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Abstract—Recently considerable efforts have been dedicated to
unconstrained face recognition, which requires to identify faces
“in the wild” for a set of images and/or video frames captured
without human intervention. Unlike traditional face recognition
that compares one-to-one media (either a single image or a video
frame) only, we encounter a problem of matching sets with
heterogeneous contents containing both images and videos. In this
paper, we propose a novel Set-to-Set (S2S) distance measure to
calculate the similarity between two sets with the aim to improve
the recognition accuracy for faces with real-world challenges
such as extreme poses or severe illumination conditions. Our S2S
distance adopts the kNN-average pooling for the similarity scores
computed on all the media in two sets, making the identification
far less susceptible to the poor representations (outliers) than
traditional feature-average pooling and score-average pooling.
Furthermore, we show that various metrics can be embedded
into our S2S distance framework, including both predefined
and learned ones. This allows to choose the appropriate metric
depending on the recognition task in order to achieve the best
results. To evaluate the proposed S2S distance, we conduct
extensive experiments on the challenging set-based IJB-A face
dataset, which demonstrate that our algorithm achieves the state-
of-the-art results and is clearly superior to the baselines including
several deep learning based face recognition algorithms.

Index Terms—Face recognition, IJB-A, S2S Distance, kNN-
average Pooling.

I. INTRODUCTION

Recent years have witnessed an explosion of face media
available on the Internet. Picasa photo albums and Facebook,
for example, create thousands of face images/videos every
day, most of which are captured without control of age,
pose, illumination, occlusion and expression [1], [2], [3],
[4]. This high volume of real-world face images and videos
now requires face recognition, more than ever, to handle
large quantities of faces and meanwhile remain sufficiently
accurate even when provided with images/videos taken under
unconstrained conditions.

There have been significant breakthroughs on applications
and techniques of face recognition under unconstrained envi-
ronments over the past few years, which are also in accordance
with the progress of the face datasets. At the first phase
of unconstrained face recognition, a single image setting is
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Fig. 1: Difference between IJB-A dataset and previous uncon-
strained face datasets: LFW is based on images; YTF is based
on videos; IJB-A is based on sets of images or/and videos.
Each set contains full variations in face pose, expression,
illumination and occlusion issues.

always used in the datasets such as the Labeled Faces in the
Wild dataset (LFW) [5] (see Fig. 1 for an example) and the
Public Figures (PubFig) dataset [6]. Both datasets consist of
face images harvested from news websites of labeled people,
which can be seen as a key step towards identifying faces
in an unconstrained condition [7]. Early recognition methods
dealing with this sort of datasets simply adapted the techniques
available for the environments under human control to this
application, which, not surprisingly, failed to obtain high
accuracy. Stepping into the second phase, datasets such as the
YTF [8] (see Fig. 1 for an example) over a video attracted
much attention. Recently, owing to the exploration of deep
learning [9], [10], the recognition accuracies on these datasets
reached almost one hundred percent.

Despite the rapid progress, unconstrained face recognition
is hardly considered as a solved problem because the datasets
mentioned above are still far from reality. For such uncon-
strained environments, there remains a large gap between
automatic machine recognition and human recognition. We
consider the more challenging and practical unconstrained face
recognition [7] on the IARPA Janus Benchmark A (IJB-A)
dataset (see Fig. 1). The IJB-A dataset is a mixture of images
and videos with full pose variation, complex expression and
illumination. Additionally, IJB-A is a set-based dataset, dif-
ferent from older image-to-image or video-to-video datasets,
meaning that it takes a set (heterogeneous contents containing
both images and videos) as the smallest unit of representation.
This kind of setting does reflect the real-world biometric sce-
narios, thereby attracting a lot of attention after its release. In
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this case, besides the old problem of how to extract invariable
and discriminative features, finding a solution to match two
sets of media is also challenging. Most of the existing methods
until now mainly include feature pooling [11], [12], [13] and
score pooling [25], [26], [28], where the former suggests
aggregating features over all images in a set while the latter
aggregates the pair-wise similarity scores of two compared
sets. However, neither of the two measurements performs well
when the faces of certain subjects are with many extreme poses
or other variations, which occur frequently in reality.

Aiming to address this Set-to-Set matching problem, in this
paper, we propose a simple but effective S2S distance by
leveraging the kNN-average pooling. Our recognition system
starts by a deep feature extraction step making use of a
VGG-16 deep network and a transfer learning technique to
compensate for lack of training data. The trained model in turn
is used to acquire features from all images over a set in the
test phase. We employ the proposed S2S distance to calculate
the similarity of two sets, and in the end make decision for
the recognition tasks. The overview of the entire system is
illustrated in Fig. 2 and our contributions can be summarized
as the following three points:

• The primary contribution lies in a novel Set-to-Set dis-
tance employing k Nearest Neighbor (kNN)-average pool-
ing to measure the similarity between two sets of face
media. The S2S distance is simple but very effective and
robust to the outliers.

• Our framework built on the S2S distance is so flexible that
different metrics including both pre-defined and learned
ones can be incorporated. The experimental results reveal
that there is no need to learn a particular metric for such a
challenging dataset wherein many subjects are with very
limited media samples, even sometimes with only one
sample.

• Compared with feature-pooling, score-pooling and even
some deep learning methods, our simple S2S distance
helps to achieve the state-of-the-art results on IJB-A
which is the only set-based face dataset.

The rest of the paper is organized as follows. In Section II
we review the latest works on the IJB-A dataset and make a
brief discussion. Afterwards, our motivation and method are
presented in Section III. Section IV details the experiments to
demonstrate the effectiveness and flexibility of our approach
followed by a conclusion and our future work in the last
section.

II. RELATED WORK

As described in the previous section, earlier recognition
methods obtained quite low accuracies under the unconstrained
settings. In order to improve the recognition performance
on the datasets over images, some researchers dedicated to
finding better face representations or descriptors. In [14], the
authors used Fisher vectors on densely sampled SIFT and then
compressed the encoding to a small representation. Apart from
the descriptor-based methods, feature selection/compression
and metric learning [15], [16], [17] also made some contri-
butions to improve the face recognition under unconstrained
environments.

Furthermore, some previous methods dealing with the set-
based setting, e.g., the YTF benchmark, were also developed.
In this database, the probe and the gallery were typically
comprised of multiple frames from the same video. The
simple way was to generate one feature by computing the
mean of all features in each set and then compare the two
aggregated features of the two given sets. One elaborate
method designed for this purpose was convex hull [18] which
performed well when many frames were available in sets.
Under the assumption that the elements in a set may lie
close to a linear subspace, subspace-based methods [19] were
introduced. To overcome the drawbacks of the traditional
kernel-based methods, Huang et al. [20] proposed a method
to learn the projection metric directly from a Grassmann
manifold. Moreover, various distribution based representations
were considered, such as the Bag of Features [21](BF) and
Vector of Locally Aggregated Descriptors (VLAD) [22].

Most of the latest evaluations on the IJB-A dataset relied
on deep Convolutional Neural Network (DCNN). Chen et
al. [11] designed a DCNN with small filters trained on CASIA-
WebFace [23] and then learned a joint Bayesian metric to
measure the similarity between two faces. Similar to the work
using metric learning, in [12], the authors coupled a DCNN
with a Triplet Distance Embedding (TDE). To tackle the
Set-to-Set problem, both works applied the feature-average
pooling, by which the features of all media in a set are
averaged to form an overall feature representation. The authors
of the later work further extended the AlexNet [24] to a
DCNN through embedding a Triplet Probability (TP) [13].
Meanwhile, they replaced the feature-average pooling with the
media-average pooling so as to produce a better representation
of a set. A bilinear CNN (B-CNN) [25] was applied due
to the fact that face recognition can also be viewed as a
fine-grained classification problem. In such a framework, one-
versus-rest linear SVM classifiers were trained on the gallery
set for the identification task. In addition, the authors tried
two kinds of max pooling methods within a set: score-max
pooling and feature-max pooling. Alternatively, [26] exploited
3D rendering to generate multiple face poses from the input
image and then produced multiple pose-specific features by
several pose-specific DCNN models. They simply adopted a
direct feature-to-feature comparison in a pair-wise fashion and
used the softmax weights to fuse all the scores for a set.
Hassner et al. [27] illustrated a PoolingFaces solution using
DCNN to encode the pooled images falling into the same
bin according to pose and image quality. The work reported
in [28] learned the Pose-Aware models for faces with different
poses using CASIA-WebFace. It enables a weighted average
of the pair-wise scores for each set, where each weight is
specified to be an exponential function of the score. In order
to solve the problem of a small dataset, Iacopo et al. [29]
presented a simple synthesized means to augment the training
data. Moreover, a cascaded face search system [30] provided
an efficient framework when dealing with large-scale face data.
An end-to-end system consisting of face detection, alignment
and recognition based on deep convolutional networks was
proposed in [31]. In [32], a template adaption method inte-
grated the DCNN into a set specific linear SVM, in which
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Fig. 2: Overview of the entire system with three phases are included. Training: VGG-16 trained on VGG-Face data; Finetuning:
Finetune pre-trained model on IJB-A training data; Testing: Using fine-tuned model to extract features and applying kNN-
average pooling on extracted features.

SVM classifiers [33] were generated for both gallery and
probe sets. However, it does not seem to be practical to find
appropriate negative and subject-disjoint positive samples for
the probe set, because the subject labels of the probe set were
not always available in real applications.

III. MOTIVATION AND METHOD

A. Motivation

As described above, in order to push the unconstrained face
recognition research close to the real-world applications, the
IJB-A dataset over sets of media (images and/or videos) was
released. It is understandable that a set of media rather than
a single image/video provided for a subject means that more
information can be available for recognition, which should
be helpful for achieving better results. However, it is not
always like this, especially in reality due to many uncontrolled
factors. On the one hand, the great variety in age, pose,
expression, illumination and other conditions, makes the set
heterogeneous in contents. On the other hand, incorrect results
caused by preprocessing such as face detection and alignment
may introduce noise to sets. Even by looking at the ground-
truth boxes provided by IJB-A, one can easily notice that they
are unstable and some of them are labeled incorrectly. At the
same time, we find a few persons are given wrong subject
labels in the dataset. In such a Set-to-Set matching problem,
given a noisy but practical dataset, the key is to avoid skewing
matching scores caused by the complex factors. Essentially,
we should decide which media are useful for comparison and
how to weigh the similarity scores of different cross-set media
pairs. From this point of view, previous strategies adopting
either feature pooling or score pooling cannot generalize
well in many practical cases. We make an in-depth analysis

following a preliminary definition. A feature representation
z = f(x) is a mapping f(x) ∈ Rd from an image or a frame x

to an encoding z with dimensionality d . Let z̃ =
1

m

∑
x f(x)

be the average of features of images or frames in media S,
such as the average encoding for all m frames in a video.

Feature-average Pooling is proposed as a useful approach
for endowing the features with invariant properties. Both
image-based feature-average pooling and media-based feature-
average pooling were used in [24], in which the former takes
a component wise average of the features over all the images
or/and frames in a set P = {z1P , z2P , . . . , znP }. Hence, the

final representation is FP =
1

‖P‖
∑

z z
P . ‖P‖ is the number

of images or/and frames within the set. The latter firstly con-
ducts an intra-media average and then combines them via an
inter-media average. Hence, there are P = {z̃P1 , z̃P2 , . . . , z̃Pn }
and FP =

1

‖P‖
∑

z̃ z̃
P , where ‖P‖ is the number of media

in the set. The similarity between P and G can be defined as:

simfeature aver = K(FP , FG), (1)

Here, K(x, y) represents a kernel similarity measurement.
Actually, the media-based feature-average pooling can be
considered as a strategy to divide a set into several clusters and
get one representation for the images with similar properties.
For example, firstly taking the average of all frames in a video
can help reduce the effect of noise from the video to the whole
set. However, either of the two ways is not suitable for the sets
with heterogeneous contents. For instance, if there are a few
images with extreme poses and many with frontal faces in a
set, the feature after averaging will be similar to a frontal face.
In another example, suppose the dataset contains many faces
with extreme poses and a few frontal faces, its average feature



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

Fig. 3: Illustrations of the three pooling methods. (a) feature-
average pooling; (b) score-average pooing; (c) kNN-average
pooling (k = 1). In the probe set, the faces marked by red
triangle can be seen as bad examples. In (c), the green line is
from each sample in the probe set to its corresponding NN in
gallery set; the orange line is from each sample gallery set to
its corresponding NN in the probe set.

is likely to be close to an extreme pose. For both cases, the
similarity score may not be high if any of two average features
is adopted. Thus, the feature-average pooling may cause the
loss of key information.

Score-average Pooling means the final feature is generated
by averaging the calculated pairwise similarity scores (based
on media features) of two sets. Given a probe set P =
{z̃P1 , z̃P2 , . . . , z̃Pn } and a gallery set G = {z̃G1 , z̃G2 , . . . , z̃Gl },
the similarity score is represented as:

simscore aver =
1

‖P‖
· 1

‖G‖
∑
i,j

K(z̃Pi , z̃
G
j ), (2)

Obviously, the operation is fragile to outliers because it assigns
equal weights even for outliers, which will definitely affect the
final decision. Moreover, score-max pooling is tried in [25] but
it is not robust to noises either.

B. kNN-average pooling

In view of the above analysis, we can draw a conclusion that
either of feature-average pooling and score-average pooling
may not properly handle the case when two sets have variable
contents and noises. Aiming to solve this problem, we propose
a simple but effective method called kNN-average pooling.

TABLE I: Pairwise Cosine Similarity Scores Between Probe
Set and Gallery Set. The red boxes label the low scores from
extreme poses and noises. Finally, our kNN-average pooling
uses the scores in the green circles

kNN-average Pooling basically takes advantage of two
kinds of pooling of the pairwise similarity scores between
a probe set P = {z̃P1 , z̃P2 , . . . , z̃Pn } and a gallery set G =
{z̃G1 , z̃G2 , . . . , z̃Gl }. For each media item z̃Pi in the probe set,
we first calculate the similarity between z̃Pi and its k nearest
neighbors z̃GNNk

in the gallery set and sum them:

simz̃P
i
=

k∑
j=1

K(z̃Pi , z̃
G
NNj

), (3)

and then take the average of all the scores as the similarity
from the probe to the gallery

simP−GNN
=

1

‖P‖
∑

i simz̃P
i

,

Likewise, we do the same for the gallery set to get the
similarity from the gallery to the probe

simz̃G
j
=

∑k
i=1 K(z̃PNNi

, z̃Gj ),

simG−PNN
=

1

‖G‖
∑

j simz̃G
j

.

Finally, the similarity between the two sets is

simkNN aver = (simP−GNN
+ simG−PNN

)/2, (4)

Generally, feature-average pooling and score-average pooling
can be seen as comparing the distributions of two sets.
However, it is likely to get a low similarity score in the case
that the compared two sets do not contain lots of media or they
include severe noises. Such a phenomenon can be illustrated
in Fig. 3, where the probe set and the gallery set belong to
the same subject. In the probe set, there exits an extreme
pose and a noisy image caused by poor illumination. We use
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(a) (b)

Fig. 4: t-SNE visualization of deep features of 10 classes randomly selected from test dataset of split 1 after whiten PCA (a)
and PCA (b).

deep features (from a VGG-face model fine-tuned on IJB-A
training data) and Cosine similarity metric to calculate the
three similarity measurements. Here, we set k = 1. From the
figure, both feature-average pooling and score-average pooling
obtain lower similarity scores for the two sets from the same
subject. On the contrary, kNN-average pooling gets a higher
matching score. Intuitively, kNN-average pooling behaves like
a weighting strategy to select more good-samples and less
bad-samples. We also list the pairwise scores based on Cosine
metric in TABLE I. It can be observed that the faces with
the extreme poses and the noisy images always generate low
scores. Next, we present our idea from a naive probabilistic
formulation perspective.

C. Naive probabilistic formulation
As we mentioned above, face recognition can be regarded

as a classification problem, which checks whether the probe
is the same subject class with a reference or which subject
class in the gallery the probe belongs to. Given a new probe
image set P, we need to find its subject class G. Based on
probability theory, the maximum-a-posteriori (MAP) classifier
minimizes the average classification error [34], [35]:

Ĝ = argmaxG p(G|P).

Usually, Maximum-Likelihood (ML) is used to represent MAP
when the class prior p(G) is uniform:

Ĝ = argmaxG p(G|P) = argmaxG p(P|G).

If a probe set P contains some elements z̃P1 , z̃
P
2 , . . . , z̃

P
n , under

the Naive-Bayes assumption, the probability of P belonging
to G is modeled as:

p(P|G) = p(z̃P1 , z̃
P
2 , . . . , z̃

P
n |G) =

∏
i p(z̃

P
i |G).

Combine the two formulas and take the log format,

Ĝ = argmax
G

log(p(G|P)) = argmax
G

n∑
i

log p(z̃Pi |G) (5)

According to Eq. 5, we need to calculate the probability den-
sity p(z̃P |G) of elements z̃P in gallery G. Referring to [34],
we get an estimation p̂(z̃P |G) as:

p̂(z̃P |G) =
1

l

l∑
j=1

K(z̃P , z̃Gj ) (6)

Furthermore, an accurate approximation of Eq. 6 using (few)
k largest elements in the sum is given below:

pNN (z̃P |G) =
1

l

k∑
j=1

K(z̃P , z̃GNNj
) (7)

These k largest elements correspond to the k nearest neighbors
of an element z̃P ∈ P within the elements z̃G1 , z̃G2 , . . . , z̃Gl ∈
G. This is the probability model of our kNN-average pooling
method. Due to that l is a constant, we approximate a similarity
defined in Eq. 3. To match two sets, we apply a symmetric
format in Eq. 4.

D. Pre-defined metrics embedded vs Learned metrics embed-
ded

As described in Fig. 2, the next step after defining the
format of Set-to-Set distance is to find an appropriate metric
measuring the distance. Our framework based on the proposed
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(a) (b)

Fig. 5: Visualization of deep features from Conv2, Conv3, Conv4 and Conv5. (a) Frontal face; (b) Profile face. Most of the
reaction hits on eyes, noses, mouths and ears which are most important for face recognition.

kNN-average pooling is very generic and flexible, which
allows switching between several metrics (both pre-defined
and learned).

Generally, supervised metric learning considers a classifi-
cation problem, whose objective is minimizing the distance
between intra-class samples and maximizing the distance
between inter-class samples. However, there are many subjects
with only one sample in the IJB-A dataset. In this case, metric
learning does not seem to present a satisfactory performance
due to lack of training data. Fortunately, our S2S distance
embedded with the unsupervised metric can achieve fabulous
results. In this paper, we endow the kernel function K(x, y)
three different metrics including Euclidean distance [36], Co-
sine similarity [37] and Joint Bayesian [38], [39]. Euclidean
distance and Cosine similarity are unsupervised metrics. The
formulas respectively are:

dEu(z̃
P
i , z̃

G
j ) = ‖z̃Pi − z̃Gj ‖2, (8)

dCos(z̃
P
i , z̃

G
j ) = cos(z̃Pi , z̃

G
j ) =

z̃Pi · z̃Gj
‖z̃Pi ‖‖z̃Gj ‖

(9)

Moreover, the Joint Bayesian metric was introduced in
previous works [39], where the appearance of a face can be
modeled by two parts: identity and intra-personal variation.
We use LDA to approximately optimize the loss function for
JB metric.

IV. EXPERIMENTAL RESULTS

In this section, we present details of the whole system and
evaluate it on the IJB-A dataset. We plot the bar figures to
show the specific results for different settings. The Receiver
Operating Characteristic (ROC) curves for 1:1 face verifi-
cation, the Cumulative Match Characteristic (CMC) curves
for 1:N closed-set face identification and the Decision Error
Tradeoff (DET) curves for 1:N open-set identification are
used to show all the comparisons. Our S2S distance based
on kNN-average pooling really helps to improve the results
significantly. Moreover, compared to the existing methods, our
system achieves the state-of-the-art results.

A. Implementation details

Deep features prove to be powerful in face recognition [1],
[2], [3], [40], [41], [42], [43]. Due to the fact that each split
of IJB-A does not contain many images, we use transfer
learning to get deep representations. Specifically, we apply
VGG-16 [44] deep network trained from scratch on the VGG-
Face dataset [1] without overlapping with the IJB-A dataset
and then fine-tune it on training dataset of each split of IJB-
A. We crop the faces using the ground-truth boxes provided
with IJB-A and then re-scale them to 224 × 224 × 3. Face
alignment is not done here because not all images are provided
with three key points. Another reason is that it is difficult
to align different profile faces and the incorrect alignment
results will bring extra noises. We input the face patches of
the training set into our VGG-16 network and set the base
learning rate 0.001 and learning rate policy “step”. We take
the penultimate layer output as the feature encoding of 4096
dimensions. Afterwards, whitened PCA [45] is used to reduce
the dimension to 256. We randomly select 10 classes from
the test dataset of split 1 and use t-SNE [46] to visualize its
distributions after a PCA and a whitened PCA respectively (see
in Fig. 4). It is clear that whitened PCA makes the intra-class
distribution like a spherical shape and increases the cohesion
within the same class. The final features used for kNN-average
pooling are based on media sample. In our experiments, k = 2
is used for all settings. If a set only has one media, we adjust
k = 1.

B. IJB-A evaluation

IJB-A is the only public dataset over sets, which contains
in total 5,712 images and 2,085 videos of 500 subjects, with
an average of 11.4 images and 4.2 videos per subject [7].
They are randomly divided into 10 splits with overlap at
the subject level. There are 333 subjects randomly sampled
and placed in training for each split, the other 167 subjects
placed in testing. There are three protocols defined on it,
which are for verification, closed-set identification and open-
set identification respectively. All the results reported below
are averages over the 10 splits.

1) Evaluation for face verification: The 1:1 compare pro-
tocol is used for face verification. For each split, the number
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(a) (b) (c) (d)

Fig. 6: IJB-A 1:1 ROC curve based on different metrics:(a) Cosine Similarity; (b) Euclidean Distance; (c) JB metric; (d)
Comparisons between the results of kNN-average method based on the three metrics.

(a) (b) (c) (d)

Fig. 7: IJB-A 1:N CMC curve based on different metrics:(a) Cosine Similarity; (b) Euclidean Distance; (c) JB metric; (d)
Comparisons between the results of kNN-average method based on the three metrics.

(a) (b) (c) (d)

Fig. 8: IJB-A 1:N DET curve based on different metrics:(a) Cosine Similarity; (b) Euclidean Distance; (c) JB metric; (d)
Comparisons between the results of kNN-average method based on the three metrics.

(a) (b) (c)

Fig. 9: IJB-A 1:1 Verification Results based on different metrics: (a) Cosine Similarity; (b) Euclidean Distance; (c) JB Metric.

of genuine pairs equals the number of probe sets, and a
single gallery set is attached to each subject. The ROC
curve is classically used to measure the verification accuracy.

Given a threshold (the independent variable), ROC draws the
relationships between the true accept rate (TAR), which is the
fraction of genuine pairs correctly exceeding the threshold, and
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(a) (b) (c)

Fig. 10: IJB-A 1:N Closed-set Identification Results based on different metrics: (a) Cosine Similarity; (b) Euclidean Distance;
(c) JB Metric.

(a) (b) (c)

Fig. 11: IJB-A 1:N Open-set Identification Results based on different metrics: (a) Cosine Similarity; (b) Euclidean Distance;
(c) JB Metric.

the false accept rate (FAR), which is the fraction of impostor
pairs incorrectly exceeding the threshold. Using ROC curves,
the following accuracies are reported: the TAR @ FAR =
0.1, 0.01 and 0.001. The higher the values are, the better the
performance is.

We compare four pooling methods including score-
max [25], score-average [26], [28], feature-average [11], [12],
[13] and kNN-average pooling based on three different metrics.
ROC curves are drawn for each setting in Fig. 6. Seen from the
curves, our kNN-average pooling is clearly superior, compared
to the other three pooling methods, regardless of which metric
is used. It is interesting to observe that the unsupervised
metric Cosine similarity is even better than the supervised
JB metric. The results may reveal two important points: 1)
The features learned from deep Convolutional Neural Network
indeed generate good representations for most faces, except for
the faces with severe noise. We show the via feature maps from
Conv2, Conv3, Conv4 and Conv5 layers of one frontal face
and one profile face in Fig. 5. The networks have high reaction
on eyes, noses, mouths and ears which are most important for
face recognition. 2) Supervised JB metric does not seem to
work well for the case where certain subjects only include
one media, because there will be not enough samples from
the same class to learn the appropriate metric parameters. In
contrast, the pre-defined metrics like Cosine similarity, have

no such a limitation. That’s why Cosine similarity can get
better results than the metric learning in this particular case.
We also draw bar figures to show specific results of face
verification (see in Fig. 9(a)-(c)). As observed from the bar
figures, feature-average pooling causes the worst performance
for most of the indexes. For the sets including many faces
with big variation, this aggregation may lead to the leak of key
information. Score-average and score-max obtain very similar
results, however, both of which are sensitive to outliers. kNN-
average pooling obviously outperforms them due to that it
can effectively decrease the effect of noise faces. Especially
for TAR@FAR=0.001, kNN-average has more than 10% im-
provement compared with the others. For face verification,
Cosine similarity gives the best results using kNN-average
pooling. For TAR @ FAR = 0.1 and TAR @ FAR = 0.01,
the top accuracies are 98.5% and 94.5%, respectively. JB
metric dose not learn a good measurement due to the fact that
many subjects have only one sample in the IJB-A dataset. It
actually behaves similarly with Euclidean distance in terms of
the performance. Overall, our kNN-average pooling improves
the results significantly.

2) Evaluation for face identification: The 1: N search pro-
tocol is used to measure the accuracy of closed-set and open-
set identification. In each split, 55 randomly selected subjects
appearing in the probe set are not enrolled in the gallery
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TABLE II: Performance Comparison of Different Methods

Method IJB-A 1:1 Compare IJB-A 1:N Search
TAR @

FAR=0.10 (%)
TAR @

FAR=0.01 (%)
TAR @

FAR=0.001 (%)
FNIR @

FPIR=0.10 (%)
FNIR @

FPIR=0.01 (%) Rank1 (%) Rank5 (%)

OpenBR [7] 43.3 23.6 10.4 85.1 93.4 24.6 37.5
GOTS [7] 62.7 40.6 19.8 76.5 95.3 44.3 59.5
B-CNN [25] - - - 65.9 85.7 55.8 79.6
[30] 89.5 73.3 51.4 38.7 61.7 82.0 92.9

PAMs [28] - 82.6 65.2 - - 84.0 92.5
DMPR [26] 91.1 78.7 - - - 84.6 92.7
Pooling Faces [27] 81.9 63.1 - - - 84.6 93.3
[12] 94.5 79.0 59.0 - - 88.0 95.0
[42] 96.3 83.1 - - - 89.9 97.0

DCNNs [11] 96.7 83.8 - - - 90.3 96.5
[29] - 88.6 72.5 - - 90.6 96.2

VGG-16 [44] - 80.5 - 33 53.9 91.3 -
kNN-averJB 97.4 87.0 65.6 15.1 32.4 89.8 96.1
kNN-averEuclidean 95.9 89.3 79.3 14.4 26.2 93.2 97.7
kNN-averCosine 98.5 94.5 85.4 14.2 29.2 93.0 98.0

set. But each probe set is to be searched against the gallery
sets. Generally, closed-set is for user driven searches (e.g.,
forensic identification). The cumulative match characteristic
(CMC) is an information retrieval metric that captures the
recall of a specific probe identity within top-k most similar
candidates in gallery. We report rank-1 and rank-5 correct
retrieval rates (CRR) for the closed setting. However, for
other applications like de-duplication, some searches cannot
manually be examined. There exists a tradeoff between false
alarms and misses. In this case, the decision error tradeoff
(DET) is plotted to measure the false positive identification
rate (FPIR) and false negative identification rate (FNIR). FPIR
means the false alarm rate which measures what fraction of
comparisons between probe sets and non-match gallery set
result in a similarity score above a given threshold t. FNIR is
the miss rate measuring what fraction of probe searches fail
to match a mated gallery set above t. In this paper, FPIR @
FNIR = 0.1 and 0.01 will be reported. The lower the values
are, the better the performance is.

For 1: N closed-set face identification, we also compare
the four pooling methods using Cosine similarity, Euclidean
distance and JB. The CMC curves for all the settings can be
found in Fig. 7. The kNN-average pooling presents a signif-
icant increment especially for rank-1 of the three embedded
metrics. In Fig. 7(d), the comparisons for the three metrics
based on kNN-average pooling are shown, in which both
Cosine embedded and Euclidean embedded perform similarly
but are much better than JB embedded. Fig. 10(a)-(c) display
the numeric results for closed-set. Generally, the results of
score-max and score-average are more or less the same.
Using Cosine similarity, kNN-average pooling achieves a top
accuracy of 98% for rank-5 and gets the best result of 93.2%
for rank-1 if applying Euclidean distance. JB embedded gives
92.1% and 97.4% respectively for rank-1 and rank-5 based
on kNN-average pooling, which help to increase the correct
retrieval rate among different pooling methods.

The more challenging task is 1: N open-set identification,
which requires rejecting the subjects without the enrollment in
gallery. Fig. 11(a)-(c) list the results based on the four pooling

methods respectively using Cosine similarity embedded, Eu-
clidean distance embedded and JB embedded. It is interesting
to find that feature-average pooling performs better than the
other two score-related pooling methods at FNIR@FPIR=0.01.
It seems that feature-average representation for the subjects not
enrolled in gallery can get a low score, which may help to de-
crease the miss rate. However, kNN-average pooling still is the
best strategy for open-set. It decreases the miss rate by 1.8%
for FNIR@FPIR=0.1 when Cosine similarity is embedded.
Furthermore, for FNIR@FPIR=0.1 and FNIR@FPIR=0.01,
there are more than 4% and 6% misses decreased, compared
with the other three pooling methods using Euclidean distance.
In Fig. 8, 1: N DET curves show the visual results. The
results of feature-average pooling are close to those of score-
average pooling but still worse than the kNN-average pooling.
It reaches the same conclusion that unsupervised metrics can
outperform supervised metric learning, which further supports
our simple but efficient S2S distance.

3) Failure case analysis: We also display some failure
cases based on kNN-average pooling using Cosine similarity
for face verification on split 1. In Fig. 12(a), the top-30 worst
matched pairs are listed. It means the two persons belonging
to the same subject are verified incorrectly. In the first line,
it can be seen there is an collection error in IJB-A dataset
that the different persons with different genders are treated
as a same person. Fig. 12(b) illustrates the top-30 worst Non-
matched pairs that two different persons in the compared pairs
are determined to be the same person. The ID of the two sets
and the similarity score given by our approach between the
two sets are shown. It can be observed that most error cases
occur when the set contains only one media item, which means
very little information is available for the verification. kNN-
average pooling is not able to play a positive role in this case.
Moreover, it is observed that the only media sample usually
has an extreme pose or the face is very blurred or occluded. In
the ninth line in (a), there is even an age gap between the two
sets of the same person. It seems that only a noise face can
be used and our method inevitably gives rise to a poor result.
Most of the existing methods can not solve this issue caused
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Fig. 12: Failure cases analysis. (a) Top 30 worst matched; (b)
Top 30 worst Non-matched. Most face sets just contain one
media and most faces are very profile.

by the very limited number of media in a set. In future, we
hope to utilize synthesized images to augment data for subjects
with limited samples. We assume enough samples of a subject
should address the problem.

4) Comparisons with benchmarks: We compare our meth-
ods using different metrics with the existing 12 methods from
other publications. OpenBR and GOTS are two basic baselines
given in [7]. They are not deep learning methods and give
very poor performances for both verification and identification.
Other methods using deep convolutional networks, which were
introduced in Section II, have some improvements. Not all
of the methods performs on all protocols of IJB-A. For
example, B-CNN method just focuses on face identification
and gets the accuracy of 55.8% for rank-1, and the missed
rate of 85.7% for FPIR=0.01. Most of the other methods
only concentrated on the face verification task and closed-
set identification. DCNNs [11] shows the best results among
these benchmarks in TABLE II. However, we test all the pro-
tocols of IJB-A using kNN-average pooling based on Cosine
similarity, Euclidean distance and JB metric. The results of
the three settings are very competitive. Especially, the two
unsupervised metrics embedded get top accuracies over most
of all protocols. Even JB embedded achieve 15.1% and 32.4%
respectively for FNIR@FPIR=0.1 and 0.01, which are much
better than the previous results. Seen from the table, kNN-
average pooling using Cosine similarity further exceeds other
methods for face verification and closed-set face identification
and kNN-average pooling using Euclidean distance generates
large margins over other methods. In all, even though the kNN-
average pooling combing with unsupervised metrics is simple,
it is very effective and flexible.

V. CONCLUSION

In this paper, we have presented a very simple but effective
S2S distance to measure the similarity between two image
sets, which is suitable for addressing the identification of
faces with heterogeneous contents, such as the IJB-A dataset.
The S2S distance is defined based on averaging a mutual
comparison between the probe set and the gallery set, in which
each element is only compared with its nearest neighbors.
By doing so, the impact of outliers and noises commonly
occurring in the IJB-A dataset is under control. Furthermore,
variable metric methods can be embedded into the proposed
S2S distance measure. Finally, we showed that even with
a simple unsupervised metric, like Euclidean distance, the
proposed method can achieve competitive accuracy for both
face verification and identification. Furthermore, the kNN-
average pooling is very generic and can be potentially applied
to various applications over sets, where some severe noise or
extreme cases occur caused by capturing conditions in real
world. Such applications include person-reidentification [47],
object recognition, saliency detection [48], [49] and image
retrieval [50].

In future work, our system can be enhanced from two
aspects: (1) we will embed the kNN-average pooling to a deep
network in an end-to-end fashion. We believe such a strategy
will further boost the recognition performance; (2) We will
investigate the local features based on extracting key points
from faces and design a S2S distance based on these local
features, enabling more robust matching between faces with
severe variations.
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