Variation in the responses of litter and phylloplane fungi to UV-B radiation.

Moody, Sandra A. and Newsham, Kevin K. and Ayres, Peter G. and Paul, Nigel D. (1999) Variation in the responses of litter and phylloplane fungi to UV-B radiation. Mycological Research, 103 (11). pp. 1469-1477.

Full text not available from this repository.

Abstract

The development of 12 litter and seven phylloplane fungal species was examined from spore germination to colony sporulation across a series of environmentally relevant UV-B doses. For the litter fungi all aspects of fungal development and morphology studied were affected. On the basis of the responses of mycelial extension rate and spore germination to increasing UV-B, the 12 litter fungi were divided into two groups. Group A (Aspergillus fumigatus, Penicillium hordei, P. janczewskii, P. spinulosum and P. purpurogenum) were sensitive to UV-B, with the predicted effects of a 15% ozone depletion resulting in 22–44% reductions in spore germination. Mycelial extension rate on the agar surface was similarly affected, with reductions ranging from 15 to 25%. In contrast group B (Mucor hiemalis, Cladosporium cladosporioides, Leptosphaeria coniothyrium, Trichoderma viride, Ulocladium consortiale, the Verticillium state of Nectria inventa and Marasmius androsaceus) were relatively insensitive to UV-B, with significant, but small, reductions in mycelial extension rate (< 5%) and spore germination (0–22%). Spore production in response to UV-B in the litter species was very variable, reductions ranging from 5% to complete inhibition. Only P. hordei showed a significant increase in spore production in response to UV-B dose. In contrast, in all seven phylloplane species, spore germination was unaffected by increasing dose. Mycelial extension rate was slightly (2–12%), but significantly, inhibited by UV-B for the four phylloplane fungi tested. The contrasting responses of phylloplane and litter fungi to UV-B are discussed along with the implications for resource capture by competing fungal species and the possible effects of UV-B on decomposition processes.

Item Type:
Journal Article
Journal or Publication Title:
Mycological Research
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qh301
Subjects:
?? PLANT SCIENCEECOLOGY, EVOLUTION, BEHAVIOR AND SYSTEMATICSGENETICSBIOTECHNOLOGYQH301 BIOLOGY ??
ID Code:
8833
Deposited By:
Deposited On:
13 May 2008 15:27
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Sep 2023 00:35