but for notational convenience

we have suppressed this.

1.2 Bayesian analysis and MCMC framework

Our aim is to perform Bayesian inference for a state-space model given data y1:n. We assume

a prior for the parameters, p(θ), has been specified, and we wish to obtain the posterior of

the parameters p(θ|y1:n), or in some cases we may be interested in the joint distribution of

the state and the parameters p(θ, x1:n|y1:n).

How can we design an MCMC algorithm to sample from either of these posterior distri-

butions? In both cases, this can be achieved using data augmentation (Hobert, 2008). That

is we design a Markov chain whose state is (θ,X1:n), and whose stationary distribution is

p(θ, x1:n|y1:n) (samples from the marginal posterior p(θ|y1:n) can be obtained from samples

from p(θ, x1:n|y1:n) just by discarding the x1:n component of each sample). The reason for

designing an MCMC algorithm on this state-space is that, for state-space models of the form

(1.1.1–1.1.2), we can write down the stationary distribution of the MCMC algorithm up to

proportionality:

p(θ, x1:n|y1:n) ∝ p(θ)p(x1|θ)
(

n
∏

t=2

p(xt|xt−1, θ)

)(

n
∏

t=1

p(yt|xt, θ)

)

. (1.2.1)

Hence it is straightforward to use standard moves within our MCMC algorithm.

In most applications it is straight-forward to implement an MCMC algorithm with (1.2.1)

as its stationary distribution. A common approach is to design moves that update θ condi-

tional on the current values of X1:n and then update X1:n conditional on θ. We will describe

various approaches within this framework. We first focus on the problem of updating the

state; and to evaluate different methods will consider models where θ is known. Secondly

we will consider moves to update the parameters.
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1.3 Updating the state

The simplest approach to update the state X1:n is to update its components one at a time.

Such a move is called a single-site update. While easy to implement, this move can lead to

slow mixing if there is strong temporal dependence in the state process. In these cases it

is better to update blocks of state components, Xt:s, or the whole state process X1:n in a

single move. (As we will see, in some cases it is possible to update the whole process X1:n

directly from its full-conditional distribution p(x1:n|y1:n, θ); in which case these moves are

particularly effective.)

We will give examples of single-site moves, and investigate when they do and do not work

well; before looking at designing efficient block updates. For notational convenience we drop

the conditioning on θ in the notation that we use within this section.

1.3.1 Single-site updates of the state

The idea of single-site updates is to design MCMC moves that update a single value of the

state, xt, conditional on all other values of the state process (and on θ). Repeated application

of this move for t = 1, . . . , n will enable the whole state process to be updated.

We introduce the notation that x−t = (x1, . . . , xt−1, xt+1, . . . , xn) denotes the whole state

process excluding xt. So a single-site update will update xt for fixed x−t, θ. The target

distribution of such a move is the full-conditional distribution p(xt|x−t, θ, y1:t); which as

mentioned above we will write as p(xt|x−t, y1:t) – dropping the conditioning on θ in the

notation that we use, as we are considering moves for fixed θ. Due to the Markov structure

of our model this simplifies to p(xt|xt−1, xt+1, yt) for t = 2, . . . , n − 1, p(x1|x2, y1) for t = 1

and p(xn|xn−1, yn) for t = n. Sometimes we can simulated directly from these full conditional

distributions, and such (Gibbs) moves will always be accepted. Where this is not possible,

then if xt is low-dimensional we can often implement an efficient Independence Sampler (see

below).

We now give details of single-site update for Example 2 (Gibbs move) and Example 1
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(Independence Sample), and in both cases we investigate the mixing properties of the move

in updating X1:n.

Example 2: Single-site Gibbs move.

For the HMM model of Example 2, with state transition matrix, P , we have for t =

2, . . . , n − 1 that

Pr(Xt = k|Xt−1 = i,Xt+1 = j, yt) ∝ Pr(Xt = k|Xt−1 = i) Pr(Xt+1 = j|xt = k)p(yt|Xt = k)

= PikPkjfk(yt),

for k = 1, . . . , K. Now as Xt has a finite state-space, we can calculate the normalising

constant of this conditional distribution, and we get

Pr(Xt = k|Xt−1 = i,Xt+1 = j, yt) =
PikPkjpk(yt)

∑K
l=1 PilPljfl(yt)

.

Similarly we obtain Pr(X1 = k|x2 = j, y1) ∝ Pr(X1 = k)Pkjfk(y1) and Pr(Xn = k|Xn−1 =

i, yn) ∝ Pikfk(yn). In both cases the normalising constants of these conditional distributions

can be obtained.

Thus for this model we can simulate from the full-conditionals directly, which is the

optimal proposal for xt for fixed x−t. Note that the computational cost of simulation is O(K),

due to calculation of the normalising constants. For large K it may be more computationally

efficient to use other proposals (such as an independence sample) whose computational cost

does not depend on K.

We examine the efficiency of this MCMC move at update the state X1:n by focussing on a

HMM model for DNA sequences (see e.g. Boys et al., 2000). The data consists of a sequence

of DNA, so yt ∈ {A,C,G,T} for all t. For simplicity we consider a two-state HMM, with the

likelihood function for k = 1, 2 being

Pr(Yt = y|Xt = k) = π(k)
y , for y ∈ {A,C,G,T}.
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We denote the parameter associated with Xt = k as π(k) = (π
(k)

A
, π

(k)

C
, π

(k)

G
, π

(k)

T
)

We will consider the effect that both the dependence in the state dynamics, and the

information in the observations have on the mixing rate of the MCMC move. To do this we

will assume that state transition matrix satisfies P12 = P21 = α, and

π(1) = (1, 1, 1, 1)/4 + β(1, 1,−1,−1) π(2) = (1, 1, 1, 1)/4 − β(1, 1,−1,−1),

for 0 < α < 1 and 0 < β < 1/4. Small values of α correspond to large dependence in the

state dynamics, and small values of β correspond to less informative observations.

To measure the mixing properties of the single-site MCMC update we (i) simulated data

for a given value of (α, β); (ii) ran an MCMC algorithm with single-site updates; and (iii)

calculated an autocorrelation function for the MCMC output after discarding a suitable

burn-in. For simplicity, we summarised the output based on the autocorrelation at lag-1

(all MCMC runs suggested autocorrelations that decayed approximately exponentially). We

calculated the autocorrelation for the number of differences between the true value of the

hidden state and the inferred value of the state.

Results are shown in Figure 1.1, where we see that the value of α is the main determi-

nant of the mixing of the MCMC algorithm. Small values of α, which correspond to large

dependence, result in poor mixing. Similarly, as β decreases, which relates to less informa-

tive observations, the mixing gets worse – though the dependence on β is less than on α.

Qualitatively similar results are observed for the two values of n, but for smaller n we see

that the value of β has more impact on the mixing properties.

Example 1: Single-site Independence Sampler

Now consider the Stochastic Volatility model of Example 1. We describe an independence

sampler that was derived by Shephard and Pitt (1997).
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Figure 1.1: Lag-1 autocorrelation values for differing α for a 2-state HMM model: (a)
n = 200; (b) n = 500. In each plot, different lines refer to different values of β; from top to
bottom: β = 0.02 (black); β = 0.065 (red); β = 0.11 (green); β = 0.155 (dark blue); and
β = 0.2 (light blue).
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With this model, for t = 2, . . . , n − 1 we obtain

p(xt|xt−1, xt+1, yt) ∝ p(xt|xt−1)p(xt+1|xt)p(yt|xt)

∝ exp

{

− 1

2σ2
((xt − φxt−1) + (xt+1 − φxt)

2)

}

exp
{

−xt

2

}

exp

{

−exp{−xt}y2
t

2β2

}

,(1.3.1)

where we have removed any constants of proportionality that do not depend on xt; the first

term of the final expression correspond to the two state transition densities, and the final

two terms come from the likelihood.

Simulating directly from this conditional distribution is not possible, so we resort to

approximation. Our approximation is based on a Taylor expansion of log p(xt|xt−1, xt+1, yt)

about an estimate of xt, which we call x̂t. Now if we define µt = φ(xt−1 +xt+1)/(1 +φ2) and

τ 2 = σ2/(1+φ2), then the first term in (1.3.1) can be re-written as exp{−(xt−µt)
2/(2τ 2)} up

to a constant of proportionality. Thus without any observation, our conditional distribution

of xt would have a mean µt, and this appears a sensible value about which to take a Taylor

expansion. Doing this we obtain

log p(xt|xt−1, xt+1, yt) ≈ −(xt − µt)
2

2τ 2
− xt

2
− y2

t

2β2
exp{−µt}

(

1 − (xt − µt) +
1

2
(xt − µt)

2

)

.

As this approximation to the log-density is quadratic, this gives us a Normal approximation

to the conditional distribution, which we denote by q(xt|xt−1, xt+1, yt). (For full details

of the mean and variance of the approximation, see Shephard and Pitt, 1997).Thus we

can implement an MCMC move of Xt by using an independence sampler with proposal

q(xt|xt−1, xt+1, yt).

Similar normal approximations can be obtained for p(x1|x2, y1) and p(xn|xn−1, yn), the

only difference is in the values of µt and τ . Note that better estimates of x̂t can be found,

e.g. by numerically finding the mode of p(xt|xt−1, xt+1, yt) (Smith and Santos, 2006), but

for single-site updates any increase in acceptance rate is unlikely to be worth the extra

computation involved.

We investigate the efficiency of single-site updates for the SV model via simulation. We

fix β = 1 and consider how mixing of the MCMC algorithm depends on the time dependence
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Figure 1.2: Lag-1 autocorrelation values for differing φ for the SV model: (a) n = 200; (b)
n = 500. In each plot, different lines refer to different values of τ 2: τ 2 = 0.5 (black, full
lines); τ 2 = 1 (red, dashed lines); τ 2 = 2.0 (green, dotted lines).

of the state process, φ, and marginal variance of the state process, τ 2 = σ2/(1 − φ2). As

above, we evaluate mixing by looking at the lag-1 autocorrelation of the mean square error

in the estimate of the state process. Results are shown in Figure 1.2, where we see that φ

has a sizeable effect on mixing – with φ ≈ 1, which corresponds to strong correlation in the

state process, resulting in poor mixing. By comparison both n and τ 2 have little effect. For

all MCMC runs the acceptance rate of the MCMC move was greater than 99%.
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1.3.2 Block updates for the state

While the single-site updates of Section 1.3.1 are easy to implement, we have seen that the

resulting MCMC algorithms can mix slowly if there is strong depedence in the state-process.

This leads to the idea of updating the state at more than one time-point in a single move;

which are called block updates. Ideally we would update the whole state process in one move,

and in some cases it turns out that this is possible to do from the full-conditional, so that

moves are always accepted. These include the linear-Gaussian models, where we can use the

Kalman Filter (see e.g. Carter and Kohn, 1994; Harvey, 1989); the HMM model of Example

2 and the changepoint model of Example 3. We give details of the methods used for the

latter two below.

In situations where it is not possible to update the whole state process from its full

conditional, one possibility is to use an independence proposal to update jointly a block of

state values. We will describe such an approach for the SV model of Example 1; and then

discuss alternative approaches for block updates for models where it is not possible to draw

from the full conditional distribution of the state.

Example 2: Updating state from its full conditional

The forward-backward algorithm is a method for sampling from the full conditional of the

state-process for discrete HMMs. See Rabiner and Juang (1986) for a review of this method,

and Scott (2002) for further examples of its use within Bayesian inference. Here we describe

its implementation for the model of Example 2.

The algorithm is based upon a forward recursion which calculates the filtering densities

Pr(Xt|y1:t) for t = 1, . . . , n; followed by a backward simulation step that simulates from

Pr(Xn|y1:n) and then Pr(Xt|y1:n, xt+1) for t = n−1, . . . , 1. The forward recursion is initialised

with

Pr(X1 = k|y1) ∝ Pr(X1 = k)fk(y1), for k = 1, . . . , K,

where the normalising constant is p(y1) =
∑K

l=1 Pr(X1 = l)fl(y1). Then for t = 2, . . . , n we
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have

Pr(Xt = k|y1:t) ∝ fk(yt)
K
∑

l=1

Pr(Xt−1 = l|y1:t−1)Plk, for k = 1, . . . , K,

where the normalising constant is p(yt|y1:t−1). (Note that a byproduct of the forward re-

cursions is that we obtain the likelihood as a product of these normalising constants, as

p(y1:n) = p(y1)
∏n

t=2 p(yt|y1:t−1).)

Once these filtering densities have been calculated and stored, we then simulate back-

wards. First Xn is simulated from the filtering density Pr(Xn|y1:n); then for t = n− 1, . . . , 1

we iteratively simulate Xt given our simulated value for Xt+1, from

Pr(Xt = l|y1:n, Xt+1 = k) = Pr(Xt = l|y1:t, Xt+1 = k) ∝ Pr(Xt = l|y1:t)Plk.

The computational complexity of the forward-backward algorithm is O(nK2) for the

forward recursion, and O(nK) for the backward simulation. This compares with O(nK) for

applying the single-site update to all state-values. Thus, particularly for values large K, it

may be computationally more efficient to use single-site updates. As seen above, whether

this is the case will depend on the amount of dependence in the state-model.

In the above description, we supressed the dependence on the unknown parameter θ.

Standard MCMC algorithms will update X1:n given θ and then θ given X1:n in one iteration.

Thus each iteration will (potentially) have a new θ value, and will require the re-application

of the forward-backward algorithm to simulate X1:n. One approach to reducing the computa-

tional cost of using the forward-backward algorithm within MCMC, suggested by Fearnhead

(2006) is to (i) obtain a good point estimate of the parameters, θ̂; (ii) apply the forward

recursion for this value of the parameter; and (iii) use Pr(X1:n|y1:n, θ̂) as an independence

proposal for updating the state. The advantage of this is that the costly forward-recursion

is only required once, as opposed to at every iteration of the MCMC algorithm. Further-

more, Fearnhead (2006) describe an efficient algorithm for simulating large samples of X1:n

from the backward simulation step. In applications, providing a good estimate is obtained

in (i), this approach has shown to produce efficient MCMC updates. Note that estimation

in (i) could be performed in an adaptive manner during the burn-in period of the MCMC
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algorithm.

Our forward-backward description has focussed on discrete-time processes. It is possible

to extend the idea to continous-time (though still discrete valued) HMMs. See for example

Fearnhead and Meligkotsidou (2004) and Fearnhead and Sherlock (2006).

Example 3: Updating state from its full conditional

We now show how the forward-backward algorithm can be applied to the changepoint

model of Example 3. The idea behind this application dates back to Yao (1984), but see

also Barry and Hartigan (1992), Liu and Lawrence (1999) and Fearnhead (2006).

We introduce a new state variable, Ct, which we define to be the time of the most recent

changepoint prior to t. Mathematically this is a function of x1:t, with

Ct = max{s : xs 6= xs+1 for s < t},

with Ct = 0 if there has been no changepoint prior to t (i.e. the set on the right-hand side

is empty). Note that Ct ∈ {0, . . . , t − 1}, and Ct is a Markov process with

Pr(Ct = j|Ct−1 = i) =







p if j = t − 1,

1 − p if i = j,

with all other transitions being impossible. Note that these two transitions correspond to

there either being or not being a changepoint at time t − 1.

We can now derive forward-backward algorithm. The forward recursion is initialised with

Pr(C1 = 0|y1) = 1, and for t = 2, . . . , n we have:

Pr(Ct = j|y1:t) ∝ (1 − p)
Q(j + 1, t)

Q(j + 1, t − 1)
Pr(Ct−1 = j|y1:t−1) for j = 0, . . . , t − 2,

Pr(Ct = t − 1|y1:t) ∝ pQ(t, t).

The first equation corresponds to there not being a changepoint at time t− 1. This happens

with probability 1 − p and in this case Ct = Ct−1. The second corresponds to there being a
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changepoint, which happens with probability p. The Q(·, ·) are defined in (1.1.5). In both

equations, the term involving Q(·, ·) is the likelihood of the observation yt given Ct and y1:t−1.

Once the filtering recursions have been solved, backward simulation proceeds using the

conditional distributions

Pr(Ct = j|Ct+1 = t, y1:n) = Pr(Ct = j|y1 : t),

where conditioning on Ct+1 = t is equivalent to conditioning on a changepoint at t. Thus we

can simulate the time of the last changepoint from Pr(Cn|y1:n), and then recursively given a

changepoint at t simulate the next most recent changepoint from Pr(Ct|y1:t). This simulation

continues until we simulate Ct = 0, which corresponds to no more changepoints.

The computational complexity of this algorithm is O(n2). The main cost is in solving

the recursions, and one approach to reduce computational cost is to solve these for a specific

value of the parameters, and then use the resulting conditional distribution for X1:n as an

independence proposal (see Fearnhead, 2006, and the discussion for Example 2 above). Note

this forward-backward algorithm can be generalised to allow for different distributions of

time between successive changepoints (see e.g. Fearnhead, 2008); and for HMM dependence

in the state value for neighbouring segments (Fearnhead and Vasileiou, 2007).

Example 1: Block independence sampler

For the SV model of Example 1, we cannot sample directly from the full conditional

distribution p(x1:n|y1:n). Instead we follow Shephard and Pitt (1997) and consider an in-

dependence sampler for block updating. The proposal distribution for the independence

sampler is based on a natural extension of the independence sampler for singe-site updates.

Consider an update for Xt:s for s > t. For an efficient independence proposal we require

a good approximation to p(xt:s|xt−1, xs+1, yt:s). (If t = 1 we would drop the conditioning on

xt−1, and if s = n we would drop the conditioning on xs+1 here an in the following.) Now

we can write

p(xt:s|xt−1, xs+1, yt:s) ∝ p(xt:s|xt−1, xs+1)
s
∏

j=t

p(yj|xj),
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where the first term on the right-hand side is a multivariate Gaussin density. Thus if for

all j = t, . . . , s, we approximate p(yj|xj) by a Gaussian likelihood, we obtain a Gaussian

approximation to p(xt:s|xt−1, xs+1, yt:s) which can be used as an independence proposal. We

can obtain a Gaussian approximation to p(yj|xj) by using a quadratic (in xj) approximation

to log p(yj|xj) via a Taylor expansion about a suitable estimate x̂j. The details of this

quadratic approximation are the same as for the single-step update described above. Further

details can be found in Shephard and Pitt (1997). The resulting quadratic approximation

to p(xt:s|xt−1, xs+1, yt:s) can be calculated efficiently using the Kalman Filter (Kalman and

Bucy, 1961), or efficient methods for Gaussian Markov Random Field models (Rue and Held,

2005), and its complexity is O(s − t).

Implementation of this method requires a suitable set of estimates x̂t:s = (x̂t, . . . , x̂s). If

we denote by q(xt:s|x̂t:s) to be the Gaussian approximation to p(xt:s|xt−1, xs+1, yt:s) obtained

by using the estimate x̂t:s, then one approach is to: (i) choose an initial estimate x̂
(0)
t:s ; and

(ii) for i = 1, . . . , I set x̂
(i)
t:s to be the mean of q(xt:s|x̂(i−1)

t:s ). In practice choosing x̂
(0)
t:s to be

the mean of p(xt:s|xt−1, xs+1) and using small values of I appears to work well.

This approach to designing independence proposals can be extended to other models

where the model of the state is linear-Gaussian (see Jungbacker and Koopman, 2007). Using

the resulting independence sampler within an MCMC algorithm is straightforward if it is

efficient to update the complete state path X1:n. If not, we must update the state in smaller

blocks. A simplistic approach would be to split the data in to blocks of (approximately) equal

size, τ say, and then update in turn X1:τ , X(τ+1):2τ etc. However this approach will mean that

state values towards the boundaries of each block will mix slowly due to the conditioning

on the state values immediately outside the boundary of the blocks. To avoid this Shephard

and Pitt (1997) suggest randomly choosing the blocks to be updated for each application of

the independence proposal. Another popular alternative is to choose overlapping blocks, for

example X1:2τ , X(τ+1):3τ , X(2τ+1):4τ and so on.

A further important consideration in implementation is the choice of block size. Too small

and we will obtain poor mixing due to the strong dependence of Xt:s on Xt−1 and Xs+1; too

large and we will have poor mixing due to low acceptance rates. (One approach is to use
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Figure 1.3: Average acceptance rates for different block sizes, and different φ values. Black
dots show mean acceptance rates for 20 different data-sets for each block size. Red lines
show mean acceptance rates for each block size. All runs had τ 2 = σ2/(1−φ2) = 0.2. (Some
MCMC runs had acceptance rates that are too small to appear on the plot.)

adaptive MCMC methods to choose appropriate block sizes, see Roberts and Rosenthal

(2006).) Here we will look at the effect that block size has on acceptance probabilities for

the SV model.

Plots of average acceptance rates for different block sizes and different data sets are shown

in Figure 1.3. Two features are striking. The first is that efficiency varies substantially with

φ, with values of φ ≈ 1 producing higher average acceptance rates. This is because for φ ≈ 1

there is stronger dependence in the state-process, and thus the (Gaussian) p(xt:s|xt−1, xs+1)

dominates the (non-Gaussian) likelihood p(yt:s|xt:s). The second is that there is great vari-
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ability in acceptance rates across different runs: thus choice of too large block sizes can lead

to the chain becoming easily stuck (for example, acceptance probabilities of 10−8 or less were

observed for blocks of 2,000 or more observations when φ = 0.8). This variability suggests

that either randomly choosing block sizes, or adaptively choosing block sizes for a given data

set are both sensible strategies.

However, overall we see that the block updates are particularly efficient for the SV model.

For block updates, acceptance rates > 0.01 are reasonable, and the average acceptance rate

was greater than this for all combinations of φ and block size that we considered. Even

looking at the worse-case acceptance rates across all runs, we have acceptances rates greater

then 0.01 for blocks of size 400 when φ = 0.8; and for 2, 500 for φ = 0.99.

Other approaches

Our examples have shown how to simulate directly from the full conditional of the state; or

how to approximate the full conditional for use within an independence proposal. However

the former method can only be applied to a limited class of models, and the latter used

the linear-Gaussian nature of the state-model. It is possible to obtain good independence

proposals for more general state-models, but this can become challenging, particularly for

high-dimensional states and models with strong non-linearities.

One general approach to block updates of the states has been recently proposed in Andrieu

et al. (2008), which is based upon using sequential Monte Carlo methods (see e.g. Liu and

Chen, 1998) within MCMC. Sequential Monte Carlo methods can be efficient for analysing

state-space models where parameters are known, and the idea is these are used to generate

a proposal distribution for the path of the state within an MCMC algorithm.

1.4 Updating the parameters

We now consider how to update the parameter, θ, within the MCMC algorithm. The natural

approach is to update θ conditional on the current value of the state path x1:n. Often this

is simple to implement as either conjugate priors for θ can be chosen so that we can sample
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directly from p(θ|x1:n, y1:n), or θ is of sufficiently low-dimension that we can use efficient

independence proposals. In some cases we need to update components or blocks of θ at a

time, rather than the updating the whole parameter vector in one go.

However, even if we can sample from the full-conditional p(θ|x1:n, y1:n), the overall effi-

ciency of the MCMC algorithm can still be poor if there is strong correlation between θ

and x1:n. The rate of convergence of an algorithm that alternates between sampling from

p(x1:n|θ, y1:n) and p(θ|x1:n, y1:n) is given by Liu (1994) and Roberts and Sahu (1997). If for

a square-integrable function f of the parameters, we define the Bayesian fraction of missing

information:

γf = 1 − E (Var (f(θ)|X1:n, y1:n) |y1:n)

Var (f(θ)|y1:n)
, (1.4.1)

then the geometric rate of convergence of the MCMC algorithm is γ = supf γf . Values of

γ ≈ 1 suggest a poorly mixing MCMC algorithm. This will occur when, after conditioning

on the data, there are functions f for which most of the variation in f(θ) is explained by the

value of the state, X1:n.

When there is strong dependence between θ and X1:n, there are two techniques for im-

proving mixing. The first is to consider a different parameterisation, with the hope that

for this new parameterisation there will be less dependence between the state and the pa-

rameter. The second is to use moves that jointly update θ and X1:n. We will describe and

evaluate approaches for updating θ given X1:n, and then consider these two approaches for

improving mixing in turn.

1.4.1 Conditional updates of the parameters

Here we focus on Examples 1 and 2, and give outlines of how parameter updates can be made

with these models. We will also investigate the mixing properties of the resulting MCMC

algorithms.

Example 1: Conditional parameter updates

Following Shephard and Pitt (1997) we will consider indepdent priors for β, σ2 and φ. As
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Table 1.1: Lag-1 autocorrelation for β for both Non-centered and Centered parameterisa-
tions. Results are for σ2 = 0.022, β = 1 and n = 200, and different values of φ.

φ 0.8 0.9 0.95 09.75 0.99

Non-centered 0.11 0.21 0.37 0.62 0.98

Centered 0.89 0.79 0.64 0.43 0.29

β is a scale parameter, we choose the canonical uninformative prior, p(β) ∝ 1/β. For σ2 our

prior is S0χ
−2
p . As it is normal to restrict |φ| < 1, we choose a Beta(a, b) prior for (φ + 1)/2.

For these choices we have that conditional on {x1:n, y1:n}, β is independent of φ, σ2, and has

distribution

β2|{x1:n, y1:n} ∼ χ−2
n

n
∑

t=1

y2
t exp{−xt}. (1.4.2)

To update φ and σ it is simplest to use their conditional distributions

σ2|{x1:n, y1:n, φ} ∼ χ−2
n+p

{

S0 + x2
1(1 − φ2) +

n
∑

t=2

(xt − φxt−1)
2

}

,

p(φ|x1:n, y1:n, σ) ∝ (1 + φ)a−1/2(1 − φ)b+1/2 exp

{

−(1 − φ2)x2
1

2σ2
− 1

2σ2

n
∑

t=2

(xt − φxt−1)
2

}

.

The distribution for σ2 can be sampled from directly. For φ, a simple procedure is an

independence sampler with Gaussian proposal. The Gaussian proposal is chosen proportional

to

exp

{

−(1 − φ2)x2
1

2σ2
− 1

2σ2

n
∑

t=2

(xt − φxt−1)
2

}

,

which corresponds to a mean of
∑n

t=2 xtxt−1/
∑n−1

t=2 x2
t and a variance of σ2/

∑n−1
t=2 x2

t . (Note

that this distribution can proposal values outside (−1, 1), and such values will always be

rejected.)

An example of how the mixing of the MCMC algorithm is affected by the dependence

within the state-model is shown in the top row of Table 1.1 (labelled non-centered parameter-

isation). We notice that as φ increases, that is the dependence in the state model increases,

then the mixing deteriorates. This is because in this limit the amount of information about

β contained in the state-path remains roughly constant as φ increases, but the amount of
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information about β contained just in the observations is decreasing. This means that the

Bayesian fraction of missing information is increasing, and thus the MCMC algorithm mixes

more poorly.

Example 2: Conditional parameter updates

Let Pk denote the kth row of the transition matrix, P . Furthermore consider the case

where the parameter vector can be written as θ = (P, φ1, . . . , φK), with the likelihood func-

tion given Xt = k is of the form fk(y|θ) = fk(y|φk). That is we have a disjoint set of

parameters for each of the K likelihood models. Further assume first that the distribution

of X1 is independent of θ. In this case, if our priors for the Pks and φks are independent,

then the full conditional p(θ|x1:n, y1:n) simplifies. Conditional on {x1:n, y1:n}, we have inde-

pendence of P1, . . . , PK , φ1, . . . , φK . Thus we can perform independent updates of each of

these 2K sets of parameter in turn. (If the distribution of X1 depends on P , then this will

introduce weak dependence in the posterior distribution of the Pks.)

If we choose a Dirichlet prior for the entries of Pk, then the p(Pk|x1:n, y1:n) will be a

Dirichlet distribution. Updating of φk will depend on the specific likelihood model and pri-

ors used. However, for the DNA model introduced in Section 1.3.1, we have φk = π(k) =

(π
(k)

A
, π

(k)

C
, π

(k)

G
, π

(k)

T
), and if we have a Dirichlet prior then p(φk|x1:n, y1:n) will again be Dirich-

let.

1.4.2 Reparameterisation of the model

We have seen that dependence between X1:n and θ can result in a MCMC algorithm for

(X1:n, θ) that mixes poorly. One approach to alleviate this is to consider alternative param-

eterisations.

Papaspiliopoulos et al. (2007) describe two possible general parameterisations for hierar-

chical models (see also Gelfand et al., 1995; Papaspilopoulos et al., 2003), and these can be

used for state-space models. These are centered parameterisations, which in our set-up is de-

fined by a model where p(θ|x1:n, y1:n) = p(θ|x1:n), and non-centered parameterisations where
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a priori θ and X1:n are independent. If we consider Examples 1 and 2 above, then for the

Stochastic Volatility model of Example 1 our parameterisation for β is non-centered – as our

model for X1:n does not depend on β. By comparison, for Example 2 our parameterisation

for P is a centered parameterisation.

While it is non-trivial to introduce a non-centered parameterisation for Example 2 (though

Papaspiliopoulos, 2003; Roberts et al., 2004, propose approaches that could be used), it is

straightforward to introduce a centered parameterisation for Example 1. We define µ =

2 log β and a new state model X ′

1:n where

X ′

t|{x′

1:t−1, y1:t−1} ∼ N(µ + φ(x′

t−1 − µ), σ2),

with X ′

1 ∼ N(µ, σ2/(1 − φ2)), and

Yt|{x′

1:t, y1:t−1} ∼ N(0, exp{x′

t}).

For this parameterisation we have (Pitt and Shephard, 1999)

µ|{x′

1:n, y1:n} ∼ N(b/a, σ2/a),

where a = (n − 1)(1 − φ)2 + (1 − φ2) and b = (1 − phi){∑n
t=2(x

′

t − φx′

t−1} + x′

1(1 − φ2).

For large n we can compare γf (1.4.1) for f(θ) = µ for both centered and non-centered

parameterisations. If we conjecture that γ ≈ γf , then these values will inform us about the

relative efficiency of the two parameterisations. To compare γf for the two parameterisations

we need only compare E(Var(2 log β|X1:n, y1:n)|y1 : n) and E(Var(µ|X ′

1:n, y1:n)|y1:n). If the

former is larger, than the centered parameterisation will have a smaller value for γf , and we

may conjecture will have a better rate of convergence. Otherwise γf will be smaller for the

non-centered parameterisation.

Now for the non-centered parameterisation we have Var(µ|X ′

1:n, y1:n) = 1/a ≈ σ2/(n(1 −
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φ)2). Thus as this does not depend on X ′

1:n we have

E(Var(µ|X ′

1:n, y1:n)|y1 : n) ≈ σ2

n(1 − φ)2
.

For the centered parameterisation, from (1.4.2), we have that E(Var(2 log β|X1:n, y1:n)|y1:n) =

Var(log χ2
n), thus for large n

E(Var(2 log β|X1:n, y1:n)|y1:n) ≈ 2

n
.

Thus γf is smaller for the centered parameterisation if 2/n > σ2/(n(1 − φ)2) or

φ > 1 − σ√
2
.

This suggests that as φ → 1 we should prefer using the centered parameterisation, but for

small φ the non-centered parameterisation would be prefered. This is confirmed by simulation

(see Table 1.1). Similarly, when σ is small we should prefer the centered parameterisation.

For the specific model we consider in Example 1, we have centered parameterisations for

σ and φ. It is possible to extend the non-centered parameterisations for β to one for (β, σ)

and even (β, σ, φ). For (β, σ) we introduce a state X ′

1:n where

X ′

t|{x′

1:t−1, y1:t−1} ∼ N(φx′

t−1, 1),

with X ′

1 ∼ N(0, 1/(1 − φ2)), and

Yt|{x′

1:t, y1:t−1} ∼ N(0, β2 exp{σx′

t}).

For (β, σ, φ) we can parameterise the state in terms of the standardised residuals in the AR

model, (Xt − φXt−1)/σ, and X1

√

1 − φ2, which are independent standard normal random

variables. This latter idea, and ideas related to it, has been used extensively within contin-

uous time stochastic volatility models (see e.g. Golightly and Wilkinson, 2008; Roberts and

Stramer, 2001).
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1.4.3 Joint updates of the parameters and state

One way of thinking about why strong correlation between θ and X1:n produces poor mixing,

is that large moves of θ are likely to be rejected as they will be inconsistent with the current

value of the state. This will happen even if the proposed new value for θ is consistent with

the data. This motivates jointly updating θ and X1:n, from a proposal q(θ′, x′

1:n|θ, x1:n) =

q(θ′|θ)q(x′

1:n|θ′). Thus q(θ′|θ) could propose large moves, and then values of the state-process

consistent with θ′ will be simulated from q(x′

1:n|θ′).

This is most easily and commonly implemented for models where we can simulate di-

rectly from p(x1:n|θ, y1:n), in which case we choose q(x′

1:n|θ′) = p(x′

1:n|θ′, y1:n). The resulting

acceptance ratio then simplifies to:

min

{

1,
q(θ|θ′)p(θ′|y1:n)

q(θ′|θ)p(θ|y1:n)

}

.

This acceptance ratio does not depend on x1:n or x′

1:n. The marginal chain for θ is equivalent

to a MCMC chain for p(θ|y1:n) with proposal distribution q(θ′|θ).

Providing an efficient proposal q(θ′|θ) can be found, such an MCMC algorithm will always

be more efficient than one that updates θ and X1:n independently. However, the difficulty

with implementing this idea is how to choose q(θ′|θ). For Markov modulated Poisson pro-

cesses, Sherlock et al. (2008), found that a Gibbs sampler that updated X1:n given θ and θ

given X1:n performed better than this joint update where q(θ′|θ) was chosen to be a sym-

metric random-walk. A further advantage of the Gibbs sampler, is that it avoids tuning

q(θ′|θ), though this problem can be alleviated by using adaptive MCMC schemes (Andrieu

and Thoms, 2008; Sherlock et al., 2008).

A simple extension of this joint updating idea is possible if we have an efficient inde-

pendence proposal for x1:n given θ – as this proposal could be used as q(x′

1:n|θ′). Here the

efficiency of the resulting algorithm will depend on both the efficiency of q(θ′|θ) as a proposal

for an MCMC that explores p(θ′|y1:n), and also the closeness of q(x′

1:n|θ′) to p(x′

1:n|θ′, y1:n).

Novel ideas for implementing such moves are given in Andrieu et al. (2008) and Andrieu and

Roberts (2007).
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