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Abstract

In this paper we propose a new particle smoother that has a computa-
tional complexity of O(NN), where N is the number of particles. This com-
pares favourably with the O(N?) computational cost of most smoothers
and will result in faster rates of convergence for fixed computational cost.
The new method also overcomes some of the degeneracy problems we
identify in many existing algorithms.

Through simulation studies we show that substantial gains in efficiency
are obtained for practical amounts of computational cost. It is shown both
through these simulation studies, and on the analysis of an athletics data
set, that our new method also substantially outperforms the simple Filter-
Smoother (the only other smoother with computational cost that is linear
in the number of particles).

1 Introduction

State space models provide a flexible framework to handle non-linear time series.
These models assume a time-series with observations Y; that are conditionally
independent given a hidden Markov process X;. Formally the model is given
by a state equation and an observation equation, which can be represented in
terms of conditional distributions

Xit1{ X1t = 21, Y1 = v} ~ f(ze),
Yil{ X1t = @14, Yiem1 = Yre—1} ~ g(-|xe),

where we use the notation that z1., = (x1,..., ), and similarly for y;.;. The
model is completed through specifying an initial distribution for Xj.

When the observations are arriving sequentially we are often interested in
the current value of the state X; given all the available data. For this filtering
problem, interest lies in estimating the posterior distribution p(x¢|y1.¢). Sequen-
tial Monte Carlo algorithms, known generically as particle filters, have recently
emerged as a solution to this problem. These filters approximate p(x|y1.+) by
a set of IV weighted particles; and are based on steps for sequentially producing
a set of weighted particles that approximate p(xt|y1.+) given a set that approx-
imates p(xi—1|y1.4—1). In their simplest form these algorithms produce equally
weighted particles, and the particles can be viewed as an approximate sample
from p(x¢|y1:t) (see Gordon et al. (1993) or Kitagawa (1996)). The computa-
tional complexity of particle filters is usually linear in the number of particles,



N, and as such large numbers of them can be chosen to best approximate the
target posterior.

Our interest in this paper lies in the related smoothing problem whose aim
is to obtain estimates of previous states given a block of observations y1, ..., yr.
While this problem can be theoretically solved with a slight modification of the
particle filter (see Kitagawa (1996)), it is easy to show that this produces a
poor approximation of the smoothing density p(z¢|y1.7) for t < T. With this
in mind, alternative algorithms to sequentially approximate p(z:|y1.7) after a
particle filter have been developed (see for example Kitagawa (1996), Hiirzeler
and Kiinsch (1998), Doucet et al. (2000), Godsill et al. (2004) and Briers et al.
(2004)). All these methods involve a step to re-weight particles that approximate
a filter distribution so that the re-weighted particles approximate p(z¢|yi.7).
While they perform comparably well for a fixed number of particles, IV, these
algorithms have a complexity of O(NN?) and therefore their use is restricted to
smaller N than is used for particle filtering. Also, for some state-space models,
particularly those for which a component of X; is uniquely determined by the
previous state, x;_1, these alternative smoothing algorithms can degenerate;
either they become equivalent to the O(N) smoother of Kitagawa (1996) or
cannot be applied at all.

We present a new smoothing algorithm. The basic idea is to allow the
smoother to simulate new particles which will be used to approximate p(x¢|y1.7),
rather than just re-weighting existing particles. This approach avoids some
of the degeneracy issues of existing particle smoothers. However, the most
important feature of our new smoothing algorithm is that there is a set of models
for which the computational complexity is linear in the number of particles. This
set includes all models with a linear-Gaussian state equation, and all models for
which the likelihood, g(y:|z;) is integrable in z;. This covers a wide-variety of
models such as the bearings-only tracking model (Gordon et al., 1993), factor
stochastic volatility models (Liu and West, 2001), time varying auto-regressive
coefficient models (Kitagawa and Gersch, 1985) and ARCH models (Fearnhead,
2005) amongst many others.

Our work itself was motivated by problems of non-stationarity when mod-
elling the extremes of a time-series. For example, in Section 5, we consider data
on the fastest times for the women’s 3000m (see Figure 4). Whilst up to 1982
there is evidence of a year-on-year improvement in times for this event, since
1982 times have plateaued — if anything times worsened in the latter half of the
1980s, perhaps due to increased regulation and testing for the use of perfor-
mance enhancing drugs. It is natural to model the data from each year using
a distribution which is motivated by asymptotic extreme value theory; and we
incorporate non-stationarity into this distribution through allowing its location
parameter to vary in a non-parametric way. We can thus obtain a state-space
model for the data, where the state is the location parameter. Standard non-
parametric models, such as random walks and integrated random walks, can
be formulated as linear-Gaussian models for the location parameter. See Smith
and Miller (1986) for an example of state space models being used to analyse
athletics records.

The article is organised as follows. We begin Section 2 by describing parti-
cle filtering and go on to review the current methods for sequential smoothing
while demonstating their flaws. In Section 3 we derive our new algorithm which
attempts to overcome these. Section 4 contains a simulation study with a mul-



tivariate Normal model, which shows the substantial improvements our new
smoother gives for models with a linear-Gaussian state equation. Section 5
compares relative efficiencies of the methods at analysing the athletics dataset,
and addresses the question as to how extreme the 1993 world record of Wang
Junxia was. To analyse these data, we develop an efficient EM algorithm that
utilises our new smoother, to estimate fixed parameters in the extreme value
distribution. Our analysis suggests that a new world record as or more extreme
as that of Wang Junxia’s would happen less than once every 5000 years from
the evidence about the population of the other top athletes in this event.

2 Current methods for particle smoothing

2.1 Particle filtering

The aim of Bayesian filtering is to calculate sequentially the filter distributions
p(x¢|y1.t) upon receipt of observations y;. The analytical solution to this prob-
lem is given by

plarlynee) o glurlee) / F@e|ze)p(@elyrie—r) dzer, (1)

which relates p(x¢|y1.t) to p(x¢—1|y1..—1) and y;. This recursion is intractable in
general, although an important exception to this is when both the state f and
the likelihood ¢ are linear-Gaussian densities and the prior is also Gaussian. In
this case the solution is given by the Kalman filter recursions of Kalman (1960).

Particle filters aim to overcome the intractability of (1) by using potential
draws of the state to approximate the unknown filter distributions. In general,
we approximate the distribution p(x¢|y1.;) by a discrete distribution with sup-
port {mgz) N, and probability masses {wgl)}fil. Applying this to p(zt—1|y1.t—1)
in (1) gives the approximation

N
plxelyre) = cglyelre) 3 flaelzl? w?y, (2)

=1

where ¢ is a normalising constant. A particle filter algorithm gives steps for
producing weighted particles to approximate this. For reviews of various filter-
ing methods see for example Liu and Chen (1998), Doucet et al. (2000) and
Fearnhead (2008).

We focus our attention on the auxiliary particle filter of Pitt and Shephard
(1999). This is a general method through which many simpler particle filters
can be defined as special cases. In this approach we aim to approximate

cg(yelae) fadal? w?, (3)

by , '
q(xt |x1(517)1 ) yt) t(Z) )

where q(-\xﬁ)l, y¢) is a distribution we can sample from and {ﬂt(l)}f\;l are nor-

malised weights which sum to 1. We then use a combination of re-sampling and

importance sampling to generate a weighted sample approximating (2).



Algorithm 1 gives the general algorithm for sequentially sampling weighted
particles { (xgi), w,@)} approximating p(z¢|y1.+). While the simplest way to ini-
tialise the algorithm is to sample from the prior p(zp) and propagate from ¢ = 1,
it is usually possible and more accurate to sample from p(z1]y;) directly using

standard importance sampling.

Algorithm 1 Auxiliary particle filter of Pitt and Shephard (1999)

1. Initialisation: Sample {xo } from the prior p(zo) and set wO =1/N
for all i.

2. Fort=1,2,...

(a) Re-sample: Use the {65“} as probabilities to sample N indices
J1y ey g from {1,..., N}.

(b) Propagate: Sample the new particles xii) independently from

aClzy ve).
(c) Re-weight: Assign each particle in) the corresponding importance
weight '
i 9lei)f @ ey
W B) B
‘I(xt |xt 1vyt)

and normalise them to sum to 1.

The efficiency of the particle filter rests primarily on the choice of proposal
density ¢ and re-sampling weights ﬂt(i). In the simplest case we could have
q(ze|zi—1,y:) = f(x¢|ze—1) and ﬁf@ = wt(z_)l which is essentially the algorithm of
Gordon et al. (1993). Such a choice would place mass unevenly on the particles
thus wasting those with small weights To rectify this the auxiliary approach

produces more even weights if q and ﬁt are chosen so that ( ) is well approxi—

mated. In particular if q(xt|xt L) = (mt|xt 17yt) and ﬁt o p(yt\mt 1)w§ )1

then the final weights w,g D will all equal 1 /N and we say the filter is adapted.

In most cases this optimal choice of ¢ and ﬁt is not possible, but we can still
obtain and use good approximations to them.

Many authors have suggested further enhancements to the standard particle
filter. The re-sampling step is optional and can be omitted by setting j; =
i thus propagating each particle ngl_)l once. This eliminates any extra noise
from re-sampling but gives uneven weights. Liu and Chen (1995) propose a
measure of the effective sample size and resample only when it falls below a
fixed threshold. Carpenter et al. (1999) show that the re-sampling noise is
minimised by producing a stratified sample of the indices j; and give an O(N)
algorithm to achieve this.

A further enhancement which takes advantage of the linear-Gaussian state is
Rao-Blackwellisation; see Casella and Robert (2001) for an introduction to the
topic and Doucet et al. (2000) for an application to particle filtering. The idea is
that for some models it is possible to integrate out part of the state analytically.
This enables the integrable part of the state to be represented by a distribution



rather than a specific value. The advantage of Rao-Blackwellisation is that less
Monte Carlo error is accrued in each update and so the variance of estimates
is reduced. An example of the application of Rao-Blackwellisation is given in
Section 5.

2.2 Smoothing while filtering

In its simplest form, smoothing can be achieved from a simple extension to the
particle filter as shown by Kitagawa (1996), and we call the resulting algorithm
the Filter-Smoother. As with the filter distribution p(z¢|y1.¢) in (1), we have a
recursive solution for the joint smoothing distribution:

P(r1elyie) o< g(yelwe) f(we|we—1)p(@1:0-1|Y1:0-1)- (4)

By comparing (1) and (4) it is easy to show that the particle filter steps can
be used to update weighted paths {(argli,wgt)) N | approximating p(z1.¢|y1.¢)-
Doing so simply requires keeping track of the inheritance of the newly sampled
particle xii) by setting xgll = gjt)_l, xgz)) This means that any filtering algo-
rithm can be used and the method inherits the O(N) computational complexity
of the filter making large numbers of particles feasible.

While this Filter-Smoother approach can produce an accurate approximation

of the filtering distribution p(z|y;.+) it gives a poor representation of previous

states. To see this we note that whenever we resample the paths {mgl,)t_l} by
sampling the auxiliary variables {j;} we end up with multiple copies of some
paths but lose others altogether. Therefore the number of distinct particles at
any given time decreases monotonically the more times we resample. Also, with
multiple copies of some particles, their weights are effectively added together on
a single point so that marginally the weights become more uneven as we look
back in time.

WA

Figure 1: Plot showing how the simple smoother re-weights filter particles.
The arrows represent the dependencies between the particles at time ¢ and ¢ — 1
due to re-sampling. The size of the particle represents its total weight as a draw
from the smoothed distribution.



This can be seen in Figure 1 which represents 10 smoothed paths x% showing
how they re-weight filter particles. As you can see, particles which are lost
due to re-sampling receive no weight and particles with many offspring have
large weights. While the filter approximation at time 6 is good, the weights
become more uneven as the number of weighted particles decreases going back
in time. This is not surprising since the particles at times ¢ < 6 are drawn to
approximate p(z¢|y1.+) so must be unevenly weighted if they are to represent a
different distribution.

As a final point we note that re-sampling more infrequently can improve
this method of smoothing although there is a limit to how much this can help.
Even with no re-sampling, the approximation to p(x¢|y;1.7) will deteriorate as
T —t gets large: with the particle approximation tending to give non-negligible
weight to all but a small subset of particles, and eventually only one particle
having a non-negligible weight.

2.3 Other smoothing algorithms

Several algorithms have been proposed to improve on the simple Filter-Smoother.
A common requirement is that a particle filter is run first to give weighted par-

ticles {(x,gl),wt(l)) ¥, approximating p(z|y1.) for t =1,...,T.

2.3.1 Forward-Backward smoothing

The Forward-Backward Smoother of Doucet et al. (2000), as well as the related
algorithms of Tanizaki and Mariano (1994) and Hiirzeler and Kiinsch (1998), is
based around the backwards recursion

Tii|x
p(x|yr.r) = p(xe|yie) / S(@elzy) p(@y1|yrr) deegr, for t < T
IEt+1|y1t

The unknown densities can be approximated using filter particles from the cur-
rent time ¢ and smoother particles from ¢ 4+ 1 to obtain

p(elyrr) Z oz t\)T’

where

G (i)
w .,i Sl yrlai” e e (5)
tT T N k k) Ct+1|T
=1 2k=1 f(xii)w\xg ))wt( :

and §(+) is the Dirac delta function. This approximation can be used to sequen-
tially re-weight the filter particles backwards in time so that they represent the
marginal smoothing densities.

2.3.2 Two-Filter smoothing

The Two-Filter Smoother of Briers et al. (2004) combines samples from a par-
ticle filter with those from a backwards information filter to produce estimates

of p(xt‘yl:T)~



The backwards information filter produces sequential approximations of the
likelihood p(ys.1|x) backwards through time and is based on the following re-
cursion:

plyeerlee) = g(vile) / F@ile)pr |z des, fort<T.  (6)

Since p(yg.r|x:) is not a probability density function in x; it may not have a
finite integral over x; in which case a particle representation will not work.
The smoothing algorithm in Kitagawa (1996) assumes implicitly that this is
not the case but Briers et al. (2004) propose the following construction which
will always give a finite measure. They introduce an artificial prior distribution
~o(xo) which, when substituted for p(x¢), yields a backwards filter density

P(@elyer) oc v (2e)p(Yer|Te), (7)

where v (z;) = [ f(@¢|wi—1)v—1(2¢—1) dzy—1 is derived recursively from ~o(zo).

An artificial prior is introduced so that ~;(x;) is available in closed form
which is only possible when the state is linear-Gaussian. If the prior p(zg) is
also Gaussian then this can be used instead of vo(x). If however the state is not
linear-Gaussian but the likelihood g(y:|x¢) is integrable, we can instead propa-
gate a particle representation of p(ys.r|x:) by assuming ~:(x;) = 1 throughout
the following derivation.

Following on from (6) the backwards filter is derived from

ﬁ($t+1|yt+1:T)
Vit 1(Te41)
~ (k)

f(@y 4 |2) ~ (k)

ORk
(xt+1

P(we|ypr) o< %(th)g(yt\l‘t)/f($t+1|33t) dwitq

N

~ (@) g(ye|2e) Z

k=1 Vt+1

where the weighted particles {(fcg?l, u?]gi)l)} approximate p(x4y1|ys+1.7). This
is very similar to the derivation of the forwards filter and as such many filtering
algorithms and enhancements can be modified for this purpose.

For example, an auxiliary backwards filter in the style of Pitt and Shephard
(1999) can be made by finding a distribution (j(~|yt,£§i)1) we can sample from
such that

~(k

wt(+)1

O
’Yt+1($§+)1)
We then proceed analogously to Algorithm 1 for ¢ =T, ..., 1 after initialising the
algorithm with particles drawn from yry1(2741). An adapted backwards filter

giving even weights u?,gk) = 1/N is achieved with d(mt\yt,ﬁcgi)l) = p(mt\yt,igi)l)

- ~(k ~(k ~(k
d(@elye, 3808 ~ vy () g(yelze) F@EE, |2)

and Bt(k) x p(yt\:é’fl)wg?l where we again use p to denote a distribution which
uses (o) as the prior instead of p(zg).

Having run a forwards particle filter and a backwards information filter, it
is possible to combine the two to estimate p(x¢|y1.7). The Two-Filter Smoother
is based upon writing the target density as

p(xt|y1:T) o8 p($t|y1:t—1) ’p(yt:T|-Tt)

S .
0.8 /f(xt\$t71)P(xt71|y1:t71)dxtq : M

Yi(74)



Therefore filter particles {(mgj)l ng)l)} approximating p(x;_1|y1.t—1) and back-

wards filter particles {(:f:g ), ~§ ))} approximating p(z;|y:.7) are used to obtain

k
p(xelyrr) 25 z — 3" t(|T),

where
- (k)
wt(\T (k) Zf t 1 Jwy )1 (8)
T

Thus particles from a forwards filter are used to re-weight those from a back-
wards filter so that they represent the target distribution.

2.4 Comparison of current particle smoothers

Both the Forward-Backward and Two-Filter smoothers aim to improve on the
simple Filter-Smoother by removing its dependence on the inheritance paths of
the particle filter. Forward-Backward smoothing does this by reweighting the
filter particles while Two-Filter smoothing re-weights particles sampled from a
backwards filter. However, both algorithms are O(N?) as the calculation of each
particle’s weight is an O(NN) operation!. Thus, while variants of these particle
smoothers produce better estimates for a fixed particle number N, far fewer
particles can be used for these algorithms than can for the Filter-Smoother in
a fixed amount of time.

Another advantage of the Filter-Smoother is that it gives draws of the joint
smoothing distribution p(z1.7|y1.7) rather than only the marginal distributions.
It is possible to adapt the Forward-Backward Smoother to also draw samples
from the joint smoothing distribution as shown in Hiirzeler and Kiinsch (1998)
and Godsill et al. (2004). Their derivation is similar to that of the Forward-
Backward Smoother above and as such share its complexity and are determined
by the re-sampling of the filter. They therefore achieve better samples of the
joint distribution than the Filter-Smoother for a fixed N but give a slightly
worse representation of the marginal distributions than the Forward-Backward
Smoother.

Since the Forward-Backward Smoother and the Filter-Smoother rely on the
support of filter particles we may expect them to approximate p(z;|y;.7) best
for t close to T where the target is most similar to p(z¢|y1.+). Likewise the Two-
Filter Smoother may do best for small ¢ when the backwards filter distribution
p(xt|ye.7) is likely to be closest to our target. However when there is a large
discrepancy between these distributions the particles will be weighted very un-
evenly as they will not be located in the right position to represent the smoothed
distribution. Ideally we would like an algorithm which samples particles in the
correct position for the smoothed distribution.

IThe overall cost of calculating the weight (5) in the Forward-Backward Smoother is O(N)
as each of the terms in the denominator need to be calculated only once and can then be
stored



2.5 Degeneracy of the Forward-Backward and Two-Filter
smoothers

As a final point we note that the Forward-Backward and Two-Filter smoothers’
reliance on the form of the state density causes degeneracy problems with certain
models and filters. Specifically, this happens whenever f(x¢|x;—1) is zero or
approximately so for most combinations of possible x; and x;_1. As an example,
consider the simple AR(2) process

2t = Prze—1 + Pazi—o + €

with € ~ AN(0,%). The model can be written as a two-dimensional Markov
process by defining the state as x; = (241, 22) where 1 = 2z and x40 = 21_1.
This gives the state transition density

flae|Zio1) = N(@pa|d1Ze—11 + P2Zi—1,2, v?) §(22 — T4—11),

where we write N (z|u,v?) for the density of N(u,v?) evaluated at z. This
density is zero whenever the second component of x; does not equal the first
component of Z;_1. This means that for two sets of particles {:it 1} and {xtl)},

flay )|m(j) ) is likely to be zero unless x( ") was generated from x(])

Slnce the Forward-Backward Smoother relies on comparing partlcles sampled
from the filter at time ¢ with those at time ¢+ 1, it can be shown that the weight
(5) reduces to the effective weight given to each particle by the Filter-Smoother.
However the situation is worse for Two-Filter smoothing which fails completely
as the forwards and backwards filter particles were sampled independently. With
probability 1, no pairs of forwards and backwards filter particles match and so
all the weights (8) will be zero.

3 New smoothing algorithm

We now describe our new smoothing algorithm which attempts to overcome the
weaknesses of the current methods. Our primary aim is to draw new parti-
cles from the marginal smoothing densities directly rather than re-weight those
drawn from another distribution. We describe the basic idea first, and then
look at how the smoother can be implemented so that its computational cost is
linear in the number of particles.

We start with a similar derivation to the Two-Filter Smoother which gives

p(xe|yrr) < p(@e|yr:e—1) - 9(yelze) - P(Yes1.7|T4)

o /f(xtlxt_l)p(xt_llyl;t_l)dxt_l - g(Yelae)-
x
/f xt+1|xt Pers1lterrir) dziya,
%+1(33t+1>

where we use the artificial prior and backwards filter in (7) above. These inte-
grals can be approximated using weighted particles from a particle filter at time
t — 1 and from a backwards information filter at time ¢t + 1 to obtain

f(fgi)ﬂxt) (k)
p(xt|yr.7) CZZf $t|$t 1) “9(yelze) - ) W (9)

j=1k=1 Yt+1 $t+1)



where ¢ is a normalising constant. Though this formula can be written as the
product of two sums, we write it as a double sum to emphasise that there are N2
(4, k) pairs. We also note that any filtering algorithm can be used to generate
{xij_)l} and {i‘glj_)l} as long as the artificial prior 441 (2¢41) here is the same one
used to sample {(a:«§’1)1,w§i>1)} in the backwards information filter. As before
we assume Yiy1(2¢41) = 1 throughout if the backwards filter approximates
P(Yir1.7|Te 1) instead of p(wsr1|ysy1.r).

To sample from this approximation we start by mirroring the auxiliary par-
ticle filter of Pitt and Shephard (1999) by finding a sampling distribution § and

weights Bt(] *) such that

= (k)

(7)
~ s i “(k w,” W
qladlaiy ye, 80087 = fade)gyled) F(@ o) —=—5E.
’Yt+1(xt+1)

Algorithm 2 gives the algorithm that results from using the Bt(J g to sample

(j, k) pairs before using ¢ to sample new particles _( 9,

Algorithm 2 New O(N?) smoothing algorithm

1. Filter forwards: Run a particle filter to generate {(z; (9 wg ))} approxi-

mating p(z¢|y1.+) for t =0,...,T.

2. Filter backwards: Run a backwards information filter to generate
{(igk), ﬁ)t(k))} approximating p(x¢|ye.r) < ye(z)p(yer|z:) for t =T, ..., 2.

3. Smooth: Fort=1,..., T -1

(a) Re-sample: Calculate the Bt(j g and use them as probabilities to
sample N pairs {(j;, ki) } Y.
(b) Propagate: Sample the new particles :Tc)(f) independently from

4 k;
a1y, #54).

(¢c) Re-weight: Assign each particle :Egi) the weight

i ki
)il wfy)

ki
_(4) fxt)|33t 1)9 (yt|xt ) f(@ P |z
Wy’ X

q(z Z)|z(ﬁ ~(k)) t(]z,k)

(ki)
t—10 Yt Ty 1 'Yt-‘rl(‘rtJrl)

and normalise them to sum to 1.

Note that the output of Algorithm 2 is a set of triples, (miji,fcg ),jiil))
with associated weights, w,ﬁ”. These can be viewed as a particle approxima-
tion to p(xt—1.441|y1.7). If our interest solely lies in the marginal p(z¢|y1.7)
we just keep the particles, a’:gl), and their associated weights, wt“). We note

further that the optimal choice of propagation density is q(xt|x§i)1, Yt, xgi)l) =

p(xt|9:§j,)1, Ui, 5:%?1) while the optimal re-sampling probabilities are given by

30 () (k) w it
/BtL fxf|z] 9(yelze) f (xt+1|xt)dxt L. (10)
(k)
'Vt+1($t+1)

10



We do not require our algorithm to generate samples for time 7' since these are
available from the filter. Similarly, particles for time 1 are available from the
backwards filter if we use vo(xo) = p(xg) for the artificial prior.

Algorithm 2 overcomes the degeneracy problem of the Forward-Backward
and Two-Filter smoothers when there is a deterministic relationship between
the states at successive time-points, as demonstrated in Section 2.5 with the
AR(2) model. Algorithm 2 will still have degeneracy problems where there is
a deterministic relationship between components of states separated by two or
more time-points. However it is simple, at least in theory, to extend our method
so that we jointly sample a block (x4, ...,z ) given filter particles {mgi)l} and

backwards filter particles {:%Ei)n 41} (see Doucet et al. (2006) for an example of
block sampling in particle filters). By choosing n sufficiently large such that
there is not deterministic relationship between components of x; and z;,, our
approach to smoothing can then be applied in these cases.

Like the Two-Filter Smoother in Section 2, our smoothing step is not se-
quential and can be performed independently for each time ¢. Also, the compu-
tational complexity of each step is O(N?) which is comparable with all but the
simplest Filter-Smoother. However, as it stands we have N2 Bt(] s to calculate
making it O(N?) in memory also which could mean that it is impractical for
even modest sample sizes.

3.1 Making Algorithm 2 O(N)

The above smoothing algorithm has a computational cost that is O(N?), that
is quadratic in the number of particles, due to the need to calculate N2 prob-
abilities, Bt(]’k). A simple approach to reduce the computational cost of the
smoothing algorithm is to choose these probabilities so that they correspond
to choosing particles at time ¢t — 1 and backward-filter particles at time t + 1
independently of each other. Our algorithm will then be O(N) in computational
complexity as well as memory and as such will be much faster for large .
Now the optimal distribution from which to choose the particles at time ¢t —1
will be the corresponding marginal distribution of the optimal probabilities for

397 given in (10). Marginalising we get:

(k) o)) (k) w? o\
Zﬂ’ x Z/fxtlxj 9(unlar) F(E) ) AL
%+1(9Ut+1)

)

N— w p(ﬂft+1|yt+1;T)
- //f mt\xm yt|$t) ($t+1|$t)d9€t =1 dwipq
Yet1(Te41)

o p(y T|$t 1)“’?)1

Calculating this analytically will be impossible, but it suggests two simple ap-
proximations. The first is to sample particles at time ¢ — 1 according to their

filtering weights w(J ). However a better approach will be to sample according

to an approximation of p(yt|x§j_)1)wt(j )1, as it includes the information in the

observation at time ¢. Now, in performing the particle filter we used the auxil-

iary filter which sampled particle x(] ) with a probability 5t(j ) which is chosen

to be an approximation to p(yt|x§] )1)wt(] )1 Thus we suggest using exactly the

11



same probabilities to sample the particles within one iteration of our sampling
algorithm.

By similar calculations, it can be shown that we should optimally choose
the backward-filter particles at time ¢ + 1 with probability proportional to

ﬁ(y1:t|£§i1)wt 11- Again, we cannot calculate these exactly, but a simple idea is

to use probabilities that approximate p(y:|Z; H)wt( 11+ Thus we can simply use

the probabilities Bt(k) that were used in the backward filter, as these were chosen
as to be an approximation to ﬁ(yﬂﬁcii)l)lbﬁ)l.

We thus obtain a similar algorithm to before, but with particles at time
t — 1 and t + 1 sampled independently, and with ﬂ(j ™ replaced by /Bt(] ) 6(k)
the calculation of the weight. Thus we have an O(N) version of our smoothing
algorithm shown in Algorithm 3. We note that we can speed up the algorithm
further as the probabilities ﬁt(j ) and Bt(k) (or even the auxiliary variables {j;}
and {k;}) can be saved from the filters to reduce the number of calculations in
the smoothing step.

Algorithm 3 New O(N) smoothing algorithm
Proceed as Algorithm 2 but substitute steps 3(a) and 3(c) for

3. (a) Re-sample: Use {ﬁt(j)} from the filter to sample j1, ..., j5 and {ﬂNt(k)}
from the backwards filter to sample k1, ..., ky from {1,..., N}

(c) Re-weight: Assign each particle ( ) the weight

_( (4 k; ks
@mo(f(xi)w{) welz”) £ @2 wi gty
t i ~(k; i ks

a(e ey #150) 87 B e ()

and normalise them to sum to 1.

4 Simulation study

We now compare the efficiency of our new algorithm against the currently avail-
able methods. Our simulations are based on a model with linear-Gaussian state
and observation models. The specific state model we used is chosen to be the
same as for our athletics application in Section 5. We have a chosen a linear-
Gaussian observation model so that we can compare results of different particle
smoothers with the true smoothing distributions obtained from the Kalman
filter and smoother (see Kalman (1960) and Anderson and Moore (1979)).
Formally, we consider the model:

Xepi{Xue = 214, Vi = y1a ) ~ N(Fay, Q),
Yil{ X1+ = 214, Yig—1 = y1u-1} ~ N(Gzy, R),
Xo ~ N (po,%0),

12



where

() e

G = (1,0), R =12

[N

1
)
1 )

The state is derived from the pair of stochastic differential equations (SDEs)
dX;1 = X¢2dt and dX; » = vdB; and so the first component X;; is the inte-
grated path of the random walk X 2. A noisy observation of the first component
is made at each time step. The parameter 2 determines the smoothness of the
state over time. With a large value of 2 the state can move freely and thus
follows the observations. When 2 is small however the model makes a linear
fit to the observations.

We compare the two versions of our new algorithm with the simple Filter-
Smoother of Section 2.2, the Forward-Backward Smoother of Section 2.3.1 and
the Two-Filter Smoother of Section 2.3.2. We also look at how the relative
performance of the algorithms is affected by the ratio of the state noise v2 to
observation noise 72. The details of our particle filter, backwards filter and
smoothing algorithms for this model are given in Appendix A.1.

To compare the accuracy of our smoothing algorithms’ estimates of X; 4 we
estimate the effective sample size Neg(X¢,q4). Motivated by the fact that

(X —p)? 1
) [
( o2 N’
when XM, .., X®) iid M(p,02) and X is their sample mean, we take

Foa—pea)?)
Neﬂ(Xt,d)E((t’daﬂt"l)) : (11)
t,d

where p; g and Uf’ 4 are the true mean and variance of Xy 4|y1.7 obtained from the
Kalman smoother and 2, 4 is the random estimate from a particle smoother. We
can therefore crudely say that the weighted sample produced by our smoother
is as accurate at estimating X, 4 as an independent sample of size Neg (Xt q).
To estimate the expectation in (11) we use the mean value from 100 repetitions
of each algorithm.

We first compare the smoothing algorithms using model parameters of v? =
72 = 1 with pg = (0, 0)/ and Yy = I, for the prior. We generated 20 datasets,
each of length 200, and averaged the effective sample sizes to remove effects
caused by a single dataset.

We chose different numbers of particles for each algorithm to try to reflect the
varying complexities of each method. We started by choosing 10,000 particles
for the Filter-Smoother and 3,000 for the O(N) version of our new algorithm
since they then took approximately the same amount of time to run. We would
have liked to scale the O(N?) algorithms to take the same time to run but
their speeds varied greatly. Part of this may be due to how the algorithms are
implemented in R. We therefore fixed the number of particles for these three
algorithms at 300. This made the O(N?) version of our new algorithm faster
but the other two methods slower than the Filter-Smoother. The average time
taken by each algorithm per run is shown in Table 1.
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. . Forward- . 9
Algorithm Filter Backward Two-Filter New O(N®) New O(N)
N 10,000 300 300 300 3,000
Run time (s) 224 688 358 40 255

Table 1: Number of particles used and average run time of each algorithm.

Figure 2 shows how the average effective number of particles for estimating
X1 varies through time for the five algorithms considered. The results for X; o
(not shown) are very similar.
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Figure 2: Average effective sample size for each of the 200 time steps using the
filter (—), Forward-Backward (---) and Two-Filter smoothers (...) as well as
the O(N?) (.—) and O(N) version (——) of our new algorithm.

We can see that the Filter-Smoother does very well for times close to T' =
200 as this filter has by far the most particles and the filter and smoothing
distributions are similar at this stage of the process. As predicted however this
algorithm gets progressively worse as it goes backwards through time. This
is not necessarily the case with the other algorithms whose efficiencies remain
roughly constant over time when averaged over the 20 datasets. Of the two
O(N) algorithms we see that our new method vastly outperforms the Filter-
Smoother for all but the final few time steps, despite taking a similar amount
of time to run.

From Figure 2 we can also see that the three O(N?) algorithms have near
identical efficiencies for this particular model. This may be because they are all
derived in some way from the same formula, p(x¢|y1.7) < p(z¢|y1.e—1)p(yer|Tt),
and all combine filter particles with an O(N?) approximation of p(y;.r|z:). We
recall that these were run with the same number of particles N though in our
implementation our new algorithm was faster than the other two here. However,
even with this taken into account, the O(NN) version is many times more efficient
for even these modest sample sizes.

To see how these results are affected by the ratio of the state noise v? to
the observation noise 72, we repeat the experiment first with v? = 100 while
keeping 72 = 1. This gives the state freedom to follow the observations which
helps the algorithms to perform well. The results are shown in Figure 3a below.
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Those for 2 = 1 and 72 = 1/100 gave very similar results.
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Figure 3: Average effective sample sizes as in Figure 2 with different ratios of
2

the state noise v? to the observation noise 72.

We see that the accuracy of the Filter-Smoother still diminishes as it pro-
gresses backwards through time but all the other methods are close to their
optimal efficiency of an effective sample size equal to N. This is particularly
the case with our new O(N?) algorithm which outperforms the other O(N?)
methods at every time step. Our new O(N) algorithm however is by far the
fastest allowing it to have 10 times as many particles as the slower methods. Its
efficiency also suggests that our choice of re-sampling weights is reasonable.

We finally repeat the experiment with v /72 = 1/100 which makes the state
highly dependent through time and causes all the particle methods to struggle.
This can be seen from the low effective sample sizes in Figure 3b. Even though
the Filter-Smoother diminishes at a faster rate than before it does better than
the other algorithms for a large number of time steps. This is possibly due
to the total accumulation of error in the filter, backwards filter and smoother,
each of which performs badly in this case, which hinder the other methods.
The Filter-Smoother eventually drops below the accuracy of our O(NN) method
showing that our O(N) algorithm can give stronger estimates of the earliest
smoothing densities in even the toughest situations.

5 Athletic records

We use our smoothing algorithm to analyse data from the women’s 3000m run-
ning event. Robinson and Tawn (1995) first studied the fastest times from 1972
to 1992 to assess whether Wang Junxia’s record in 1993 was consistent with
the previous data. They used an extreme value likelihood with a parametric
trend to conclude that cutting 16.51s off the record, though unusual, was not
exceptionally so. Smith (1997) outlined the benefits of a Bayesian analysis for
calculating the probability of beating Wang Junxia’s record given that a new
record is set and Gaetan and Grigoletto (2004) extended this by using particle
methods to model a dynamic trend.

While Gaetan and Grigoletto (2004) presented an attractive model for the
data, it is our belief that the particle methods they used for their inference are
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highly inefficient. They used the smoothing algorithm of Tanizaki and Mariano
(1994) with an AR(2) state which causes the smoother to degrade to the Filter-
Smoother as shown in Section 2.5. They also introduced two random walks
with extremely small variances to the state which causes all particle methods
to struggle as was shown by the small effective sample sizes in Figure 3b in
Section 4. We therefore believe that the conclusions they drew from using only
N = 1000 particles are unreliable and we aim to produce a more robust analysis.

Whereas Gaetan and Grigoletto (2004) used the annual minimum running
times, we use the r fastest annual times following the initial analysis of Robinson
and Tawn (1995). Large amounts of data are now available on-line (for example
from Larsson (2008)) from which the five fastest times of different athletes per
year is shown in Figure 4. The natural choice for modelling the fastest annual
running times is the generalised extreme value distribution for minima (GEVm)
as motivated by asymptotic extreme value theory (see Coles (2001) for details
as well as an introduction to extreme value techniques). This distribution has
location and scale parameters p € R and o > 0 as well as a shape parameter
& € R which allows for many types of tail behaviour. Its cdf is given by

G(ylp,0,8) =1 —eXp{— [1 -£ (y;”)]f}

where we define [y]4+ := max(y,0). This distribution naturally extends to the
r-smallest order statistic model which we use for the ith fastest records y; per
year. This model has a likelihood given by

~ : (yi‘ﬂvU,ﬁ)
9(er |, 0, €) o Gy, |, 0, €) [ LL DS
' 1} G(yilp. 0,€)

where we write G(y|u, o, €) == 1 — G(y|u, 0, &) for the GEVm survivor function
and g(y|u, 0, &) for the derivative of G(y|u, o, &) with respect to y.

For the state, Gaetan and Grigoletto (2004) used independent random walks
for each of the three likelihood parameters. They used a second order random
walk for p to model the clear trend seen in the location of the data and for o
and & they used first order random walks with extremely small state variances
to make them roughly constant in time. Since such state variances cause poor
performance with the filters and smoothers, we assume for simplicity these pa-
rameters are fixed and known. We later estimate them using an EM algorithm
based on our smoothing algorithm although we would have preferred to add
them to the state to fully account for their uncertainty.

Since a second order AR(2) model for p causes degeneracy problems with
some smoothers, we instead adopt the smooth second order random walk given
in the earlier simulation study of Section 4. We therefore augment the state with
ft, the velocity of u, giving us the two-dimensional state x; = (4, ﬂt)/. Finally,
for the prior we follow Gaetan and Grigoletto (2004) and use an uninformative
normal distribution. Since the likelihood only depends on p; and the prior is
Gaussian we used Rao-Blackwellisation to marginalise fi; thus improving the
accuracy of the methods. Details of this step and the particle algorithms we
used to achieve this are given in Appendix A.2.

For a fixed value of  and v? we can estimate the likelihood parameters ¢ and
¢ using an EM algorithm constructed using our new smoother (see Appendix B
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Figure 4: Five fastest times for the women’s 3000m race between 1972 and
2007 with Wang Junxia’s time in 1993. The two fastest annual times used for
our fit are coloured black. Also shown is the mean and central 95% probability
interval of the fitted predictive distribution for the fastest time per year.

for details). Simultaneously estimating v? requires particles approximating the
joint distribution p(x¢_1,x¢|y1.7) which is possible using our approach (as our
algorithm gives approximations to p(x:—1.4+1|y1.7), see Section 3). It is sim-
pler however to select among a few possible #? by maximising the model likeli-
hood p(y1972:2007|v'%), which we estimate using the following formula of Kitagawa
(1996):
2007
P(y1972:2007IV H Zg (Ye,1: r|/~tt|t 10 )wt )1,
t=1972 i=1

(@)

-1 is the first component of a predictive particle sampled from the

where p

state f(~|a:§i_)1, v?) and {(xf ,w, )} are sampled from a particle filter given 12
Table 2 shows a selection of v? values with the corresponding EM estimates of
o and ¢ and the model likelihood when we take r = 2.

V2 05 075 1 125 15 1.75 2

o 436 425 422 415 412 404 401

¢ -0.15 -0.13 -0.13 -0.11 -0.11 -0.09 -0.09
Likelihood (x10783) | 0.41 2.72 3.68 350 241 152 1.02

Table 2: Model likelihood with ¢ and & estimates for different values of the
smoothing parameter % and r = 2.

To select the number of observations r to include per year we constructed

probability-probability and quantile-quantile plots to assess the model fit. Look-
ing at r = 1,...,5 we concluded that the best fit was obtained from only two
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observations per year. As we see from Table 2, this leads us to select v? = 1
and estimate o and £ to be 4.22 and -0.13 respectively.

To estimate the probability of a new record in 1993 beating Wang Junxia’s
we use the r = 2 fastest times from 1972 to 2007 excluding 1993, denoted
Y1972:2007, tO estimate the predictive distribution of the fastest time in 1993.
Given the parameters 1993, 0 and &, the probability of Yig93, a new record in
1993, beating Wang Junxia’s time of 486.11s is given by

G (486.11| 411993, 0, €)

P{Y1993 < 486.11|Y1993 < 502.62, 11993, 0, &} = G (502.62|f11993, 0, €)

where 502.62s was the world record prior to 1993. Unconditioning on p1993, we
estimate the overall probability pyec with

G (486.11| 1993, 0, &)

G 502 62'”199370 g)p(N1993‘y1972:2007) dﬂ1993

Prec =

Z G(486.11|1l s, 0,6) (i
~ 1993»
G(502.62|1\0 5, 5, €)

where we use weighted particles to approximate p(141993|y1972:2007)-

To compare algorithms’ efficiencies at approximating p(11993|y1972:2007) We
run a simulation to estimate the effective sample size Neg(Xy 1) as in Section 4
using 300 repetitions of each algorithm. However, since the true mean and
variance of the target density are now unknown, we first estimate the true
distribution using the Filter-Smoother with 750, 000 particles. Since our primary
interest is to estimate the probability of a new record beating Wang Junxia’s, we
also calculate the sample variance of our estimate of this over the 300 repetitions
used to estimate Neg.

For this simulation we chose to compare only the O(N) algorithms as both
the Forward-Backward and the Two-Filter smoothers suffer problems of degen-
eracy when applied to the Rao-Blackwellised filter described in Appendix A.2.
These smoothers could be applied to a non-Rao-Blackwellised filter, but given
the simulation results in Section 4, it appears that these smoothers would not be
competitive with our new smoother. Since we only require the marginal smooth-
ing distribution for 1993, our new algorithm only requires the particle filter up
to 1992 and the backwards filter back to 1994. We therefore chose the same
number of particles, 10,000, for both our algorithm and the Filter-Smoother
and observed that they took roughly the same amount of time to run.

The results of the simulation are shown in Table 3. We can see that our
new algorithm has an effective sample size over 8 times as large as that of the
Filter-Smoother giving similarly less variable estimates. Of course, to calculate
the marginals for every time step within the same amount of time our method
could only use a third of the particles, but it would still outperform the Filter-
Smoother for the majority of estimates.
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Algorithm N Var(prec) (x10710)
Filter-Smoother | 130 3.616
New O(N) | 1049 0.401

Table 3: Comparison of the efficiencies of the Filter-Smoother and our new
algorithm for approximating p(p1993|y1972:2007) and the probability of a new
record beating Wang Junxia’s time. In both cases the average probability esti-
mate was 1.92 x 1074,

Our analysis estimates the probability of a new record in 1993 beating
Wang’s to be 1.92 x 10~%. This conflicts with the analysis of Gaetan and Grigo-
letto (2004) who showed Wang’s record well within the reach of their boxplots
of the conditional distribution. Apart from our doubts in the accuracy of their
results, the main difference in the two analyses is that Gaetan and Grigoletto
(2004) only used data on the fastest race for years up to 1993. Thus it may
be the information in the extra data we use that leads us to a different conclu-
sion about how extreme the world record of Wang is. We also admit that our
analysis fails to account for the uncertainty in o and £ which could cause our
estimate to be under-estimated. However, while Gaetan and Grigoletto (2004)
attempted to account for this by augmenting the state with ¢ and &, this leads
to poor performance of the particle methods so a new approach is required.

Appendix A Implementation of particle filters
and smoothers

A.1 Multivariate Normal model

To implement the various smoothing algorithms we need to choose propagation
densities for a particle filter, backwards information filter and the smoother it-
self. Using auxiliary algorithms throughout, the linear-Gaussian model assump-
tion allows us to calculate the optimal densities and re-sampling probabilities.
Using these we have adapted algorithms giving even weights of 1/N whenever
we resample.

Writing N (z|u, 02) for the density of N'(u,0?) evaluated at z, it is easy to
show that the optimal filter is given by

q(zde? ) B = fladlz))g(yeled)w?,

= N (@)1 Boe—1) N GFa) R+ GQG ywi),

where ¥y = Q1! —&—G/R_IG)_l and uijtll = Zt‘t_l(Q_lFxEﬂ)l +G/R_1yt).
This is used for each algorithm but we only need to keep track of our trajectories
for the simple Filter-Smoother.

For the backwards information filter we can use the actual prior v (z;) =
p(xs) = N(¢|pe, Xt), whose mean and covariance can be calculated sequentially

using the prediction step of the Kalman filter. This gives

p(ae|air) = N($t|F$t+1 + Qz;lﬂu Q)y
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where we define F' := EtF/Z;rll and Q := EtF/E;rllQFLl. We then obtain

~ (k)
_ w
Pee)g(unlen) f(@ ) )t
P(xt+1)

(zt‘yf7xt+)1) 5 =
N@pll s
X ($t|ﬂt|t+1a t\t+1)x
Nyl G(Fel + Quit p), R+ GQG ),

where Sy = (7' + G'R'G+FQ'F)! and Mr(f|kt)+1 = Sy (S e +
GR 'y +FQ 155?—?1)

Finally, for our new smoothing algorithm we have

alacle yn 3h) o fadal g lee) f(@ 2 20)
j K
o N (@il iy, Suyr),
where ¥ = Q'+ G'RG+ F/Qle)’l and uiljj’fc) = Et‘T(Q’lFxgjjl +
G/R_lyt + F/Q 1:5&)1) The optimal re-sampling weights can be shown to be
N~ (k

() )wt(J)lwt(+)1

~(j.k k
BN o p(@h), yelat?

P( gi)l)
’ ’ k
v ((FEN(F?Y 0 (Q+FQF FQG™ w? oty
ye JINGF) """V GQF' R+GQG)) pE))

which we can see does not factorise. Therefore, for the O(N) version of our

algorithm we use (J ) and Bt(k) from the filters as suggested in Section 3.1 as
this should be a good approximation of the optimal weights.

A.2 Athletics records

Adapted auxiliary algorithms for this model will not be possible as the likelihood
in g is very complex. We therefore approximate the log likelihood I(u:) by a
second-order Taylor approximation about an estimated mode fi; which leads to

a normal approximation of the form
o L) 1 )
Ht = 7~ 7~y
V(i) U7 (fe)

where the distribution is restricted to the likelihood’s support of

, (12)
A

g(yt,lzr“lt) ~ N(lLLt

Ay = {pelo — E(yei — pe) > 0,Vi}.

In practise, we used the optimize function in R to estimate the mode at each
time step.

To make the algorithms as efficient as possible we use Rao-Blackwellisation
to reduce the variance of our estimates. For this we can marginalise the second
component of the state fi; as the likelihood only depends on p; so the distribution
of fit|ps can be updated by using only its mean and variance. This improves the
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overall approximation by allowing the second component of each particle to act
as a normal distribution rather than a point mass. We therefore have particles
of the form 3: (,ugl),mt ,TE( )Y, where jie|{p: = )} N(mt‘ , 2(Z)).

To create a marginalised particle filter it helps to think each particle Igz_)l
as a kernel approximation to p(us—1, fts—1|y1.t—1) of the form

¢ (1, f1e—1) = J\/'(ut_l,m_1|nt(i_)1,Kt(?1),

) (1) ) 0 0
ORI e KO .
M1t <m§1)1> ) t—1 (0 t2(1)>

This leads to the approximation of p(us, fit|y1..—1) by

with

7 (s, fir) 3:/f(ﬂt:ﬂtWt—laﬂt—l)¢(i)(ﬂt—1>ﬂt—1)dﬂt—1 dfig—1

= N, fuel Fi21, Q + FED F).

To create the new particle x()

filtering with target density

we therefore use standard auxiliary particle

(&) _ (@)

P (el 1, y) B = 7O (e gyl pe) w?,

to sample ,ugi) and then update the mean and variance of [ |[{y = ,ugi)} with

that of 7 (f| ugi)). For this we replace the likelihood by the approximation
(12) to give us a constrained normal sampling density for ;LE’) and approximate
the optimal re-sampling weights with

50 ~ 7O (@) g(yeliie) wi?,
t — ~ 7 s
Q(Mt‘x§21a Yt)

where ji; is the mean of the sampling density q(ut\x@l, Yt)-
For the backwards filter we again start by defining F := EtF/Z; +11 and

Q= EtF/E;_i_llQF/_17 where ¥, is the variance of the normal prior at time t.
It can then be shown that p(pue, fie| 41, fir41) is equal to

(Gl G rem () 0)
Mt Ht+1 % Kt @
where (fi, ﬁt)/ is the mean of the prior at time ¢t. We then combine this with a

kernel ¢%) (pus41, fiz41) created from mﬁl to give the density

O (g, 1) = N <<M )‘an +Q%; (‘/Z) O+ FKfj’j’) .

We now proceed in exactly the same way as with the forwards filter using 7

instead of 7 to sample x( ),

Finally, for our new smoothing algorithm, it can be shown that our target

for uii) in this marginalised setting is

(k)

(k) )ﬁ(g k) (j)(ut)wt(i)l . 9Wylpe) 70 (1 ) wyy) -

(4)
qopt M| Ty 1, Yty T
( | t—1 t+1 p(ﬂt)

21



This leads us to sample u,(f)

product of 79 (), #*) (1) and p(u)~

as before using the density proportional to the
Uin place of 7)(us). We can then

calculate the mean and variance of fi| uﬁ” from the distribution proportional to
79 (g™ 75 Gy
pliu;”)

The filter and backwards filter re-sampling weights were used again for the
suboptimal O(N) version of our algorithm.

For both the filter and the backwards filter the initial step was sampled using
standard importance sampling as the target density is available in closed form
and using it rather than propagating the prior greatly improves the algorithm.
We also used the stratified sampling algorithm of Carpenter et al. (1999) in both
the filters and our new algorithm to reduce the Monte Carlo error of re-sampling.

Since we chose not to include the data from 1993, for this time step in each
of the above algorithms we proceed without the likelihood term g(y:|u).

Appendix B EM algorithm for parameter esti-
mates

For our athletics model we require estimates of the fixed likelihood parameters
0 = (0,&) which we intend to obtain from the EM algorithm of Dempster et al.
(1977). To do this we aim to maximise the likelihood p(y1.7|0) by iteratively
maximising

Q(016™) := E(log(p(Xor,yr.116) | y1:0,0)

to give (1),
Since the parameters # do not appear in the state density, the joint log
likelihood can be written as

T
log(p(zo.1,y1:7|0)) = log(p Zlog (@elwi1)) + D log(g(yilw:,6)).

We therefore have

Q(0]0™) = const + Z (log (y¢| X+, 0)) ‘ y1;T,9(n)>

Nconbt+zzlog yt\l‘t ) ))wt )

t=1 i=1

where (z;,w;)® are weighted particles approximating p(z|y..7, #(™). Thus we
only require particles from the marginal smoothing densities to estimate the
expectation so our new algorithm can be used directly. To estimate parameters
from the state density with the EM algorithm, pairs of particles approximating
p(z4_1, T |y1.7,0) are required which we note are available from our algorithm

as either (2.7, #%)) at time t — 1 or as (2), ") at time ¢.
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The EM algorithm therefore proceeds as follows. We start with an initial
estimate of our parameters, 6(0), Then, given our current estimate 9(”)7 we
use our algorithm to generate particles from each marginal smoothing density
p(z¢|y1.7, ™). Then we use numerical optimisation (such as the optim function
in R) to maximise Q(A|0™) to give us a new estimate §("*1). For our athletics
example we fitted a Kalman filter with the same state density but normal ob-
servations y; to estimate the state z1.p and took maximum likelihood estimates
of o and £ using the shifted data y; — Z; to initialise the EM algorithm.
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