Lancaster EPrints

Variation in the responses of litter and phylloplane fungi to UV-B radiation.

Moody, Sandra A. and Newsham, Kevin K. and Ayres, Peter G. and Paul, Nigel D. (1999) Variation in the responses of litter and phylloplane fungi to UV-B radiation. Mycological Research, 103 (11). pp. 1469-1477.

Full text not available from this repository.

Abstract

The development of 12 litter and seven phylloplane fungal species was examined from spore germination to colony sporulation across a series of environmentally relevant UV-B doses. For the litter fungi all aspects of fungal development and morphology studied were affected. On the basis of the responses of mycelial extension rate and spore germination to increasing UV-B, the 12 litter fungi were divided into two groups. Group A (Aspergillus fumigatus, Penicillium hordei, P. janczewskii, P. spinulosum and P. purpurogenum) were sensitive to UV-B, with the predicted effects of a 15% ozone depletion resulting in 22–44% reductions in spore germination. Mycelial extension rate on the agar surface was similarly affected, with reductions ranging from 15 to 25%. In contrast group B (Mucor hiemalis, Cladosporium cladosporioides, Leptosphaeria coniothyrium, Trichoderma viride, Ulocladium consortiale, the Verticillium state of Nectria inventa and Marasmius androsaceus) were relatively insensitive to UV-B, with significant, but small, reductions in mycelial extension rate (< 5%) and spore germination (0–22%). Spore production in response to UV-B in the litter species was very variable, reductions ranging from 5% to complete inhibition. Only P. hordei showed a significant increase in spore production in response to UV-B dose. In contrast, in all seven phylloplane species, spore germination was unaffected by increasing dose. Mycelial extension rate was slightly (2–12%), but significantly, inhibited by UV-B for the four phylloplane fungi tested. The contrasting responses of phylloplane and litter fungi to UV-B are discussed along with the implications for resource capture by competing fungal species and the possible effects of UV-B on decomposition processes.

Item Type: Article
Journal or Publication Title: Mycological Research
Subjects: Q Science > QH Natural history > QH301 Biology
Departments: Faculty of Arts & Social Sciences > Sociology
Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 8833
Deposited By: Dr Nigel Paul
Deposited On: 13 May 2008 16:27
Refereed?: Yes
Published?: Published
Last Modified: 26 Jul 2012 18:27
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/8833

Actions (login required)

View Item