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ABSTRACT

Bias due to input modelling is almost always assumed negligible and ignored. It is known that increasing
the amount of real-world data available for modelling input processes causes this form of bias to decrease
faster than the variance due to input uncertainty. However, this does not mean bias is irrelevant when
considering the error in a simulation performance measure caused by input modelling. In this paper we
present a response surface approach to bias estimation in simulation models along with a diagnostic test
for identifying, with controlled power, bias due to input modelling of a size that would be concerning to a
practitioner.

1 INTRODUCTION

Simulation models are driven by input distributions or processes. These input models are often built
using real-world observations of the system of interest and are therefore always approximate due to the
finite amount of available observations. This causes error in the output performance measures due to the
non-linear form of simulation models. The mean squared error (MSE) about the simulation output due
to input modelling can be broken down into variance, or “input uncertainty” (IU), and bias due to input
modelling.

Methods for quantifying input uncertainty in simulation models exist. Song and Nelson (2015) and
Cheng and Holland (1997) present methods for quantifying IU in simulation models with time homogeneous
input distributions; this was extended by Morgan et al. (2016) to piecewise-constant non-stationary Poisson
arrival processes. However, bias due to input modelling has, to date, been ignored, due to the fact that bias
reduces faster than input uncertainty as the quantity of observations increase. To get a full picture of the
total error in the simulation output due to input modelling it is not enough to consider IU alone. Bias can
be small and therefore hard to accurately estimate without large simulation effort. But this does not mean
bias is irrelevant. In context it may have a considerable impact on the error of the simulation response.
For this reason we present a new diagnostic test that not only gives an estimate of bias, but has controlled
power, 1−α2, of rejecting the null hypothesis if bias is more than a relevant threshold, γ . This may be
a subjective measure, a threshold of bias the decision makers would be concerned with, or it could be a
proportion of IU thought to make a considerable impact on the MSE. Using a hypothesis test to check for
the relevance of bias has not previously been considered; this approach could be adapted to many situations
in which bias results by taking a function of a random variable.
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Our approach is focused on the design of the following two-sided hypothesis test

H0 : Bias = 0 vs. H1 : Bias 6= 0

with type I error rate, or size, α1. The test will be set up to ensure controlled power, 1−α2, of rejecting
the null hypothesis when the absolute value of the true bias is greater than or equal to γ > 0. This method
ensures that if, on conclusion of the test, the bias is found not to be relevant then the simulation practitioner
can be confident that they do not need to consider bias further. Conversely, if a relevant bias is detected
then further steps should be taken to include it in the analysis of total model risk.

We begin this paper with a discussion of the current literature in §2. In §3 the formulation of the
diagnostic test is presented and an algorithm is given in §3.4. In §4.1 and §4.2 we evaluate the diagnostic
test by considering simulation models with quadratic and non-quadratic response surfaces, respectively,
and in §4.3 a realistic application of the method in a call centre setting is given. We conclude in §5.

2 BACKGROUND

As described in §1 we not only present a method for bias estimation, but also a diagnostic test with
controlled power of identifying whether a relevant bias is present in the simulation output. This idea is
common in the field of medical statistics for finding a relevant treatment effect with controlled power (Liu
1997). Although designing an experiment to satisfy certain power constraints is not a new idea, using it
to create a simulation diagnostic for assessing whether bias is relevant has never before been tried.

Within our diagnostic test we make use of the delta method, giving an estimate of bias based upon a
second-order Taylor Series approximation of the response function. Withers (1987) discussed this method
and applied it for the purpose of bias reduction. We apply the delta method to quantify the bias in the
output of a simulation model caused by input modelling; compared to other situations where a bias estimate
may be required this has the additional complication of simulation noise. Alternative methods for bias
quantification are the jackknife and the bootstrap. In the general case, without simulation noise, these
methods were found inferior to the delta method in terms of computational efficiency in all but a few
special cases where it could be said the jackknife method was comparable (Withers and Nadarajah 2014).
In the context of simulation there may be a strict simulation budget, so computational efficiency can be
very important.

To be able to use the delta approximation of bias we require evaluation of the Hessian matrix of
second-order partial derivatives of the mean simulation response; this is simple if a closed form response
function exists. But simulation models are usually unknown functions of their input parameters. Therefore
to estimate these partial derivatives we propose using a central composite experimental design (CCD) to fit
a response surface model as described by Montgomery (2013). This enables us to investigate the behaviour
of the simulation response close to the true input parameter values.

We now present the diagnostic test for assessing whether bias due to input modelling is a relevant error
about the simulation output.

3 DETECTING BIAS OF A RELEVANT SIZE

Bias due to input modelling is often small, requiring a large amount of simulation effort to accurately
estimate. Although small, in context this bias may make a considerable contribution to the error about the
simulation output. A practitioner may have in mind a value that they believe to be a worrying level of bias,
γ; this value is informed by the output of the nominal experiment. In this section we present a hypothesis
test that will detect, with controlled power, whether the absolute value of bias is greater than or equal to γ .
The method still requires an estimate of bias, but it is easier to test for bias than to estimate it accurately.
We therefore require less simulation effort.

Before we can present the details of the diagnostic test we first illustrate how to estimate bias due
to input modelling in the presence of simulation noise and give an estimate of the variance of this bias
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estimator; these values come together within the diagnostic test forming the test statistic. To estimate
bias we start by considering the delta method approximation. This requires evaluation of the second-order
partial derivatives of the response function (Nelson 2013). In reality, the simulation response is likely to be
an unknown function of the input parameters with unknown partial derivatives. We therefore estimate the
simulation response function by building a response surface model. Under the assumption that our response
surface is locally quadratic, we use a CCD experimental design to fit this model, allowing estimation of the
partial derivatives and therefore an estimate of the delta method approximation to bias, henceforth denoted
b̂.

Given this bias estimator, b̂, the key to our approach is in controlling the power of the hypothesis test so
we have a high probability of rejecting the null hypothesis when |b̂| ≥ γ is satisfied. This power is directly
controlled by the variance of the bias estimator which can be reduced in two ways: by increasing the number
of replications at each design point or by increasing the width of the experimental design. Note that there
are limitations to how far we can spread our experimental design before our quadratic approximation fails,
whereas, in theory, we could increase our simulation effort at each design point endlessly. We therefore
allow for a large number of replications at each design point and use the width of the experimental design
to ensure the power holds. We next present the components of our bias detection approach.

3.1 The Delta Method

Let there be L parametric input distributions to the simulation with true input parametersθθθ c = {θ c
1 ,θ

c
2 , . . . ,θ

c
k };

note that k ≥ L as some distributions may have multiple parameters. For some set of parameters θθθ , the
output of the j th replication of the simulation can be represented by

Yj(θθθ) = η(θθθ)+ ε j,

where η(θθθ) is the expected value of the simulation response and we assume ε j ∼ (0,σ2(θθθ)), for j = 1,2, . . . ,r,
representing the stochastic estimation error from replication to replication of the simulation.

For each of the L input distributions, l = 1,2, . . . ,L, we have ml real-world observations from which we
can find the maximum likelihood estimators (MLEs), θθθ mle = {θ mle

1 ,θ mle
2 . . . ,θ mle

k }, of the input parameters.
Given these estimators, bias due to input modelling, b, is defined as

b = E[η(θθθ mle)]−η(θθθ c). (1)

Since θθθ c is unknown, we approximate bias using the delta method approach as follows. Assuming the
expected simulation response, η(·), is twice continuously differentiable about θθθ c, it can be expanded as a
Taylor Series to second-order

η(θθθ mle)≈ η(θθθ c)+d(θθθ mle)T
∇η(θθθ c)+

1
2!

d(θθθ mle)T H(θθθ c)d(θθθ mle),

where d(θθθ mle) = (θθθ mle−θθθ c) is the difference between the MLEs and true parameters, ∇η(θθθ c) is the
(k×1) gradient vector of the response function and H(θθθ c) represents the (k×k) Hessian matrix of second
derivatives with respect to the k input parameters. Using this Taylor series expansion an estimate of bias
is given by

b = E[η(θθθ mle)]−η(θθθ c)

≈ 1
2

E[d(θθθ mle)T H(θθθ c)d(θθθ mle)],

as d(θθθ mle) = (θθθ mle−θθθ c)→ 0 in probability, due to the consistency of the MLEs. This gives, after some
matrix manipulation,

bapprox =
1
2

tr(Ω H(θθθ c)), (2)
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the delta method approximation of bias, where tr() denotes the trace of a matrix and Ω = Var(θθθ mle). When
the simulation response is an unknown function and the true input parameters θθθ c are unknown, we estimate
bapprox to give our estimate of bias

b̂ =
1
2

tr(Ω̂ Ĥ(θθθ mle)). (3)

For this we require estimates of both the covariance matrix of the input parameters and the Hessian matrix
of second-order partial derivatives. The estimated covariance matrix, Ω̂ = V̂ar(θθθ mle), will be obtained from
the real-world data and is from here forward assumed known. Estimating the Hessian is a little more tricky.
We chose a response surface modelling approach, quantifying the curvature of the response surface by
investigating the behaviour of the function close to θθθ mle.

3.2 Fitting a Response Surface Model

Central to our method is the further assumption that, locally to θθθ c, our response surface is quadratic and
can be approximated by

η(θθθ)≈ β0 +θθθ
T

βββ +
1
2

θθθ
TBBBθθθ ,

where βββ is the vector of coefficients belonging to the linear terms and BBB is the (k×k) matrix of coefficients
belonging to the interaction and quadratic terms. We will use a CCD centred at θθθ mle to fit the response
surface; see Figure 1 for an example of a 2-dimensional, k = 2, design. We chose to use a CCD because
they are well known and allow the estimation of higher-order regression coefficients which could be used to
check the fit of the response surface. Within the experimental design, let nF denote the number of factorial

Figure 1: A CCD design with dimension k = 2.

points, nA the number of axial points and nC the number replications of the centre point. The total number
of design points n is therefore n = nF + nA + nC = 2k + 2k+ nC, which depends on the number of input
parameters, k. As suggested by Montgomery (2013) we let there be multiple design points at the centre,
nC > 1, allowing more information collection at the most important design point θθθ mle. At each design
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point, i = 1,2, . . . ,n, we complete r replications of the simulation model. The total number of replications
is therefore n× r.

As seen in Figure 1, we position the factorial and axial points relative to the centre point, θθθ mle. Let ∆i
be the distance to a factorial point from the centre point in the ith direction, i = 1,2, . . . ,k, and similarly
let τi be the distance to the axial points. We set

∆i = a
√

Var(θ mle
i ) and τi = ω∆i = aω

√
Var(θ mle

i ),

where a is the number of standard deviations the factorial points are from the centre point in the ith direction.
Here ω is the scaled distance from the centre to the axial points; we set ω =

√
(
√

nFn−nF)/2 as suggested
by Dean and Voss (1999) for creating orthogonal designs, although we note here that due to the assumed
quadratic nature of the response surface, orthogonality does not hold.

Given the averaged output of the simulation, Ȳ (θ̂θθ i), at each design point i= 1,2, . . . ,n, we use regression
analysis to evaluate the estimates B̂BB, which in turn allows us to estimate the Hessian, where

Ĥ(θθθ mle) =


2B̂11 B̂12 . . . B̂1k

B̂21 2B̂22
...

. . .
B̂k1 2B̂kk

 ,
and therefore the bias, using b̂, as in Equation (3). The variance of this bias estimator, conditional on the
value of Ω̂, can be expanded as follows

Var(b̂) =Var
[

1
2

tr(Ω̂ Ĥ(θθθ mle))

]
=

1
4

Var

[
2

k

∑
i=1

B̂iiΩ̂ii +
k

∑
j=1

k

∑
i=1,i6= j

B̂i jΩ̂i j

]

=
k

∑
i=1

k

∑
j≥i

Var(B̂i j)Ω̂
2
i j +2

k

∑
i≤ j

k

∑
l≥m,i j<lm

Cov(B̂i j, B̂lm)Ω̂i jΩ̂lm,

requiring the calculation of Var(B̂BB), the variance-covariance matrix of regression coefficients belonging to
the interaction and quadratic terms. Given that we can estimate the stochastic estimation error, σ̂2, from
the nominal experiment, this matrix has special form

Var(B̂ii) =
σ̂2s

ra4Ω̂2
ii

, Var(B̂i j) =
σ̂2 f

ra4Ω̂iiΩ̂ j j
and Cov(B̂ii, B̂ j j) =

σ̂2g

ra4Ω̂iiΩ̂ j j
,

which we will exploit later when it comes to setting the width of the CCD in our hypothesis test. Here, s,
f and g are constants independent of a and Ω̂. Note that Cov(B̂i j, B̂lm) = 0 when i 6= j and l 6= m if we
use a CCD, therefore Var(b̂) has the form

Var(b̂) =
σ̂2

ra4

[
sk+ f

k

∑
i=1

k

∑
j>i

Ω̂2
i j

Ω̂iiΩ̂ j j
+gk(k−1)

]
. (4)

This variance estimator only accounts for the variability of the Hessian as Ω̂, the covariance matrix, and
σ̂2, the common variance about the simulation output, can both be estimated from the nominal experiment.
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At this point we have presented a method for estimating the bias about the simulation response caused
by input modelling and have also provided a variance estimate associated with it. We could stop here but
as was argued at the start of this section, testing for bias is easier than finding an accurate point estimate
of it and requires less simulation effort. We will now present our key idea, a diagnostic test for detecting
bias of relevant size γ with controlled power.

3.3 How to Detect a Relevant Bias

We begin by considering the following hypothesis test

H0 : b = 0 vs. H1 : b 6= 0

with test statistic

T =
b̂√

Var(b̂)
.

This hypothesis test asks the question: is bias significantly different from 0? We shall assume that

b̂−b√
Var(b̂)

∼ N(0,1) = Z. (5)

We want an experimental design where the following significance and power hold

P[T < Zα1/2,T > Z1−α1/2
∣∣b = 0] = α1 (6)

P[T < Zα1/2,T > Z1−α1/2
∣∣ |b| ≥ γ]≥ 1−α2 (7)

given a relevant bias, γ , set by the practitioner. We know that Equation (6) is guaranteed by (5). Constraint
(7) says that if bias is relevant we want controlled power, probability 1−α2 of rejecting the null hypothesis.
This holds when √

Var(b̂)≤ γ

Z1−α2−Zα1/2
. (8)

We can therefore control the power of our experiment using the variance about our bias estimator, Var(b̂).
Recall from Equation (4) that Var(b̂) is a function of the width of the CCD, set using a, and r, the number
of replications at each design point, along with Ω̂ and σ̂2, constants estimated in the nominal experiment.
As previously mentioned, due to the limitations on how far we can spread our design until our quadratic
assumption breaks down, we choose to fix r at some appropriately large number and find the value of a
where our power holds.

Returning to Equation (4) we see that a, the parameter controlling the width of the design, can be
factored out of Var(b̂). Thus our problem simplifies to finding a such that Constraint (7) holds which gives

a≥

[
σ̂2t2

rγ2

(
sk+ f

k

∑
i=1

k

∑
j>i

Ω̂2
i j

Ω̂iiΩ̂ j j
+gk(k−1)

)] 1
4

. (9)

Given a that satisfies Constraint (9) we can set up a CCD for use within the hypothesis test which will
detect with controlled power, 1−α2, a relevant bias, if the bias due to input modelling is truly at least γ .
We now present an algorithm for the diagnostic test above.
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3.4 Algorithm

Preliminary Step. Estimate θθθ c and Ω by θθθ mle and Ω̂. Run the nominal experiment to estimate σ2 by σ̂2.
Set γ , a bias we wish to detect, α1 the size of the test and 1−α2 the power.

1. Set r, the number of replications at each design point. To find a such that the power holds we
must first evaluate s, f and g. Initially let a = 1, noting that any positive value would suffice;
create the

(
n ×

(
1+2k+ k(k−1)

2

))
design matrix X, centred at (0,0, . . . ,0) for convenience with

∆i = a
√

Var(θ mle
i ) and τi = ω∆i, for i = 1,2, . . . ,k. Given X , evaluate s, f and g as follows

s = (XTX)−1
[ (k+1)(k+2)

2 , (k+1)(k+2)
2 ]

∆
4
k , f = (XTX)−1

[k+2,k+2]∆
2
1 ∆

2
2,

g = (XTX)−1
[ (k+1)(k+2)

2 −1, (k+1)(k+2)
2 ]

∆
2
k−1 ∆

2
k

and thus evaluate the value of a for which the power holds using Equation (9).
2. Re-build the design matrix X given a for which the power holds.
3. For i in 1 to n: Run r replications of the simulation at design point, θθθ i, corresponding to row i of

the design matrix; average over the r replications to find Ȳ (θθθ i).
4. Using the simulation output from the n design points, Ȳ (θθθ i) for i = 1,2, . . . ,n, extract B̂BB from

(XT X)−1XTȲYY (θθθ), giving B̂11, B̂12, . . . , B̂(k−1)k, B̂kk.
5. Evaluate Ĥ(θθθ mle); thus evaluate b̂ and Var(b̂).
6. Calculate the test statistic, T = b̂√

Var(b̂)
. If |T| ≥ Z1−α1/2 is satisfied reject the null hypothesis.

4 EMPIRICAL EVALUATION

In this section we will evaluate the diagnostic test presented in this paper by considering how well the
power holds: firstly in a system where the simulation response surface is truly quadratic, and then for a
tractable M/M/1/C queueing model. Finally we illustrate the use of the diagnostic test in a realistic call
centre setting to show how in practice the diagnostic test could be used, and suggest follow-up actions for
when a relevant bias is found.

4.1 A Truly Quadratic Model

Consider a quadratic response function. As an example, when k = 2 let the response function be given by

η(θθθ) = 2+3θ1 +θ2 +4θ1θ2 +θ
2
1 +2θ

2
2 . (10)

Here we let θ c
1 and θ c

2 be the true mean parameters from the following bivariate normal distribution

X1,X2 ∼N

(
(θ c

1 ,θ
c
2 )

T ,

(
ξ 2

1 0
0 ξ 2

2

))
with Cov(θ mle

1 ,θ mle
2 ) = 0 and Var(θ mle

i ) = ξ 2
i /m. Given this response function we know the Hessian

matrix exactly, therefore the delta approximation gives bapprox = ξ 2
1 /m+2ξ 2

2 /m which is exact since (10)
is quadratic.

Let us now assume that the response function, η(θθθ), is unknown to us. We wish to evaluate the
performance of the diagnostic test when the underlying response surface is truly quadratic. To do this we
investigate how well the power holds when the relevant bias, γ , is set equal to bapprox, the true bias in this
quadratic case. For this experiment let the power be set to 1−α2 = 0.8. We therefore wish to illustrate
our diagnostic test having probability 0.8 of rejecting the null hypothesis when γ = bapprox.
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Table 1: How power holds when γ = bapprox given a truly quadratic response function.

θ c
1 θ c

2 r m bapprox (= γ) Ê[b̂] V̂ar[b̂] p̂
5 2 1000 40 0.2125 0.2111 4.52×10−3 0.79

To show our diagnostic test has this desired power we run a macro-experiment, repeating the diagnostic
test G = 1000 times. An estimate of power will be given by the proportion of times the null hypothesis
is rejected; we denote this estimate p̂. In Table 1 p̂ is recorded along with Ê[b̂] and V̂ar[b̂], the sample
mean and variance of the bias estimates recorded over the G = 1000 macro-replications. Also reported is
bapprox, the true bias in this quadratic example, which we set equal to γ , the relevant bias.

To complete the diagnostic test we use the methods presented in §3.1 to §3.3. Given true input
parameters θ c

1 = 5 and θ c
2 = 2 with ξ 2

1 = 2 and ξ 2
2 = 1.5, m = 40 observations of X1 and X2 were generated

from the bivariate normal distribution and used to estimate the MLEs, θθθ mle, and Ω̂. We set the number
of replications to r = 1000 then built a response surface model using a CCD centred at θθθ mle with width
set using a = 0.283 selected to ensure a power of 1−α2 = 0.8. In each replication we ran the simulation
by adding N (0,0.01) noise to (10). Given the response surface model the bias estimator, b̂, and its
variance, Var(b̂), could be evaluated enabling the calculation of the test statistic, T, and the conclusion of
the diagnostic test. This process was repeated G = 1000 times to gain the results shown in Table 1.

In Table 1 we see that when the response function is truly quadratic, the diagnostic test holds power
very close to 1−α2 = 0.8 as desired. We also see that the average of the bias estimates, Ê[b̂], is very close
to the true bias.

We will now investigate how well the diagnostic test performs when the quadratic assumption does
not hold, by studying a tractable M/M/1/C queueing model.

4.2 M/M/1/C Queueing Model

Consider an M/M/1/C queueing model with true arrival rate θ c
1 , service rate θ c

2 and finite capacity C.
Here inter-arrival times of customers, Ai, follow an exponential distribution Ai ∼ Exp(θ c

1 ), as do the service
times, Si ∼ Exp(θ c

2 ), for i = 1,2, . . . ,m observations. For this queueing model the expected number of
customers in the system, E[Y |θθθ ], can be expressed in closed form

η(θθθ) = E[Y |θθθ ] = θ1

θ2−θ1
−

(C+1)θC+1
1

θ
C+1
2 −θ

C+1
1

. (11)

It is therefore possible to derive the second-order partial derivatives yielding H(θθθ c); this allows the evaluation
of bapprox, the delta method approximation of bias.

We shall now, for the purpose of the experiment, assume that the true response function, Equation (11),
is unknown. We want to evaluate the quality of our diagnostic test for detecting a relevant bias when the
response function is not truly quadratic. To do this we will look at both the M/M/1/10 and M/M/1/100
queueing models over a number of parameter settings to see how well the power, set at 1−α2 = 0.8, holds
when relevant bias, γ , is set equal to the delta approximation of bias bapprox. As before, to measure the
power we record the proportion of times the null hypothesis was rejected over G = 1000 macro-replications
of the diagnostic test, p̂. The results of the experiments are given in Table 2.

The diagnostic test was completed as follows. Instead of running a nominal experiment we used
the true input distributions to generate m observations from the arrival and service distributions, Ai,Si for
i= 1,2, . . . ,m, then estimated the MLEs, θθθ mle, and the covariance matrix, Ω̂; we know that Cov(θ mle

1 ,θ mle
2 ) =

0. Also, rather than directly simulating the M/M/1/C queue we add N (0,0.05) noise to (11) for each
replication. The number of replications to be run at each design point was set to r = 500 allowing the
identification of the value of a required for the power to hold at 1−α2 = 0.8. A CCD design, centred
at θθθ mle, was then created using a to set the distance to the design points. Replications of the simulation
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Table 2: How power holds when γ = bapprox given an M/M/1/C queueing model.

M/M/1/10 M/M/1/100
Exp θ c

1
θ c

2
m bapprox Ê[b̂] p̂ bapprox Ê[b̂] p̂

1 0.25 40 0.019 0.024 (4.98×10−4) 0.766 0.019 0.025 (6.26×10−4) 0.787
2 0.25 100 0.007 0.008 (1.25×10−4) 0.79 0.007 0.009 (1.30×10−4) 0.789
3 0.50 40 0.134 0.174 (3.86×10−3) 0.704 0.150 0.855 (1.73×10−1) 0.659
4 0.50 100 0.053 0.063 (1.07×10−3) 0.775 0.060 0.085 (2.98×10−3) 0.741
5 0.50 1000 0.005 0.006 (6.77×10−5) 0.818 0.006 0.007 (7.80×10−5) 0.822
6 0.83 100 0.164 0.114 (3.09×10−3) 0.611 3.300 6.623 (1.24×10) 0.611
7 0.83 1000 0.016 0.015 (1.98×10−4) 0.712 0.330 0.570 (2.64×10−2) 0.713
8 0.83 5000 0.003 0.003 (3.82×10−5) 0.777 0.066 0.071 (1.08×10−3) 0.765

were run at each design point and the response surface fitted allowing evaluation of Ĥ(θθθ mle), the estimated
Hessian matrix. We were therefore able to estimate the delta approximation of bias, b̂, and its variance,
Var[b̂], allowing us to calculate the test statistic and conclude the hypothesis test. This process was repeated
over G = 1000 macro-replications giving p̂ and Ê[b̂], the average of the bias estimates, both are recorded
in Table 2.

In Table 2, we see that across all experiments, whether C = 10 or 100, as the amount of input data is
increased p̂ gets closer to the desired power 1−α2 = 0.8 and the average bias estimate Ê[b̂] gets closer to
the delta approximation bapprox. Both parameter estimates improve due to the the increase in information
which sees θθθ mle get closer to θθθ c, the true input parameters. This is important in our method as, ideally,
we would centre our CCD at θθθ c to find the curvature of the response function at that point, H(θθθ c).

Experiments 6, 7 and 8 look at the system under high traffic intensity, ρ = θ c
1/θ c

2 = 0.833. In Experiment
6, where m = 40, we saw a reasonably high proportion of instances (≈ 10%) where the estimated traffic
intensity exceeded 1, i.e. ρ = θ mle

1 /θ mle
2 > 1. When this occurs the number of people in the queue will

increase up to capacity and remain around that level. The behaviour of the response surface in these
cases is not quadratic and therefore the delta method does not perform well which is reflected in the
average bias estimate, Ê[b̂], and power, p̂. One way to fix this problem is to collect more data, m, until
θ mle

1 /θ mle
2 < 1 consistently, as we did in Experiments 7 and 8 where the bias estimate Ê[b̂] gets closer to

the delta approximation.
This problem is not unique to bias estimation: it will occur in any simulation model with finite capacity

and traffic intensity close to 1. If the amount of data available is small and we cannot accurately estimate
the input parameters it is easy to conclude that a system will become saturated when in reality it might not.

In experiments 6, 7 and 8, where a high traffic intensity was investigated, we see the effect of the shape
of the true response surface on how well the power holds. The shape of the response surface is driven by
the capacity, C. This directly links to how closely θθθ c can be estimated by θθθ mle. In Figure 3 we see that
for the M/M/1/100 queue, with higher capacity, there is a more dramatic change in the response surface
for small changes of θ1 and θ2 than there is for the lower capacity, M/M/1/10, queue seen in Figure 2.
Close to ρ = 1, where the response surface changes more dramatically, more observations, m, are needed to
ensure we are estimating the Hessian, H(θθθ c), close enough to θθθ c to capture the true curvature at that point.
This could also be affected by the variability of the MLEs; when the variance is large even if we have θθθ mle

close to θθθ c on average, we could see large variability in the response from replication to replication. In the
higher capacity system small changes in the inputs have a larger effect on the simulation output which is
used to fit the response surface and therefore estimate the Hessian. For the lower capacity queueing model
the distance between θθθ mle and θθθ c has a less pronounced effect on the simulation response as the response
surface changes.
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Figure 2: M/M/1/10 Figure 3: M/M/1/100

We also note that for the M/M/1/100 queueing model, in Experiments 3, 6 and 7 p̂ is lower than
the desired power of 0.8 but the average of the bias estimates in these cases, Ê[b̂], is higher than bapprox.
Intuitively, this seems contradictory as we would expect to reject the null hypothesis more often if bias is
much more extreme than γ = bapprox. In these cases we also see Ê[b̂] has large standard error. Investigating
the test statistics over the G = 1000 macro replications, using Q-Q plots, illustrated that these were the cases
where the distribution of the test statistics was far from the assumed normal distribution. In Experiments
4, 5 and 8 given more input data the normality assumption held much better. For the M/M/1/10 queueing
model the normality assumption held well in all cases. This again illustrates the importance of centring
the CCD close to θθθ c, especially when there is a sharp change in the shape of the response surface.

As an aside we also considered the trade off between the variables a and r, used to set the width
of the experimental design. To improve the quadratic assumption it is tempting to shrink a and increase
the number of replications at each design point to ensure the power still holds. This is very expensive
computationally; to halve a, and thus the width of the design, in the experiments above we would have had
to increase the number of replications at each design point to r = 8000. Looking at the experiments above
we saw little improvement on the estimated power p̂ from halving a. This is because shrinking the width
of the design would only be helpful if the CCD was centred very close to θθθ c; no amount of computational
effort will improve our estimate of Ĥ(θθθ mle) if the design is centred at θθθ mle far from θθθ c.

4.3 A Realistic Example - NHS 111 Healthcare Call Centre

We will now illustrate our bias detection diagnostic on the simulation of a real-world system with a non-
stationary input process. The nominal experiment is based on observations of an NHS111 healthcare call
centre simulated using an M(t)/G/S(t) queueing model with a piecewise-constant Poisson arrival process.
Using the methods discussed by Morgan et al. (2016) we were able to quantify the total IU about the
expected waiting time of callers, E(WTime). The system discussed is staffed to meet the NHS target level
of service, P(Wait > 1 min)< 0.05; in the nominal experiment an estimate of the expected waiting time
of customers was found to be E(WTime) = 0.0674 minutes. In the following tests we use the value of IU,
defined to be Var[η(θθθ mle)], to guide our choice of γ . Let γ =

√
υ× IU where 0 < υ < 1. This gives us

the threshold bias thought to have an important effect on the MSE. Estimates of θθθ c,Ω and σ2, given by
θθθ mle,Ω̂ and σ̂2, were collected within the nominal experiment. In practice the estimate of the simulation
estimation error, σ̂2, could have been used here to aid the choice of r, the number of replications at each
design point. For example, if we had a noisy simulation a large value of r would be required. In the
following experiments r = 500 replications were performed at each design point.

Given observations of the NHS111 healthcare call centre system we conducted two experiments with
different levels of input data. We denote by m1 the number of days of observations of the arrival process
and m2 the number of service time observations. The desired power was set equal to 1−α2 = 0.8 and the
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Table 3: Results of the bias detection test for an NHS 111 healthcare call centre when considering expected
waiting time of callers, E(WTime).

Exp m1 m2 IU (Var[η(θθθ c)]) γ (υ = 0.3) b̂ Var[b̂] p-value
1 10 20068 4.336×10−5 3.61×10−3 6.03×10−3 1.638−6 1.23×10−6

2 26 52711 1.907×10−5 2.39×10−3 4.04×10−3 7.215×10−7 9.97×10−7

size to α1 = 0.05. For these experiments the relevant bias, γ , was set using υ = 0.3, meaning we consider
bias squared higher than 0.3 times the value of IU to be concerning.

From Table 3 we see that in Experiment 1, where we considered a smaller number of observations of
the arrival process, m1 =10 days, we have sufficient evidence to reject the null hypothesis as the p-value is
less than α1 = 0.05. We can therefore conclude that the amount of bias due to input modelling about the
expected waiting time of callers, E(WTime), is significant. In addition, using the output of the diagnostic

test we can calculate a confidence interval about our estimate of bias as b̂±Z1−α1

√
Var(b̂). This allows

us to make a statement about how b̂ compares to the relevant bias γ . In Experiment 1 a 90% confidence
interval about b̂ is given by (3.92×10−3,8.14×10−3). This does not contain γ , the relevant bias, and we
can therefore conclude at the 90% significance level that bias due to input modelling is more than γ in
this system. In Experiment 2 we observed m1 = 26 days of observations of the arrival process which saw
a reduction in IU and therefore γ , but again we were able to reject the null. A 90% confidence interval
about b̂ is given by (2.64×10−3,5.44×10−3) which again does not contain γ . In both cases the practitioner
can be confident that the level of bias due to input modelling is high enough for them to be concerned.

When the bias is relevant, as is the case here, it should be taken into account in assessing the total
uncertainty about the simulation output due to input modelling. This will allow more informed decisions
to be made. At this point it could be considered sensible to spend more computational effort running the
delta approximation alone to obtain a more accurate estimate of the bias due to input modelling.

The practitioner may, alternatively, wish to reduce bias to a level that does not concern them by
collecting more input data. Changing the number of intervals describing the piecewise-constant Poisson
arrival process may also have an affect on the bias due to input modelling. Morgan et al. (2016) used
change point analysis as a pre-processing step in their IU quantification method. This aided the choice of
arrival intervals but did not guarantee an arrival function that represented the true arrival process well or
that had minimal error due to input modelling. Our method now provides the bias estimate needed to be
able to compare two arrival functions in terms of the MSE due to input modelling.

5 CONCLUSION

This paper presents a diagnostic test with controlled power of detecting bias due to input modelling of a
relevant size in simulation models.

Within the diagnostic test the experimental design is centred at θθθ mle our best estimate of the true input
parameters, θθθ c. When the response surface, at the point θθθ c, is sensitive to the input parameters we found
more input data was required to estimate the delta approximation of bias well and retain the desired power.
Although the problem here seems to be the discrepancy between θθθ mle and θθθ c it could be that the quadratic
assumption is not satisfactory; this assumption is always approximate with small samples, in which case
a higher-order approximation should be used.

Although we used the CCD within our method we acknowledge that we are restricted to moderate
dimensionality at this point and that fractional factorial designs could be exploited here to improve scalability
and computational efficiency of the test. We also note that many open questions still remain in this area,
for example, how large should we set r the number of replications at each design point to control the
variability of our bias estimator? Or how do we optimally set the experimental design parameters ω and
nC? Even given these follow-up questions we have shown that for sensible, but arbitrary, choice of design
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parameters our method is a good step forward to being able to detect when bias due to input modelling is
of a concerning size.
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