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[1] Appropriate regularizations of geophysical inverse problems and joint inversion of
different data types improve geophysical models and increase their usefulness in
hydrogeological studies. We have developed an efficient method to calculate stochastic
regularization operators for given geostatistical models. The method, which combines
circulant embedding and the diagonalization theorem of circulant matrices, is applicable
for stationary geostatistical models when the grid discretization, in each spatial direction,
is uniform in the volume of interest. We also used a structural approach to jointly invert
cross-hole electrical resistance and ground-penetrating radar traveltime data in three
dimensions. The two models are coupled by assuming, at all points, that the cross product
of the gradients of the two models is zero. No petrophysical relationship between
electrical conductivity and relative permittivity is assumed but is instead obtained as a
by-product of the inversion. The approach has been applied to data collected in a U.K.
sandstone aquifer in order to improve characterization of the vadose zone
hydrostratigraphy. By analyzing scatterplots of electrical conductivity versus relative
permittivity together with petrophysical models a zonation could be obtained with
corresponding estimates of the electrical formation factor, the water content, and the
effective grain radius of the sediments. The approach provides greater insight into the
hydrogeological characteristics of the subsurface than by using conventional geophysical
inversion methods.
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1. Introduction

[2] Combinations of cross-hole tomographic techniques
(e.g., ground-penetrating radar (GPR), electrical resistance
tomography (ERT), and seismics) are increasingly used in
hydrogeological site characterization [e.g., Hubbard et al.,
2001; Binley et al., 2002a, 2002b; Tronicke et al., 2004]. In
order to produce a hydrogeological model, different geo-
physical data types are typically inverted individually and,
at a later stage, combined with other geophysical models
and available hydrogeological data [e.g., Hubbard et al.,
2001].

[3] Geophysical inverse problems are often regularized
because of noise in the data and the mixed determined
character of most inverse problems [e.g., Menke, 1984]. In
this paper, we define regularization operators that are
consistent with available borehole data and geological
understanding; thereby, constructing models of physical
properties that are more closely related to the underlying
geology compared with models obtained from inversion
schemes that use traditional regularization operators, such
as damping [Marquardt, 1970] or Tikhonov regularization
[Tikhonov and Arsenin, 1977]. We show that when the grid
discretization is uniform in each spatial direction, stochastic
regularization operators can be calculated efficiently for a
given stationary geostatistical model by combining circulant
embedding of the model covariance matrix [e.g., Dietrich
and Newsam, 1997] and the diagonalization theorem of
circulant matrices [e.g., Golub and Van Loan, 1996].
[4] Another feature of geophysical inverse problems is

that the resolution of the resulting models varies throughout
the model and that the patterns of resolution variations
are different for different geophysical techniques [e.g.,
Day-Lewis et al., 2005]. For example, models based on
cross-hole ERT where the electrical resistance is measured
by a transmission of currents implanted at the ground
surface or in boreholes [e.g., LaBrecque et al., 1996] have
the highest resolution close to the boreholes. On the other
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hand, models that are based on inversion of multioffset
gather (MOG) GPR traveltimes that represent the times it
take for the first arrivals of high-frequency electromagnetic
pulses transmitted from different depths in one borehole to
travel to different depths in other boreholes [e.g., Peterson,
2001] have the highest resolution in the central part of the
tomogram [e.g., Day-Lewis et al., 2005]. It should therefore
be possible to improve the resulting models by jointly
inverting cross-hole ERT and GPR data.
[5] Joint inversion of geophysical data has received

considerable attention within the geophysical community.
Geophysical data that are sensitive to the same physical
quantity, for example, magnetotelluric and DC resistivity
data [Vozoff and Jupp, 1975], can be simultaneously
inverted by minimizing an objective function that includes
the data misfit of the different data types and the most
difficult task is how to determine the relative weighting of
the different data types [Lines et al., 1988]. When collecting
data that are sensitive to different physical quantities, it
might be possible to perform joint inversion by mildly
constraining the solutions around an assumed petrophysical
relationship, for example, a ratio of P and S wave trav-
eltimes [e.g., Tryggvason et al., 2002]. However, petrophys-
ical links between geophysical properties, at a specific site,
are in many cases unknown as they are affected by a
multitude of rock properties and associated state variables
[e.g., Mavko et al., 1998; Schön, 1996]. The problem is
further complicated by measurement errors and the resolu-
tion loss that is inherent when solving inverse problems
[e.g., Day-Lewis and Lane, 2004; Day-Lewis et al., 2005;
Linde et al., 2006].
[6] One approach to jointly invert geophysical data when

the site-specific petrophysical relationship is unknown, such
as for gravity and seismic data, is to assume interfaces (i.e.,
geological boundaries) at the same locations, but different
and unlinked model parameterizations within each model
block [Lines et al., 1988]. Such an approach is appropriate
when inverting for layered models. However, most inver-
sion algorithms use a fine model discretization where
unique solutions are found by imposing smoothness con-
straints [e.g., Constable et al., 1987], damping constraints
[e.g., Marquardt, 1970], or a priori information [e.g., Musil
et al., 2003]; therefore the method proposed by Lines et al.
[1988] is often not applicable.
[7] An approach that is better suited to overparameterized

problems is the structural approach [Haber and Oldenburg,
1997; Gallardo and Meju, 2003, 2004; Tryggvason and
Linde, 2006]. The idea behind the structural approach is that
geophysical properties in the near surface are dependent on
the same underlying geology and pore water. It is therefore
reasonable to assume that changes in different physical
properties, at a given position, occur in the same direction.
Gallardo and Meju [2003] inverted surface based DC
resistivity and refraction seismic data in two dimensions
under the constraint that the cross products of the gradients
of the model vectors, termed the cross-gradients function by
Gallardo and Meju [2003], are zero. We adopt a similar
approach to simultaneously invert cross-hole ERT and
MOG GPR traveltime data in three dimensions. The prin-
ciple differences between our inversion method and the one
presented by Gallardo and Meju [2003, 2004] are the
different geophysical methods used, that we perform

three-dimensional inversion instead of two-dimensional
inversion, that the cross-gradients function provides soft
constraints and not hard constraints, that our regularization
operators are based on geostatistical models and that the
weight given to the regularization term vary during the
inversion process, and that we use an iterative equation
solver compared with a direct solver that makes it possible
to solve realistic three-dimensional problems.
[8] The stochastic regularization operators and our im-

plementation of the structural approach to joint inversion
were tested with data collected in unsaturated Sherwood
Sandstone collected close to Eggborough, North Yorkshire,
UK [e.g., Binley et al., 2002a; West et al., 2003; Cassiani
and Binley, 2005; Binley et al., 2005].
[9] This paper has the following goals: (1) to compare

results from individual inversions based on stochastic reg-
ularization with models obtained from inversion with reg-
ularization based on traditional smoothness constraints;
(2) to demonstrate that joint inversion of cross-hole ERT
andMOGGPR traveltime data improves the final tomograms,
and hence aquifer zonation, compared with tomograms
obtained from individual inversions [e.g., Tronicke et al.,
2004]; and (3) finally to use petrophysical models to estimate
possible values of the electrical formation factor, water
content, and effective grain radius within each zone.

2. Inversion Method

2.1. Formulation of the Inverse Problem

[10] Geophysical inverse problems are often nonlinear
and significantly more model parameters are typically used
than the number of model parameters that can be con-
strained by the geophysical data only. Nonlinear inverse
problems are commonly solved iteratively where the inverse
problem is linearized around the model of the previous
iteration and where the sensitivities of the model parameters
with respect to the data (i.e., the Jacobian or sensitivity
matrix) are used to find an updated model with improved
data fit. Unique solutions are found by regularizing the
inverse problem, which is typically achieved by assuming
that model parameters are strongly correlated in space or
that the final model is close to an a priori model, which is
the approach chosen in this work. General literature on
classical discrete geophysical inverse theory includes the
work by Menke [1984] and Parker [1994]. The inversion
method presented in this paper is developed in this tradition.
[11] A different approach to the geophysical inverse

problem is to search for all possible models that honor the
data and available a priori information. These problems
are typically solved with Monte Carlo methods [e.g.,
Mosegaard and Tarantola, 1995], but they are still compu-
tationally infeasible for the application considered here and
many other applications of interest.
[12] Cokriging has been an influential method to solve

hydrological inverse problems where the relationship be-
tween the model parameters and the data (i.e., the forward
problem) is linearized [Kitanidis and Vomvoris, 1983].
Weakly nonlinear problems can be solved with an iterative
procedure that solves the cokriging equations at each
iteration [Yeh et al., 1996] and applications to geophysics
have been reported [Yeh et al., 2002].
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[13] Our inversion method is a regularized least squares
algorithm that is closely related to Occam’s inversion
[Constable et al., 1987]. In contrast to Occam’s inversion,
we define the regularization operator based on a stochastic
model [Maurer et al., 1998]. We estimate the stochastic
models by using EM conductivity logs collected in the
boreholes for the ERT inversion and zero-offset profiles
(ZOP) of GPR traveltimes where the transmitting and
receiving antennas are located at the same depth for the
GPR inversion. In addition, we look for geophysical models
that are structurally similar by penalizing deviations from
structural similarity, which we quantify with the cross-
gradients function [Gallardo and Meju, 2003]. At each
iteration, we solve the linearized inverse problem with the
iterative conjugate gradient algorithm LSQR [Paige and
Saunders, 1982].

2.2. Inversion of ERT Data

[14] The following system of equations describing the
ERT inversion is to be satisfied in a least squares sense,
where the upper terms in the concatenated system of
equations correspond to the expected data fit for the updated
model obtained by linearization around the previous model
and the lower terms correspond to regularization that avoids
excessive and uncorrelated variations between neighboring
model parameters [e.g., Paige and Saunders, 1982; Menke,
1984; Constable et al., 1987; LaBrecque et al., 1996;
Siripunvaraporn and Egbert, 2000]:

esp Cs
d

� ��0:5
Jsp

Cs
m

� ��0:5

" #
ms
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h i

¼
esp Cs

d

� ��0:5
ds � Fs ms
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� �
þ Jspm
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� �
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� ��0:5
ms

apriori

2
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5; ð1Þ

where mp+1
s , mp

s, and mapriori
s are the model vectors at the

present iteration (i.e., iteration p + 1), the previous
iteration (i.e., iteration p), and the a priori model,
respectively. Each model vector consists of Ms elements
of the natural logarithm of electrical conductivity (S/m); ds

is the data vector of Ns observed resistances (Ohm); Jp
s

is the Jacobian matrix with elements Jp
s (i,j) =

@dsðiÞ
@msðjÞ; Cd

s

is the corresponding data covariance matrix, which is
diagonal under the assumption that data errors are uncorre-
lated, and may be estimated by performing reciprocal
measurements [e.g., LaBrecque et al., 1996]; Fs(mp

s)
generates a vector of the computed resistances (i.e., the
forward response); ep

s is a trade-off parameter between
data fit and model structure; and Cm

s is the model
covariance matrix. For each iteration, a line search [e.g.,
Siripunvaraporn and Egbert, 2000] is performed to find
the value of ep

s that minimizes the data misfit. The
inversion process terminates when the target data misfit is
reached or when no additional improvement in data misfit
is obtained from one iteration to the next.
[15] Our numerical solution of the forward problem,

Fs(mp
s) , uses the Lancaster University 3D finite element

code R3 [Binley, 2005]. Uniform resistivity is assigned
within each linear brick type element in the finite element
mesh. The model computes the voltage field resulting from
point source current injection at each current electrode

location. Computation of the voltage measurement for each
four electrode configuration is then achieved using the
principle of superposition. The algorithm utilizes a diago-
nally scaled conjugate gradient linear equation solver to
minimize computer storage requirement. Calculation of the
Jacobian, Jp

s, is computed using the principle of reciprocity
[Geselowitz, 1971].

2.3. Inversion of MOG GPR Traveltime Data

[16] A corresponding system of equations describing the
traveltime inversion is to be satisfied in a least squares
sense:
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where mp+1
s , mp

s , and mapriori
s are the model vectors of the

present iteration, the previous iteration, and the a priori
model, respectively. Each model vector consists of Ms

elements of the slowness s (s/m); ds is the data vector of
Ns observed traveltimes (s); Jp

s is the Jacobian matrix

with elements Jp
s (i, j) =

@ds ið Þ
@ms jð Þ; Cd

s is the corresponding

data covariance matrix and its accurate estimation is an
open question, but its entries should be chosen larger than
the errors associated with the picking of the first arrivals
to incorporate errors associated with mislocations of
boreholes and simplified forward models; Fp

s(mp
s) are the

computed traveltimes (i.e., the forward response); ep
s is a

trade-off parameter between data fit and model structure
that is found in the same way as described for the ERT
inversion (see section 2.2); and Cm

s is the model
covariance matrix.
[17] The forward modeling, Fp

s(mp
s), and computation of

the Jacobian, Jp
s , are based on the nonlinear traveltime

tomography algorithm PStomo_eq [Tryggvason et al.,
2002]. The first arrival traveltimes are computed using the
finite difference (FD) algorithm time3d of Podvin and
Lecomte [1991]. This algorithm is based on the first-order
approximation to the Eikonal equation. Podvin and Lecomte
[1991] claimed that time3d could handle velocity contrasts
as high as 1:10, which is sufficient for all MOG GPR
applications. Ray tracing is performed by a posteriori back
propagation perpendicular to the wavefronts from the
receivers to the transmitters [Hole, 1992]. The forward
response represents the first arrivals of a given model
regardless of if the first arrivals correspond to a direct,
refracted, or reflected wave. The inverse problem is non-
linear because the raypaths depend on the slowness struc-
ture. Thus, if the slowness structure is changed, the raypaths
will change as well. Therefore new raypaths must be
computed after each iteration. Assuming the slowness
structure can be represented by cells of constant slowness,
the elements in the Jacobian, Jp

s , are simply the ray length
in each cell.

2.4. Joint Inversion of ERT and MOG GPR
Traveltimes

[18] We jointly invert the ERT and GPR traveltime data
by enforcing structural similarity quantified by the cross-
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gradients function. The cross-gradients function at the
previous iteration is defined as [Gallardo and Meju,
2003]:

tp i; j; kð Þ ¼ rms
p i; j; kð Þ � rms

p i; j; kð Þ; ð3Þ

where the indices i, j, and k define the model parameters
(i.e., the logarithm of electrical conductivity and radar
slowness, respectively) in the x, y, and z directions,
respectively. Both mp

s and mp
s are stored as vectors, and

the indices in the parentheses indicate the elements to
operate upon, whereas the actual location in the model
vectors are dependent on the scheme used to store the mesh.
If all three components of the cross-gradients function is
zero for a given element, it implies that the gradients of the
two models point in the same or opposite direction, or that
the gradients of one of the models are zero. The magnitude
of the cross-gradients function is unchanged if calculated for
reciprocal model properties (e.g., electrical conductivity or
electrical resistivity, slowness or velocity). It is recom-
mended to invert for the logarithm of the geophysical
properties that vary widely in space (such as electrical
conductivity) to ensure that changes in regions of high and
low values of the geophysical property of interest are given
equal importance. The discretized formulation of the cross-
gradients function using a forward difference scheme is

txp i; j; kð Þ ¼ 1

DyDz
ðmsði; jþ 1; kÞ � msði; j; kÞÞðmsði; j; k þ 1Þ

�msði; j; kÞÞ � 1

DyDz
ðmsði; j; k þ 1Þ

�msði; j; kÞÞðmsði; jþ 1; kÞ � msði; j; kÞÞ; ð4Þ

typ i; j; kð Þ ¼ 1

DxDz
ðmsði; j; k þ 1Þ � msði; j; kÞÞðmsðiþ 1; j; kÞ

�ms i; j; kð ÞÞ � 1

DxDz
ðmsðiþ 1; j; kÞ

�msði; j; kÞÞðmsði; j; k þ 1Þ � msði; j; kÞÞ; ð5Þ

tzp i; j; kð Þ ¼ 1

DxDy
ms iþ 1; j; kð Þ � ms i; j; kð Þð Þðmsði; jþ 1; kÞ

�ms i; j; kð ÞÞ � 1

DxDy
msði; jþ 1; kð Þ

�ms i; j; kð ÞÞ ms iþ 1; j; kð Þ � ms i; j; kð Þð Þ; ð6Þ

where the superscripts indicate the different components
of the cross-gradients function and Dx, Dy and Dz are
the model discretization distances. The elements of the
cross-gradients function (see equations (4)–(6)) are stored
into the three vectors tp

x, tp
y, and tp

z . The cross-gradients
function for the present iteration is estimated by a first-
order Taylor expansion around the cross-gradients func-
tion at the previous iteration (note that Gallardo and
Meju [2004] linearize around their a priori models),
shown here for

txpþ1 ffi txp þ Bx
p

ms
pþ1 �ms

p

ms
pþ1 �ms

p

 �
; ð7Þ

where Bp
x is the Jacobian of the cross-gradients function

in the x direction with regards to the model parameters.
Every row of Bp

x has six nonzero elements that can easily
be derived from equation (4) (see also equation (9) of
Gallardo and Meju [2004]).
[19] In order to enforce structural similarity betweenmp+1

s

and mp +1
s , equations (1)–(7) are combined to a system

of equations to minimize in a least squares sense similarly
to equations (1) and (2):
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and l is a large and constant weighting parameter that
ensures that the cross-gradients function of the resulting
models is close to zero. The upper terms in equation (8)
represent the data fit for both the ERT and GPR data, the
second term represents the regularization terms for the two
data types, and the last three terms represent the cross-
gradients constraints in the x, y, and z spatial directions,
respectively. Note that it would be possible to incorporate
known linear correlations between different geophysical
model parameters by adding nonzero values in the off-
diagonal blocks of Cm

�0.5. Equation (8) (as well as equations
(1) and (2) for the individual inversions) is solved with the
LSQR algorithm [Paige and Saunders, 1982]. LSQR is a
conjugate gradient method where the normal equations are
not formed, thereby, preserving the condition number of
equation (8). A preconditioner is applied that ensures that
the norm of each column of the matrix on the left-hand side
of equation (8) is unity, which avoids unnecessary ill
conditioning [Paige and Saunders, 1982]. An iterative
solution of equation (8) is suitable because we solve
three-dimensional problems where the dimension of equa-
tion (8) is large and computer storage becomes a limiting
factor. The sparseness of equation (8) is utilized by using
sparse solvers.
[20] In a first stage, we perform separate inversions of the

ERT and the GPR traveltime data (see sections 2.2 and 2.3)
to determine standard deviations of the data for which
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solutions with a weighted RMS of 1 can be found. This
procedure ensures an even weighting of the two data types.
The individual inversions also serve evaluation purposes. If
no jointly inverted models (see equation (8)) with weighted
RMS values of 1 or lower can be obtained, it suggests that
the constraints based on the cross-gradients function are
physically invalid for that application.

2.5. Petrophysical Basis for the Joint Inversion Method

[21] It is possible to perform joint inversion with cross-
gradients constraints by assuming that the geometry and
properties of lithological units control the model parameters
[e.g., Gallardo and Meju, 2004]. However, this assumption
is not valid in many applications and we argue that it is
necessary to use petrophysical models to identify the
controlling rock properties and state variables influencing
the model parameters and, at a later stage, define under what
conditions the joint inversion scheme is likely to be valid.
[22] We consider a partially saturated sand/siltstone and

the expected relationship between relative permittivity and
electrical conductivity in such a system. This was done in
order to understand under what conditions joint inversion of
cross-hole ERT and GPR traveltimes with cross-gradients
constraints are valid when applied to unsaturated sandstone
and to provide a petrophysical basis to evaluate the resulting
tomograms. The radar slowness, s, and the effective
relative permittivity, keff, are for low-loss materials related
as keff = s2c2, where c is 3 � 108 m/s. We used the inverse
of the electrical formation factor instead of porosity when
deriving the volume averaging equations (see Appendix A).
The inverse of the electrical formation factor is a good
estimate of the effective porosity [e.g., Revil and Cathles,
1999], i.e., it is a relevant parameter to model transport
properties through the connected pore volume. The effective
relative permittivity, keff, is given by

keff ¼
1

F
Snwkw þ 1� Snw

� �
ka þ F � 1ð Þks

� �
; ð10Þ

where kw, ka, and ks are the relative permittivities of water,
air, and the minerals forming the rock matrix, respectively;
F is the electrical formation factor, Sw is the water
saturation, and n is Archie’s second exponent [e.g., Waxman
and Smits, 1968]. In the following, we adopt the common
practice of assuming that kw, ka, and ks are constant within
the volume of interest.
[23] The electrical conductivity of the air and the mineral

grains can be safely neglected, but surface conduction in the
electrical double layer coating the grains can be significant
[e.g., Revil and Glover, 1998]. The resulting equation for
the effective electrical conductivity, seff (S/m) is

seff ¼
1

F
Snwsw þ F � 1ð Þss

� �
; ð11Þ

where sw (S/m) is the electrical conductivity of the pore
water and ss (S/m) is the surface conduction. For a granular
material with uniform grain radius, R (m), the surface
conductivity entering equation (11) is

ss ¼
3

R

X
s
; ð12Þ

where Ss (S) is called the specific surface conductivity and
it is fairly constant in relation to R [e.g., Leroy and Revil,
2004]. For nonuniform grain distributions it is necessary to
replace R with an effective grain radius, Reff (m), e.g., by
taking the harmonic mean of the grain size distribution
weighted by their relative fractions.
[24] The petrophysical models given in equations (10)–

(12) are simplified models that include the dominant factors
that are likely to control the electrical and dielectric prop-
erties of unsaturated sandstone. Alternative models are
present in the literature and more elaborate models may
have a higher predictive value but are likely to include
parameters that are poorly known in field applications.
2.5.1. Saturated Media
[25] In saturated media, equations (10) and (11) simplify to

keff ¼
1

F
kw þ F � 1ð Þks½ 
; ð13Þ

seff ¼
1

F
sw þ F � 1ð Þss½ 
: ð14Þ

[26] Variations in keff are only affected by variations in F,
whereas variations in seff can be attributed to variations in
either F, sw, or ss. Minimization of the cross-gradients
function is for a random media (e.g., described by expo-
nential space random functions) valid only if ss and sw are
strongly correlated with F or if ss can be neglected or
assumed to be constant and sw is constant. If these con-
ditions are not fulfilled, we have to assume that the Earth
structure is composed of fairly homogeneous zones, where
any variations in rock properties from one zone to another
occurs at the same location, which is the justification for the
method presented by Gallardo and Meju [2003]. This is a
reasonable assumption when the subsurface consists of
fairly distinct units, but is not valid for materials that are
better described as continuous random fields. In this case,
imposing a near-zero cross-gradients function will remove
small-scale features. Because of resolution limitations of
geophysical methods, this is not necessarily a severe limi-
tation, because we cannot expect to resolve small-scale
variability anyway. However, minimization of the cross-
gradients function is clearly inappropriate in applications
where variations of sw are varying gradually in a different
direction than the normal to geological boundaries. This
would be expected for many applications at contaminated
sites, for instance, mapping of saline contaminant plumes.
2.5.2. Unsaturated Media
[27] In unsaturated media, the problem is further compli-

cated by the influence of the water saturation, Sw, and
minimizing the cross-gradients function is meaningful only
if changes in Sw

n is confined within fairly homogeneous
geological units or if the gradients of Sw

n are normal to
geological boundaries (e.g., clay formations have a higher
water saturation than sand formations). This is often
expected because the capillary pressure is sensitive to grain
size. The same reasoning applies both to sw or ss. However,
F can vary freely.

2.6. Calculation of Stochastic Regularization
Operators

[28] Regularization through smoothness operators [e.g.,
Constable et al., 1987] give models with strong spatial
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correlations and regularization through damping operators
[Marquardt, 1970] give models that are close to an initial
model, but with no spatial correlation. Maurer et al. [1998]
showed that regularization of inverse problems based on a
stochastic regularization operator, Cm

�0.5 (e.g., equation (1)),
can be expressed as a combination of generalized smooth-
ness and damping regularization operators, resulting in
geologically more reasonable models that are consistent
with geostatistical descriptions of geological media. Maurer
et al. [1998] also proposed a method to generate stochastic
regularization operators based on the von Kármán autoco-
variance function and determined Cm

�0.5 by a grid search
method. Maurer et al. [1998] applied their method to a
synthetic two-dimensional cross-hole tomographic seismic
experiment.
[29] In most applications, only smoothness or damping

constraints are used because the calculation of Cm
�0.5

under general conditions is for many three-dimensional
applications prohibitively computationally expensive. Fur-
thermore, the model covariance matrix, Cm, is poorly
known in most geophysical applications. However, good
approximations of Cm can sometimes be obtained in near-
surface applications, where borehole geophysical logs can
be used to infer the spatial correlation structure of
physical properties. However, the computational problems
of computing Cm

�0.5 remain.
[30] There are conditions under which Cm

�0.5 can be
calculated efficiently and with small computing storage
requirements. The model covariance matrix Cm is a sym-
metrical Toeplitz matrix if the correlation function is sta-
tionary and the grid discretization is uniform in each
direction [e.g., Dietrich and Newsam, 1997]. A Toeplitz
matrix has constant values along diagonals in each block
and a symmetrical Toeplitz matrix is therefore defined
completely by its first column. Dietrich and Newsam
[1997] used circulant embedding of Toeplitz model covari-
ance matrices into nonnegative circulant matrices when they
developed a computationally efficient method to generate
random Gaussian fields with a given correlation function.
Nowak et al. [2003] used circulant embedding of model
covariance matrices to efficiently perform matrix-matrix
computations arising in geostatistics (e.g., in cokriging).
Here, we use circulant embedding and the diagonalization
theorem for circulant matrices to compute the stochastic
regularization operator, Cm

�0.5, in a computationally efficient
way.
[31] Following Dietrich and Newsam [1997], Cm of a

stationary process Y(x) with correlation function r(x)
sampled on the uniform 1D mesh W = {x0,. . .,xm} has
entries Cm(p,q) = r(jxp � xqj). A model covariance matrix
Cm of size m � m can be circulantly embedded into a
symmetric circulant matrix S of size 2M � 2M by assigning
the following entries to the first column s of S

sk ¼ rk ; k ¼ 0; :::;m;

s2M�k ¼ rk ; k ¼ 1; :::;m� 1; ð15Þ

where if M > m the entries sm+1,. . .,s2M�m are arbitrary or
conveniently chosen. The next column of S can be obtained
by shifting the first column circularly, i.e., such that the last
element becomes first and all other elements are shifted
forward by one, and so on. Being circulant, S, can be

decomposed by using the diagonalization theorem of cir-
culant matrices

S ¼ 1

2M
FLFH ; ð16Þ

where F is the standard fast Fourier transform (FFT) matrix
of size 2M with entries Fpq = exp(2piqr/2M), FH is the
conjugate transpose of F, and L is a diagonal matrix whose
diagonal entries form the vector ~s = Fs [e.g., Golub and Van
Loan, 1996]. The matrix S is nonnegative definite if all
entries of ~s are nonnegative. These results have been
extended to two and three dimensions; see Ranguelova
[2002] for details.
[32] The matrix S�1/2 is for the one-dimensional case also

circulant and its first column can be obtained as FH~s�1/2 and
the entries corresponding to the first column of Cm

�0.5 can be
retrieved from entries 1 to m (see equation (15)); all other
columns of Cm

�0.5 can be calculated by shifting the first
column circularly. In order to decrease memory require-
ments, we only store elements of Cm

�0.5 that are larger than
1% of the maximum value of Cm

�0.5. In three dimensions,
the only difference is that we need to express s and ~s as
three-dimensional arrays and apply three-dimensional FFT.
Our method to calculate Cm

�0.5 is computationally efficient
because we perform operations on a vector s instead of the
model covariance matrix Cm.
[33] Dietrich and Newsam [1997] proved the existence of

nonnegative definite matrices S for different types of
embedded covariance matrices and dimensions; they also
provided numerical results concerning the necessary size of
the matrix S in relation to the integral scales of the
underlying covariance model for one- and two dimensional
domains. In order to ensure that S is nonnegative definite in
three dimensions when using an exponential correlation
function, we have found that it is necessary to choose M
to be at least seven integral scales in each direction and
choosing sm+1,. . .,s2M�m to be the corresponding values of
r(l). The exponential correlation function is for a stationary
three-dimensional domain defined as

r lð Þ ¼ ce�l; ð17Þ

where c is the variance, e is the natural logarithm, and l is
defined as

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx

Ix

 �2

þ hy

Iy

 �2

þ hz

Iz

 �2
s

; ð18Þ

where hx (m), hy (m), and hz (m) are the lags in the x, y, and
z directions, respectively, and Ix (m), Iy (m), and Iz (m) are
the integral scales in the x, y, and z directions, respectively.

3. Field Example

3.1. Field Site

[34] The site chosen to test our joint inversion method
and the stochastic regularization operators is located near
Eggborough, North Yorkshire, UK (Figure 1). The field site
was developed to study vadose zone dynamics in Sherwood
Sandstone [e.g., Binley et al., 2002a; West et al., 2003;
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Cassiani and Binley, 2005; Binley et al., 2005], which
accounts for approximately 25% of U.K. groundwater
abstraction [Allen et al., 1997]. The Sherwood Sandstone
is a fluvially derived deposit consisting mainly of medium-
and fine-grained sandstones with a small and variable
amount of clay (0–5%), where the fine-grained sands
are thin beds 0.1 to 0.3 m thick, separated by much thicker
(1–3 m) medium-grained units [West et al., 2003].
[35] EM conductivity logs on the transect E3-R3-R4-E4

are shown in Figure 2. A pronounced lateral layering is
evident, for example, the persistent high electrical conduc-
tivity zone at 5 m depth and the low electrical conductivity
zones at 10 m and 14 m depth. In addition to these
major zones, there is also significant small-scale variability
(<1 m).
[36] The experimental and theoretical semivariograms of

the logarithm of the EM conductivity logs are shown in
Figure 3. The logarithm of electrical conductivity is used
because this is the parameter we invert for in the ERT
inversion (see equation (1)). The semivariograms reveal a
‘‘hole effect’’ (i.e., the growth of the semivariogram is not
monotonic but shows some weak periodicity) [e.g., Deutsch

and Journel, 1992], which can be explained by the fining
upward sequences in the sandstone. However, stochastic
regularization operators based on the hole effect model add
layers in the resulting inversion models at depths not
sampled by the cross-hole geophysical data and it is
therefore difficult to determine what layers that are resolved
by the cross-hole geophysical data. Instead, we used a
geostatistical model with a monotonic growth of the semi-
variogram. The stochastic regularization acts as a soft
constraint (e.g., see equation (1)) and deviations from a
prescribed geostatistical model is tolerated if the cross-hole
geophysical data cannot be fitted otherwise. The semivario-
grams of the resulting tomograms might therefore reveal a
hole effect, albeit damped, even if an exponential geo-
statistical model was used to calculate the stochastic regu-
larization operators. We modeled the large-scale behavior
with an exponential model with a variance, c, of 0.11
(ln(s(S/m))2 and integral scale in the vertical direction, Iz,
of 3.5 m, which are the theoretical semivariograms shown in
Figure 3. Anisotropy is modeled by assuming integral scales
in the horizontal directions, Ix, and Iy, to be 28 m, i.e., eight
times as long as in the horizontal directions in accordance
with Cassiani and Binley [2005]. The resulting stochastic
regularization operator based on this model is determined
following the procedure described in section 2.6. As a
comparison, we performed the ERT inversion with isotropic
and anisotropic smoothing, where we penalized roughness
in the horizontal directions eight times as much as in the
vertical direction.
[37] West et al. [2003] fitted laboratory measurements of

Sherwood Sandstone with the CRIM model [e.g., Roth et
al., 1990], which is one of the most commonly used
petrophysical models to interpret GPR data. They estimated
that the effective relative permittivity, ks, of the minerals
forming the finer lithologies of the Sherwood Sandstone is
15 at 50 MHz compared with 5 for medium grained
sandstone. However, the true relative permittivity of dry
Sherwood Sandstone is between 2.7 and 4.1; and the higher
effective relative permittivities were attributed to relaxation
effects [West et al., 2003]. Interpretations of 100 MHz zero-
offset profiles (ZOP) in Sherwood Sandstone [Binley et al.,
2004] were performed with a ks value of 5 to estimate field
moisture content. These observations are caused by the fact
that the first arrival data are not affected by thin layers of

Figure 1. Areal view of the field site at Eggborough, UK
(53.70213� latitude, �1.138707� longitude).

Figure 2. EM conductivity logs with 1 cm spacing from boreholes (a) E3, (b) R3, (c) R4, and (d) E4.
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fine (slow) materials [West et al., 2003]. We decided to use
the ZOP data (Figures 4a and 4b) to determine the vertical
correlation structure and assumed the same degree of lateral
anisotropy as for the ERT data, i.e., eight. The experimental

and theoretical semivariograms of the ZOP profiles are
shown in Figures 4c and 4d, where the theoretical semi-
variogram has a variance, c, of 0.65 (s/m)2 and a vertical
integral scale, Iz, of 3.5 m. It should be pointed out that

Figure 3. Semivariograms of electrical conductivity based on EM conductivity logs from boreholes
(a) E3, (b) R3, (c) R4, and (d) E4, where the dotted lines indicate the experimental semivariograms and
the solid lines indicate the theoretical semivariogram.

Figure 4. Inferred radar slowness from ZOP GPR data between (a) R1 and R2 and (b) R3 and R4 along
with (c and d) the corresponding semivariograms, where the dotted line indicates the experimental
semivariogram and the solid line indicates the theoretical semivariogram.
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these semivariograms are smoothed versions of the true
variability in radar slowness mainly because of the finite
frequency content of the radar signals. Nevertheless, they
represent variability at a resolution that is appropriate for the
inversion of the GPR traveltime data.

3.2. ERT Inversion

[38] The ERT data were collected in September 1999
using electrode arrays of 21 electrodes in E3 and E4 with
electrode spacing of 0.75 m. In addition, 16 surface electro-
des spaced 1.1 m apart were used. Transfer resistances were
measured in three blocks using a 64 channel multielectrode
Campus Instruments Tomoplex meter. In each block of
measurements, the current sink (C) and potential reference
(P) were assigned to electrodes in E3 and E4 of equal depths
(4.5 m, 8.25 m, and 12 m depth were used). In each block of
measurements, each of the remaining 56 electrodes were
used in turn as the current source (C+) and for each current
source, the remaining 55 electrodes were used as the
potential electrode (P+). A corresponding survey was con-
ducted between E1 and E2.
[39] In order to decrease computing time and memory

requirements, and to ensure that only high-quality data were
used, we only retained the 4201 measurements for which the
relative measurement errors estimated by reciprocal measure-
ments were less than 0.7%. However, error estimates based
on reciprocal measurements are overoptimistic because they
do not capture errors such as misplacement of electrodes or
coarse model discretizations (e.g., relative errors of 5% are
possible if only two finite elements are placed between the
electrodes [LaBrecque et al., 1996], which is the case in this
work). It is therefore necessary to assign values to the data
covariance matrix, Cd

s (equation (1)), that in addition to data
errors also include estimates of modeling errors. We assumed
that these errors correspond to an absolute error of 0.001Ohm
(i.e., the accuracy of the measured transfer resistances) and a
5% relative error of the measured transfer resistances, which
is a typical magnitude of data and modeling errors in cross-
hole ERT applications. This means that the reciprocal mea-
surements were used to identify high-quality data, but they
were not used to estimate the entries in Cd

s.
[40] Forward modeling used a finite element discretiza-

tion of 0.55 m in the horizontal directions and 0.375 m in
the vertical direction in the area of interest, and an expo-
nential increase in the size of the finite elements was used
outside the area of interest to allow the electrical potential to
decay to zero yielding a total of 46,080 finite elements. For
the inverse modeling, we used 11,520 elements, which were
obtained by grouping the elements in the x and y directions
in patches of four. A uniform resistivity corresponding to
the arithmetic mean of the EM conductivity logs (62 Ohmm)
was used as both initial, mp

s, and a priori model, mapriori
s .

[41] With an initial RMS of 11.4, the inversions based on
the stochastic regularization (Figure 5a) and on anisotropic
smoothness constraints (Figure 5b), where we penalized
roughness in the horizontal directions eight times as much
as in the vertical direction, reached the RMS threshold of 1
after three and five iterations, respectively. Both models
have the same sequence of conductive and resistive layers,
but the inversion model based on the anisotropic smoothing
has a more layered structure and the conductive layers are
more pronounced. Inversion with isotropic smoothing (not

shown here) yielded unrealistic models (i.e., models that
were not layered) but the same target data misfit.

3.3. GPR Inversion

[42] The MOG GPR data were collected in September
1999 with the PulseEKKO borehole radar system using
50 MHz borehole antennae between R3 and R4 with a
spacing of 0.25 m between 1 m and 16 m depth. A
corresponding survey was conducted between R1 and R2.
We restrict the inversions of the radar data to rays with
angles less than 45� to avoid fast raypaths within the bore-
holes [Peterson, 2001] and because our inversion algorithm
assumes that the radar antennas act like a point source,
thereby overestimating velocities when inverting data with
high angular coverage [Irving and Knight, 2005]. Further-
more, we only used data that was collected below 2.0 m to
avoid critical refraction at the soil/air interface [e.g., Rucker
and Ferré, 2004] yielding 4252 first arrivals.
[43] Forward modeling was performed using a finite

difference grid of 0.375 m in all three spatial directions
yielding a total of 101,376 finite difference blocks. For the
inverse modeling, we used 11,264 finite difference blocks,
which were obtained by grouping the blocks in the hori-
zontal directions in patches of nine.
[44] We assumed that the standard deviation in the data

was 1.5 ns because this misfit yielded models with a
reasonable model structure and data fit. This choice of the
standard deviation is fairly subjective. Indeed, we can fit the
data to a significantly lower error level, but the resolution of
the resulting models are then higher than the features we can
expect to resolve with 50 MHz antennas (i.e., approximately
features larger than one cubic meter). The initial slowness,
m0

s, and a priori model, mapriori
s , were both assumed to have

a uniform slowness of 9.1 ns/m, which corresponds to the
mean slowness from the ZOP GPR data (see Figures 4a
and 4b). Both inversions converged from an initial RMS of
2.3 to the RMS threshold of 1 after four iterations.
[45] The model obtained with the stochastic regulariza-

tion (Figure 5c) and the model obtained with the anisotropic
smoothness constrained regularization (Figure 5d) contains
the same major features: a low-velocity zone at 5 m depth
and a high velocity zones at 10.5 m and 14 m in corre-
spondence with the ZOPs (see Figures 4a and 4b). The
major difference is that the model based on the anisotropic
smoothing show more pronounced anomalies. Inversion
with isotropic smoothing (not shown here) yielded unreal-
istic models (i.e., models that were not layered) but the same
target data misfit.
[46] Regardless, of which type of regularization is pre-

ferred, Figure 5 illustrates nonuniqueness of the inverse
problem and that inversion with different regularization
operators can be useful to reveal what features that are
resolved by the data and what types of features are imposed
by the regularization of the inverse problem.

3.4. Joint Cross-Hole ERT and GPR Inversion

[47] For a given application, it is necessary to perform a
few trials to find an appropriate weight to apply to the cross-
gradients function. The joint inversion of the data presented
in sections 3.2 and 3.3 was performed using the stochastic
regularization operators andl = 1000 (see equation (8)), which
decreased the cross-gradients function (see equation (3))
to approximately 10% compared with the individual inver-
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sions. A higher value of l would decrease the cross-
gradients function further but the resulting models would
be similar. The joint inversion reached the target data misfit
after six iterations. The resulting resistivity model shown in
Figure 6a, and the velocity model is shown in Figure 6b.
The lower variability in the jointly inverted resistivity model
is in accordance with the EM conductivity logs that
typically show variations of a factor of three (see
Figure 2). The most striking difference for the radar models
are that the jointly inverted models have almost constant
velocities outside the volume defined by boreholes R1, R2,
R3, and R4.

3.5. Petrophysical Implications

[48] In this section, we derive a lithological zonation by
combining the inversion results from the joint inversion (see
Figure 6) with the petrophysical models (equations (10)

and (11)). Scatterplots of the logarithm of electrical con-
ductivity versus relative permittivity are first shown for the
individual inversions (Figures 7a and 7b). These plots have
no easily determined zonation patterns. Tronicke et al.
[2004] illustrated that seemingly uncorrelated scatterplots
of radar attenuation and radar velocity could be grouped
into different zones using k means clustering, a method in
which pixels are iteratively regrouped into a predefined
number of clusters until the variability of the values within
each group is minimized.
[49] Next, we plot the corresponding scatterplots for the

jointly inverted models (Figure 7c). The scatterplot reveals
different slopes, where the parameters that correspond to
each slope can be grouped into different zones [Gallardo
and Meju, 2004; Tryggvason and Linde, 2006]. The result-
ing zonation can be determined without any clustering

Figure 5. Individual inversion models based on (a) ERT inversion with stochastic regularization,
(b) ERT inversion with anisotropic smoothness constraints, (c) MOG GPR inversion with stochastic
regularization, and (d) MOG GPR inversion with anisotropic smoothness constraints.
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algorithm because of the layered structure of the inverted
models. A clustering algorithm must be applied if signifi-
cant variations occur in more than one spatial direction. We
should not interpret the apparent petrophysical relationships
within each zone (i.e., the fairly straight lines corresponding
to the different interpreted zones) as they represent the
transitions between zones (i.e., they are strongly affected
by the applied regularization). Instead, we can only hope to
estimate representative values of electrical conductivity and
relative permittivity for each zone.
[50] Tryggvason and Linde [2006] performed synthetic

three-dimensional local earthquake tomography with joint
inversion for P and S wave velocities by penalizing models
where the cross-gradients function deviates from zero. In
their synthetic example, the values of the inverted P and S
wave velocities within their two anomalous zones corre-
sponded to 70% of the maximum deviation from the
background model. We make the assumption that these

results also apply to our inversion results from Eggborough.
This is a subjective choice, as we do not know if our inverse
problem has the same degree of overshoot as the synthetic
example presented by Tryggvason and Linde [2006]. The
identified representative values are plotted as gray circles in
Figure 8a. Note that the values for the relative permittivity,
k, should be 49% of the maximum deviation as we invert
for s and k = c2s2.
[51] The next step is to use the petrophysical models for

relative permittivity (equation (10)) and electrical conduc-
tivity (equation (11)) to infer possible values of the rock
properties and state variables of the identified lithological
zones. We defined typical ranges for weakly consolidated
sandstones and siltstones for the parameters that enter
these petrophysical models according to f = U[0.25–
0.35] [Binley et al., 2005], Sw = U[0,1.0], n = U[1.3,2.2],
m = U[1.3,2.2] [Revil et al., 1998], the logarithm of Reff is
U[�7.2,�5], sw = 0.10 S/m [Binley et al., 2005], kw = 81,

Figure 6. Joint inversion models: (a) ERT model with stochastic regularization and (b) radar velocity
model with stochastic regularization.

Figure 7. Scatterplots of log10 of electrical conductivity versus relative permittivity, shown for the
model parameters that correspond to the transects between boreholes R1 and R2 and R3 and R4 for the
individually inverted models based on (a) the stochastic regularization and (b) the anisotropic smoothness
constraints and for the jointly inverted models based on (c) the stochastic regularization. The zonation is
based on the trends in the scatterplots of the models based on the joint inversion with stochastic
regularization, where the crosses, circles, pluses, and triangles indicate zones 1–4, respectively.
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Figure 8. (a) Four points in the scatterplots based on the jointly inverted models with stochastic
regularization, marked with gray circles. These points are assumed to be representative of four different
lithological zones. The solid gray line indicates the range of possible relationships based on equations
(10)–(12) and the parameter ranges specified in section 3.5. Probability density functions of (b) F, (c) q,
(d) Reff, (e) m, and (f) n are shown for zone 1. Corresponding plots are shown for (g–k) zone 2, (l–p)
zone 3, and (q–u) zone 4.
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ks = 5 [Binley et al., 2004], ka = 1 and Ss = 2.5 � 10�9 S
[Revil and Glover, 1998], where U[�] denotes a uniform
distribution. The resulting range for F = f�m is 3.9 to 21. It
is then possible to calculate the bounds of the possible
relationships between seff and keff by generating a large set
of random realizations from these distributions and com-
puting the resulting values of seff and keff. The resulting
allowable ranges of seff and keff are given by the gray solid
line in Figure 8a. If we assume that the petrophysical
models (equations (10) and (11)) are reasonably accurate,
it is possible to identify areas of the model where the
inversion results indicate unphysical relationships caused
by the inversion process and measurement errors. We see
that the values of the scatterplot in Figure 8a mostly fall
within the allowable ranges.
[52] Next we plotted the probability density functions of

some of the parameters entering equations (10)–(12) for
the identified zones (Figures 8b–8u). This was achieved by
drawing a large number of realizations (i.e., several
millions) from the uniform distributions identified above
and storing all realizations where the resulting seff and keff
are close to the values specified for the different zones (i.e.,
the gray circles in Figure 8a). Parameters that have close to
a uniform distribution are poorly defined, whereas param-
eters with a well-defined peak are well defined by the joint
inversion. For example, both f and m are poorly defined,
but the resulting F = f�m have fairly well defined peaks
between 4.5 and 6 (see for example Figure 8b). Also, the
water content qw = Swf is well defined (see for example
Figure 8c). It is not possible to resolve ss using only ERT or
GPR traveltimes. However, if ERT and GPR traveltimes are
combined, ss and thus R (see equation (12)) are well-
defined parameters (see for example Figure 8d) at low Sw
when the relative contribution of ss to seff is the largest (see
equation (11)).
[53] Six core samples from a neighboring borehole core

(see R5 in Figure 1) were analyzed for the electrical
formation factor, F, and the values ranged between 2.6
and 5 [Binley et al., 2005]. The correspondence with the
estimated formation factors from the joint inversion (see
Figures 8b, 8g, 8l, and 8q) is acceptable, keeping in mind
that the laboratory measurements, Fapp = s w/seff, represent
apparent electrical formation factors at sw = 0.10 S/m as ss
is neglected, thereby underestimating F when ss is signif-
icant. Furthermore, any disturbance during coring decreases
the measured F in the cores in comparison with the intact
formation.
[54] Binley et al. [2004] estimated that water content

varies in the range 0.08 and 0.18 between boreholes R3
and R4 using GPR zero-offset profiles and assuming ks = 5.
These estimates represent averaged volumes with a thick-
ness of approximately 1 m and local variations in qw are
likely to be larger. Indeed, high-resolution time domain
reflectometry surveying at a neighboring borehole per-
formed during one year suggest that qw at some depth
intervals ranged between 0.15 to 0.33 [West and Truss,
2006]. The qw with the maximum likelihood in each zone
are 0.26, 0.19, 0.13, and 0.12, respectively. These estimates
honor the lower bounds suggested by Binley et al. [2004].
The estimated water contents are likely to be biased
downward because the GPR waves travel preferably along
the fast zones with low saturation and the slow zones with

high saturation are therefore poorly sampled and poorly
constrained in the inversion. The estimated ranges of qw (see
Figures 8c 8h, 8m, and 8r) could be reduced if m and n
could be constrained within a smaller range.
[55] The number of gamma ray counts is often assumed

to be a linear function of clay content [e.g., Revil et al.,
1998] and thus ss if the mineralogy of the clay fraction is
fairly constant. The clay fraction in the cored borehole
(Figure 9b) defined as the fraction of the sample with a
grain size smaller than 2.01 mm and gamma ray logs
(Figure 9c) conducted in the boreholes [Binley et al., 2004]
were therefore used to evaluate if the differences in ss for
zones 1 and 4 are reasonable. The highest gamma ray count
for all boreholes in the depth range of zone 1 corresponds to
a small anomaly with a peak of 90 cps, whereas the highest
gamma ray count in zone 4 corresponds to a thicker
anomaly with a peak of 133 cps (see also Figure 9c). At
least qualitatively, this indicates that surface conduction
effects are more pronounced in zone 4. These results
indicate that we can estimate F, qw, and Reff reasonably
well by jointly inverting ERT and GPR traveltime data in
unsaturated sandstone.
[56] Inversion results have resolution limitations that can

be quite significant when attempting quantitative interpre-
tations [e.g., Day-Lewis and Lane, 2004; Day-Lewis et al.,
2005], but these aspects of the inversion problem are
outside the scope of this study. Furthermore, the petrophys-
ical models (equations (10) and (11)) are simple and do not
capture all variability in seff and keff. Consequently, the
values of the parameters of equations (10) and (11) shown
in Figure 8 should be considered as rough estimates, but we
believe that the relative differences between the zones are
well resolved.
[57] The zonation derived at Eggborough provides esti-

mates of the geometry and the associated properties of four
different zones, but we cannot expect to resolve variations
within each zone. To understand vadose zone dynamics it is
necessary to complement cross-hole methods with measure-
ments of higher resolution. West and Truss [2006] studied
temporal and spatial variations in soil moisture at a neigh-
boring site using time domain reflectometry. They found
that there is significant lateral flow bypassing less perme-
able layers. Preferential flow paths of a few decimeters
thickness or thinner cannot be resolved using cross-hole
ERT and 50 MHz GPR radar data with the borehole spacing
used at Eggborough.

4. Discussion and Conclusions

[58] In hydrogeophysics, geophysical information is often
used to constrain or produce hydrogeological models [e.g.,
Hubbard et al., 2001; Cassiani and Binley, 2005]. Therefore
it is important that geophysical models are consistent with
available data and the modeler’s perception of the hydro-
geological system, as well as the parameterization used in
the subsequent hydrogeological modeling. Regularization
operators in geophysical inverse problems should be chosen
with care because they have, for a given data misfit, a
significant influence on the resulting models; this is the case
even for joint inversion of high-resolution ERT and MOG
GPR traveltime data (see Figure 6). It can be useful to
perform several inversions with different regularization
operators (i.e., different geostatistical model types and
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different choices of their parameters) to assess what features
are resolved by the data. In this work, we introduced an
efficient way to calculate stochastic regularization operators
based on geostatistical models estimated from EM conduc-
tivity logs and GPR ZOPs. It should be noted that the
stochastic regularization operators used in this work are
affected by both the underlying geology and the water
content (see section 2.5). In applications to the saturated
zone, the stochastic regularization operators would corre-
spond to the underlying geology only.
[59] There is no apparent correlation between the indi-

vidually inverted ERT and MOG GPR tomograms from
Eggborough (see Figures 7a and 7b) making joint inversion
with a functional relationship infeasible. Instead, we con-
strained the values of the cross-gradients function (see
equation (3)), which quantifies deviations from structural
similarity, where models are defined as structurally similar
if the gradients of the models have the same or opposite
direction [Gallardo and Meju, 2003].
[60] A structural approach to joint inversion, together

with stochastic regularization operators, made it possible
to jointly invert different data sets and obtain geologically
realistic models at a research site that was selected to study
vadose zone dynamics in Sherwood Sandstone without
imposing overly restrictive assumptions. The three-
dimensional joint inversion of cross-hole ERT and MOG
GPR traveltime data also allowed a lithological zonation of
the site. This zonation was not apparent from the individ-
ually inverted models. Furthermore, the joint inversion
made it possible to estimate probability density functions
of the electrical formation factor, F, the water content, qw,

and the effective grain radius of the sediments, Reff, in the
different zones. Core measurements and gamma logs were
in qualitative agreement with the derived properties of the
different zones.
[61] The scatterplots of the jointly inverted models

(Figure 8a) have different slopes for different zones. These
slopes should not be considered to represent the intrinsic
petrophysical relationship between electrical conductivity
and relative permittivity within each zone, as these slopes
are strongly influenced by both the regularization used to
solve the inverse problem and the resolution limitations of
the geophysical methods used. Our three-dimensional joint
inversion of cross-hole ERT and GPR traveltime data
allowed us to estimate the bulk properties of each zone,
but it did not allow us to resolve small-scale variability
within the zones.

Appendix A: Effective Relative Permittivity

[62] Pride [1994] used a volume-averaging approach to
derive the following expression for the effective relative
permittivity, keff, of two-phase media (see his equation
(253))

keff ¼
f
a

kw � ksð Þ þ ks

� �
; ðA1Þ

where f is the porosity, a is the tortuosity, kw and ks are the
relative permittivities of the saturated pore space and the
rock matrix, respectively. If the pore space is a mixture of
two immiscible fluids (here water and air), we can apply a

Figure 9. (a) Median particle size and (b) clay fraction in cored borehole (R5) together with (c) the
natural gamma log from the neighboring borehole E4. The zonation based on joint inversion of ERT and
MOG GPR traveltime data with stochastic regularization operators is shown in the background.
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similar methodology to derive the effective permittivity of
this mixture, kf. This yields:

kf ¼ Sw

aw

kw � kað Þ þ ka

� �
; ðA2Þ

where aw is the tortuosity of the water phase relative to the
mixture, Sw is the water saturation, and ka is the relative
permittivity of air. To be compatible with Archie’s first and
second laws, we must have

F ¼ aw

�
; ðA3Þ

where F is the electrical formation factor and

S�n ¼ aw

sw
; ðA4Þ

where n is Archie’s second exponent. By inserting equation
(A2) into equation (A1) and using equations (A3) and (A4),
we arrive at the following expression for the effective
relative permittivity of partially saturated porous media

keff ¼
1

F
Snwkw þ 1� Snw

� �
ka þ F � 1ð Þks

� �
: ðA5Þ

[63] The boundary value problem for the electrical con-
ductivity is similar to that of relative permittivity [Pride,
1994], except that the gas phase is insulating (i.e., sa = 0).
Despite the fact that the grains are insulating, the grains are
coated by the electrical double layer [e.g., Leroy and Revil,
2004], which gives them an equivalent grain conductivity.
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