The crowding out of complex social goods

- 1
- 2

3 Abstract

4 The valuation of ecosystem services to inform natural resource management and development has 5 gained acceptance in many arenas. Yet, contemporary economic valuation is constrained to the 6 appraisal of simple goods that generate benefits that accrue to individuals, neglecting complex goods 7 that generate benefits that accrue to society more broadly. Methodological barriers to the valuation 8 of complex social goods have led to their frequent omission from natural resource management 9 deliberations. The prevailing valuation paradigm that focuses on simple individual goods may erode 10 conservation efforts by crowding out the institutions and behaviours that support socially 11 constructed ecosystem service values. Erosion of these values ultimately harms the environment 12 and society as a whole. The institutionalisation of appropriate methods for estimating the value of 13 complex social goods alongside existing methods for valuing simple individual goods within 14 international conservation, development and policy-making discourses, is therefore an important 15 evolution for sustainable natural resource management. 16

- 17 Keywords
- 18 Non-market valuation, Cost Benefit Analysis, Individual Welfare, Social Welfare
- 19

20

21 1 Introduction

22 Natural resource management and development have long been informed by the economic 23 valuation of various interrelated ecosystem services and over the past two centuries, these valuation 24 methods have matured significantly. Putting a 'price' on nature allows decision makers to quantify 25 and elucidate the myriad impacts of development. Efforts to "mainstream the values of biodiversity 26 and ecosystem services into decision-making at all levels" are broadly recognized; non-market 27 valuation is now firmly established in international policy discourses concerning natural resource use 28 and conservation and is actively encouraged by state agencies through the publication of guidelines 29 and handbooks (for example, Commonwealth of Australia, 2006; H.M. Treasury, 2003). There is, 30 however, growing recognition that dominant valuation approaches make only a subset of benefits 31 visible (Kenter et al., 2015) and that by focusing entirely on 'the market' and on market incentives, 32 we may undermine the motivations and thus behaviors we seek to promote (Gneezy et al., 2011).

33 An emerging body of literature now recognizes a spectrum of value typologies (Vatn, 2009; 34 Schwartz, 2015; Kenter et al., 2015). These typologies vary in complexity, but highlight that (at the 35 simplest level), goods may be thought of as having (at least) two distinct dimensions-depicted as 36 axes in Figure 1. Along the horizontal axis, goods range from simple, with separable benefits (e.g., 37 food), to complex, with multiple, inter-related and inseparable benefits (e.g., wedding banquet). 38 Along the vertical axis, benefits derived from goods range from individually constructed, reflecting 39 individual motivations and 'utility' (e.g., ambition and success, respectively), to socially constructed, 40 representing communal norms, relations, and expectations (e.g., social cohesion).

The various possible combinations of goods and benefits may be illustrated by different types of fisheries (Panel A, Figure 1), described in Table 1. As discussed in section 2 economists' ability to estimate values along these axes is variable. Hence, a limited range of goods has been assessed, with

44 significant policy implications (discussed in section 3).

45

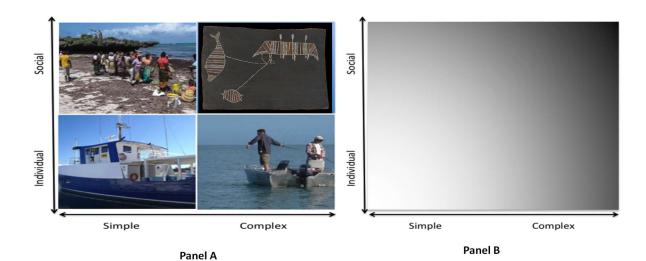


Figure 1: Panel A: Various ecosystem services and their associated benefits may be visualised in two dimensions.
 Along one axis, goods range from simple to complex, illustrated here using different types of fisheries. Along the
 other, benefits range from individual to social constructs. Individually constructed benefits reflect individual
 'utility.' Socially constructed benefits relate to social norms, relations, and expectations. Panel B: Established
 methodology sheds light on values relating to simple-individual goods (such as commercial fisheries) with other

- 52 types of goods left mostly in the dark (e.g. recreational fisheries, subsistence fisheries, and in particular, traditional
- 53 fisheries).

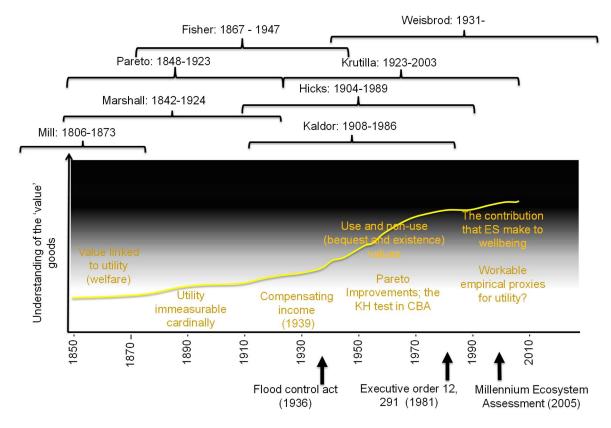
54 **Table 1: Simplified typology of goods and benefits** (derived from insights provided by Vatn 2009;

55 Schwartz, 2015; Kenter *et al.* 2015)

		Type of g	bod
		Simple	Complex
Type of Benefit	Individual	Commercial fisheries are an example of a simple good bearing individually constructed benefits. Although the identify of commercial fishers is often tied to their occupation (highlighting the importance of cultural values to these fishers), the primary motivation for commercial fishing (particularly incorporated companies) tends to be economic. The benefits associated with this industry (e.g., contribution to GDP) are the sum outcome of individual motivations and incentives to procure income.	Recreational fishing is an example of a complex good that bears individually constructed benefits. Recreational fishing makes a contribution to individual utility – although the contribution comprises complex and intertwined cultural/recreational and economic benefits.
	Social	Small-scale fisheries exemplify simple goods bearing socially constructed benefits. They often provide an economic safety net for vulnerable members of a community. Such fisheries tend to feature strong norms of fair access (Hicks et al., 2014), reciprocity and taboos concerning trade-offs that promote the fair distribution of benefits (Daw et al., 2015). In many fisheries along the coast of the western Indian Ocean, catch is distributed amongst a range of stakeholders, including fishers, traders and small- scale processors. When the take is plentiful, this arrangement is predominantly financial. However, when catches are low, the most vulnerable in society (often widowed women) are assured subsistence without financial exchange (Hicks et al., 2014; Daw et al., 2015).	Traditional Indigenous fisheries are complex goods bearing socially constructed benefits. While the basic acts of hunting and fishing may generate simple, individual benefits like nutrition and income, the relations and meanings formed through these practices' associated norms, traditions, stories, and ceremonies bear socio-cultural benefits which are often more significant than the individual benefits (Delisle, 2013; Watkin Lui et al., 2016).

56

57


⁵⁸ 2 A very brief history of non-market valuation

59 Although contemporary discourse about the 'value' of environmental goods and services is 60 dominated by the concept of price (exchange value), this does not mean that economists believe price reflects value; rather, non-market valuation methods are firmly grounded in the broader idea 61 62 of *utilitarianism*—i.e., value is a matter of usefulness (ideas largely attributable to Mill and Marshall). 63 For most economists, the term *utility* represents the satisfaction that people gain from the use (or 64 non-use) of a good or service; economists are thus concerned about people's satisfaction. For 65 economists, maximizing someone's utility thus implies making that person as satisfied as possible. 66 Many welfare and environmental economists have generalized this notion of utility to the level of 67 society, whereby 'social utility' may be thought of as a measure of social welfare.

Environmental economists often seek to highlight the contribution that environmental goods and services make to individual or social welfare (utility/wellbeing) and have developed numerous methods of doing so. Below, we provide a brief (and non-definitive) summary of key events relevant to the development of these methods and of Cost-Benefit Analysis (CBA), an institutionalised framework for weighing up a variety of market and non-market costs and benefits (see Hanley and Spash, 1993, for a more comprehensive overview). We use Figure 2 to depict key contributing

- economists, concepts and policies chronologically, providing a notional measure of the growth in our
- 75 'knowledge' of values and valuation methods with a yellow line (with undefined units of 'knowledge'
- 76 measured on the vertical axis).
- Late 1800s/early 1900s. Mill and Marshall clarify the distinction between value and price, with
 the notion of *utility*—linked to the idea of individual, and potentially also social 'welfare' (or
 wellbeing)
- Early 1900s. Economists and social scientists collaborate frequently on research into individual
 and collective wellbeing (*utility*/welfare).
- <u>1930's.</u> Influential economists—namely, Irving Fisher and Vilfredo Pareto—successfully argue
 that utility cannot be measured in a way that facilitates meaningful interpersonal comparisons
 (Kristoffersen, 2010). From this point, for almost a century, economists and social scientists
 largely pursue different research agendas relating to wellbeing/utility/welfare.
- 86 The US Flood Control Act of 1936 (The Act). This act legislated construction of an unprecedented 87 litany of civil infrastructure works and obligated the government to undertake flood control 88 efforts in the interest of the "general welfare," so long as a development project's "benefits to 89 whomever they may accrue are in excess of the estimated costs" (US Congress, 1936, p. 1570). 90 The Act established a concrete policy imperative for research into the social costs and benefits of 91 natural resource development. Critically, the Act established that the improvement of social 92 welfare necessarily required one to account for a diverse range of potentially competing 93 interests, but it did not specify how this was to be done.
- Late 1930s. Hicks (1939) demonstrated that the welfare gains or losses arising from the addition or removal of goods and services can be articulated in terms of 'income-equivalent' compensations. That is, the cost (or benefit) to an individual of the loss (or gain) in their access to a good can be calculated by determining how much remuneration would be required to compensate them for that loss (formally, to keep their utility constant).
- 99 Late 1930s—early 2000s
- 100 The Total Economic Value (TEV) framework slowly developed, helping to clarify ways in ٠ 101 which people benefit from the environment. Simplistically, the contemporary version of 102 the framework identifies three broad categories: 'direct use values', where people 103 benefit from the direct use of environmental goods and services (e.g., agriculture); 104 'indirect use values', where people benefit indirectly from the environment (e.g., from 105 soil substrate water filtration-see Ciriacy-Wantrup, 1955, for an early discussion of 106 these benefits); and 'non-use values', where people benefit from the environment 107 without using it—as for existence values (e.g., knowing the environment is there) and 108 bequest values (e.g., leaving the environment intact for future generations) (Krutilla, 109 1967); and option values (e.g., maintaining the environment for potential future use) 110 (Weisbrod, 1964).
- 111 Numerous methods for estimating the 'income-equivalent' compensations (interpreted • 112 as 'value') of the different types of use and non-use values were developed (see 113 Appendix A for an overview). Some methods are only capable of estimating some values 114 (e.g., the travel cost method can estimate recreational use-values, but cannot estimate 115 bequest values). Each method thus generates subtly distinct information (e.g., 116 expenditure, consumer surplus, willingness to pay) about different types of values. All 117 methods are conditioned on assumptions, but two key assumptions dominate: first, that 118 the constituents of utility are distinct, separable and additive (across goods and across 119 people); and second, that income-equivalent compensations are an appropriate framing of economic trade-offs. 120

- Most research concerning decision-making for improved social welfare was based on 121 122 two compelling and related principles, inextricably linked to CBA. First, was the idea of a 123 Pareto Improvement. Pareto argued that one could unambiguously improve social 124 welfare if the welfare of at least one person increased, without negatively impacting the 125 welfare of another. Second, was the notion of a Potential Pareto Improvement (with the related Kaldor-Hicks test, developed by Hicks and Kaldor (Broadway, 1974). It was noted 126 127 that if the benefits of a project outweighed its costs, then the project could potentially 128 improve social welfare since those who benefited would have more than enough to 129 compensate those who lost.
- Early 21st century. The 2005 Millennium Ecosystem Assessment ignited broad interest in the contribution that ecosystem services make to human wellbeing. This further highlighted the need for policy makers to consider the 'value' of the environment more broadly, and thus increased interest in non-market valuation methods. It also served to focus attention on wellbeing, rather than exclusively on income-compensations or 'price'. Arguably, this new focus helped highlight wellbeing research undertaken by social scientists (with entire journals, e.g., *Social Indicators Research, Journal of Happiness Studies,* devoted to the topic).
- 137 Recent decades. An increasingly vocal group of behavioural economists have argued that 138 individual welfare (i.e., utility) may in fact be cardinal (Barberis, 2013), leading to the emergence 139 of a new approach to valuation: the life-satisfaction (LS) approach (see, for example, Frey et al., 140 2009). Simplistically, this approach uses self-reported measures of (individual) well-being as 141 proxies for utility (Gowdy, 2005) and regresses these measures against factors known to 142 influence it (including environmental goods and services). LS thus enabled researchers to assess these ecosystem services' marginal value (to utility) directly, without needing to assess values as 143 144 income-equivalent compensations (though that can also be done).

Figure 2: Hypothesised growth in our understanding of the 'value' of environmental goods and services over time (shown with a yellow line; notionally measured, without units, on vertical axis). Overlays, include the names and

148life-spans of (a subset of) key researchers (top), key concepts (middle – yellow font) and key149policies/investigations (below axis) which contributed to the development of non-market valuation methods and150methods for weighing up diverse market and non-market values (notably, CBA). Dark shades in upper diagram151indicate values still poorly understood and thus 'in the dark'.

152 The US Flood Control Act of 1936 and subsequent institutionalisation of Cost Benefit Analysis (CBA) thus drove significant advancements in the sub-fields of welfare and environmental economics 153 154 resulting in the identification of different types of goods and services, and the development of numerous related non-market valuation methods (Appendix A). The historical development of these 155 156 methods means that most contemporary valuation exercises—and associated decision-making frameworks for aggregating the impacts of development, such as CBA—assume (even if only 157 158 implicitly) that: (a) changes in social welfare may be assessed simply as the sum of each person's 159 costs and benefits (conceptually, changes in their utility); (b) each person's utility depends on the 160 utility they gain from each good and service they select; and (c) social welfare (utility) is the sum of 161 individuals' utility.

The emphasis on ostensibly separable components of utility, measured at the individual level 162 163 (individual good; individual person) and aggregated to the scale of society has narrowed the focus of 164 (most) economic valuation exercises to a limited range of *simple* (separable) goods and services 165 (Kenter et al., 2015). Techniques for estimating the value of simple individual goods (such as 166 commercial fisheries, see Figure 1) are well established (assessing, for example, the value of output, 167 of 'rent', see Appendix A). Though it can be difficult to estimate the value of complex individual 168 goods (like recreational fishing, Figure 1) (Turner et al., 2003), methods and examples exist (see 169 Appendix A for valuation techniques based on indirect market associations-e.g., travel cost 170 method, hedonic pricing). Developments within the fields of behavioural and institutional economics 171 have allowed promising innovations, particularly with regards to the conceptual inclusion of *complex* 172 goods (Barberis, 2013), and the LS approach to valuation allows one to consider multiple values 173 simultaneously. But the underpinning individualism of these approaches necessarily constrains 174 common valuation exercises to the assessment of goods and services that generate 'utility' for 175 individuals.

176 Thus, since the period immediately following the Act, when our knowledge about the value of non-177 market goods (and methods for assessing their value) grew rapidly, the rate of knowledge-growth 178 has slowed (Figure 2). After passage of the Act, considerable research focused on developing 179 neoclassical methods (which assumed utility to be measurable only in ordinal terms) to assess 180 previously understood and newly identified use and non-use values. But since the late 1900s, 181 attention has, arguably, been focused most ardently on the refinement of existing methods (e.g., on 182 the development of more sophisticated econometric techniques for analysing data, on incorporation 183 of insights from psychology into choice-modelling experiments). The development of LS comprises a notable exception. Although the difficulties of using existing methods to ascribe monetary value to 184 185 complex social goods like Traditional Indigenous fishing and hunting (Figure 1) are widely acknowledged (Altman & Whitehead, 2003; Vent and Quiggin, 2007), relatively little attention has 186 187 been given to the development of <u>new</u> methods capable of doing so. Since the early 1900s, research 188 has thus shed much light on the 'value' of individual goods (particularly simple ones) but, in 189 comparison, we are still very much in the dark when it comes to understanding the 'value' of 190 complex social goods (Panel B, Figure 1).

191 3 The crowding out of social values, institutions and norms

"Motivational crowding" has already been shown to occur as a result of economic interventions (Gneezy et al., 2011; Agrawal et al., 2015). Significantly, the prevailing valuation paradigm that focuses on *individual goods* may also contribute to the erosion of conservation efforts and thus degradation of the environment by crowding out the values, institutions and norms (akin to motivations) that support socially constructed ecosystem service values.

197 Every social context can be understood as an institution, in that there are rules and norms that signal 198 appropriate behaviour (Vatn, 2009). Different social contexts support particular rationalities and 199 emphasize distinct value types. We reason differently as economic actors in the market, for 200 example, than we do amongst family and friends. Thus certain institutions support simple individual 201 goods (e.g., food items) whereas others support complex social goods (e.g., a wedding feast), and 202 each influences how people behave. An economic valuation exercise is no different in that it imposes 203 a set of rules and norms concerning how decisions are to be made (Jacobs, 1997). These rules flow 204 from the valuation method and dictate what is to be investigated and is thus of value, and 205 characterize the goods and benefits (i.e., as simple, complex, individually or socially constructed) 206 (Vatn, 2009). The valuation exercise engages these elements according to its self-delineated 207 analytical framework, ascribing importance to various factors in accordance with prevailing 208 assumptions, conventions and priorities. When conducting a valuation exercise, we are thus 209 imposing an institution—with associated assumptions—that prioritises values at the individual level. 210 Ostrom (1990) and Ostrom et al. (1999) clearly demonstrate that common pool resources are not 211 necessarily doomed to the tragedy of the commons, and that alternative systems and institutions— 212 especially those that draw upon multiple forms of social capital—are adept to deal with complex 213 natural resource management problems. Yet the institutionalisation of CBA and the valuation 214 exercises that support it serves to inadvertently undermine these other frameworks, norms, 215 behaviours and bodies of knowledge.

216 Figure 3 depicts the mechanism by which this happens and the impact it has on individual and social 217 wellbeing. Discussed above, the prevailing paradigm (i.e., CBA) emphasises individual utility over 218 broader notions of social value (Figure 3, a). Illustrated below, the institutionalisation of valuation 219 methodologies that prioritise the individual serves to crowd-out social goods (Figure 3, b) and 220 socially constructed corporate and political decision-making processes (Figure 3, c). This crowding-221 out undermines social norms and behaviours that impact the environment (Figure 3, d). Discussed in 222 Section 4, the marginalisation of socially constructed institutions and subsequent degradation of the 223 environment may have direct and indirect negative impacts on social welfare (community 224 wellbeing).

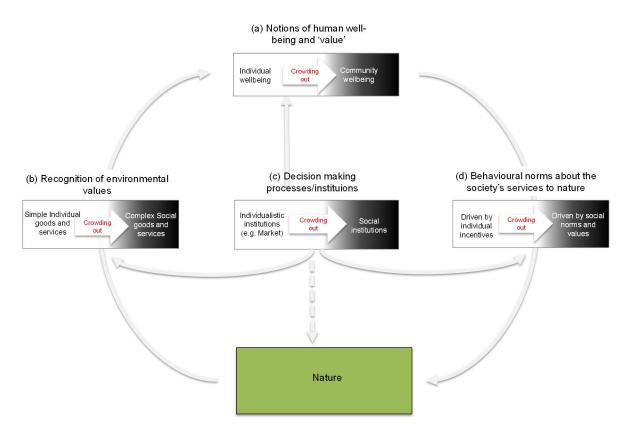
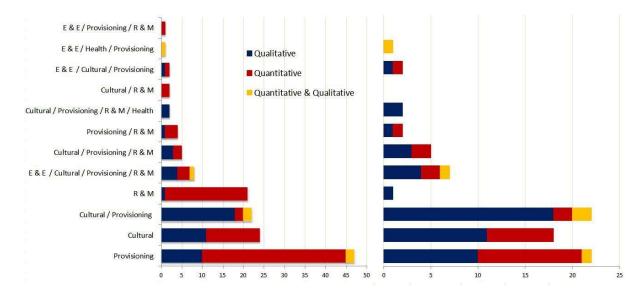



Figure 3: The crowding out of social goods, institutions and norms that support the environment and community wellbeing. CBA and associated non-market valuation techniques (a) prioritize individualistic notions of human wellbeing over other social constructs thus crowding out: (b) complex social goods and services; (c) socially constructed decision-making frameworks; and (c) social norms associated with stewardship behaviours. These socially constructed values, institutions and norms directly support community wellbeing; they also support the environment, so efforts to protect nature using methods that adopt exclusively individualistic perspectives which crowd-out social perspectives will not unambiguously improve social welfare (community wellbeing)

233

In contrast to simple individual goods, complex social goods (such as those associated with 234 235 Indigenous Protected areas that generate multiple simultaneous cultural and provisioning benefits, 236 amongst others) are typically only discussed in qualitative terms or obscured altogether (Figure 4, supported by supplementary e-materials). Economic logic suggests that, ceteris paribus, spending 237 238 should be directed to programs with the greatest benefit per dollar spent. If, due to their complexity 239 or because we lack methods for assessing them, entire classes of benefits are routinely omitted from 240 deliberations, spending will invariably be directed towards interventions and projects that generate 241 more easily monetized benefits (i.e., towards simple individual goods), rather than to projects that 242 generate the greatest benefit, per se (at least some of which are likely to be associated with complex social goods). Our success in validating the value of *simple individual goods* may have unintentionally 243 244 stifled our consideration of complex social goods and services that generate significant social and 245 environmental benefits (Figure 1)—and may indeed crowd them out (Figure 3, b) by reducing 246 investments in activities that support them, relative to activities that support simple individual 247 goods.

249 250

Figure 4: Studies referring to the 'value' of various benefits associated with protected areas in (a) general (N=139) and (b) specifically Indigenous contexts (N=82), by general methodological approach. We undertook a non-251 exhaustive search of studies of protected areas (see supplementary e-materials for list of publications included) 252 classifying them by type of ecosystem service considered (provisioning, regulation and maintenance (R&M), and 253 cultural). The categories of Health and Employment & Enabling (E&E) were added to capture other benefits 254 associated with protected areas that are not always mediated through the environment. If studies considered more 255 than one type of benefit (frequently complex social goods), all are listed.

256 Society accepts—explicitly and implicitly—that there are different classes of values and that certain 257 trade-offs should be avoided (Vatn, 2009). Even if not explicitly asking about 'willingness to pay', 258 most contemporary valuation methods assume that an ecosystem service may be ascribed a 259 marginal value according to a beneficiaries' willingness to forgo its benefit in exchange for monetary 260 recompense (Hick's compensating income). This framing contrives the price at which an otherwise 261 socially unacceptable trade-off may be sanctioned. By assuming the additively separable nature of 262 the benefit itself, the exercise also implies that an individual may forgo receipt of a benefit without 263 reducing the value of the ecosystem service that underlies it. Yet a socially constructed benefit—the cultural significance of the undeveloped natural environment to its Indigenous traditional owners, 264 265 for example—cannot, by definition, be divided into constituent partial values. The socially 266 constructed value of an ecosystem service is inextricably linked to the communal experience of its benefit; to erode one's personal benefit is to erode the benefits of all. The neo-classical estimation 267 268 of hypothetically disaggregated values posits trade-offs predicated on individualized incentives. This 269 belies the true nature of the social good and trivializes difficult decisions regarding the best course of 270 action for society as a whole. At what price should an individual forgo one's culture, religion or social 271 identity? By attempting to commodify complex social goods, the valuation exercise compromises 272 their values (Adamowicz et al., 1998) (Figure 3. b).

273 Moreover, most valuation methods generate estimates by assuming that social welfare (or the total 274 value of a good, or the net social benefit of a project) is the sum of individual welfares (or values, or 275 net benefits). The simple aggregation of individual estimates of 'value' may be inappropriate in some 276 contexts, particularly when values are held at the community-level (Adamowicz et al., 1998). There is 277 widespread agreement that benefits associated with the environment are frequently inter-278 dependent (i.e., 'complex'); researchers who aggregate partial estimates purportedly risk double-279 counting 'overlapping values' (Hein et al., 2006). Yet this framing implicitly precludes the possibility 280 that inter-dependent values may be synergistic—that the whole may comprise more than the sum of 281 its parts. As the value of a shoe is critically diminished in the absence of its partner, so too may

shared social values be fundamentally complementary. Indigenous peoples, for example, often accumulate knowledge and wealth at the community-level—particularly values associated with cultural integrity and continuity (Chan *et al.*, 2012). This is another way by which the use of individualistic valuation approaches for social goods (complex or otherwise) may serve to undermine social values (Figure 3. b).

287 Critically, the omission of complex social goods in valuation exercises may also have unintended 288 implications on existing values and behaviours. The institutionalisation of CBA has crowded out 289 alternative systems and institutions capable of dealing with complex natural resource management 290 (Ostrom, 1999, 2010) (Figure 3, c) and the framing of environmental issues in monetary terms may 291 weaken intrinsic values and social norms crucial to the promotion of the public good (Gneezy et al. 292 2011). The financial incentivisation of environmental stewardship, for example, has been shown to 293 undermine supporting motivations and behaviours (Agrawal et al., 2015), and to increase the costs 294 of natural resource management and community change processes (Larson and Brake, 2011). This 295 may marginalise social norms and behaviours imperative to environmental protection (Figure 3, d).

296

297 4 Potential impacts on wellbeing

CBA and the individualistic valuation methods that support it contribute to the crowding out of social goods, institutions and norms that support the environment. They may thus have the unintended consequence of indirectly contributing to environmental degradation. Whether or not that degradation associated with the loss of social goods, institutions and norms outweighs the (individualistic) positive impacts that CBA and valuation may have upon the environment remains an empirical question.

304 But there are other ways in which individual and social wellbeing may be affected. First, the 305 crowding out of social decision making frameworks has been shown to erode social capital, and this has a direct negative impact on individual welfare (Achor, 2011), and may also bear environmental 306 307 consequences, known to be related to wellbeing. Second, the non-market valuation techniques that 308 support CBA (and other less structured decision making processes) are essentially voting systems 309 weighted by personal wealth (Loomis, 2011). This is because willingness to pay (or amount actually 310 paid) is, amongst other things, a function of ability to pay. Decision processes that use estimates 311 generated from these methods may thus inadvertently privilege the (net) benefits of the wealthy 312 above those of the poor. While weights which correct for income differences are sometimes used 313 within CBA—particularly in developing economies where income inequality is often extreme (Hanley 314 and Barbier, 2009)—such practices are rare. Such practices are also rare in less structured decision 315 making environments. The TEEB initiative (van der Ploeg and de Groot, 2010), for example, reports 316 only the nominal value of various ecosystem services throughout the world, irrespective of sample 317 income distributions (though TEEB does group countries by relative overall income for comparison). 318 There is substantial empirical evidence linking individuals' environmental preferences with their 319 income (Jacobsen and Hanley, 2009; Hicks et al., 2014) and evidence to suggest that in some 320 contexts, the wealthy have more to gain from developments that erode the environment than the 321 poor (Stoeckl et al., 2013). Natural resource management decisions informed by the naïve 322 application of unweighted 'values' may thus be more inclined to approve projects that degrade the 323 environment than other decision making processes while simultaneously exacerbating the growing 324 global inequality of the past several decades (Jaumotte et al., 2013).

Third, inequality has been shown to impact individual and community wellbeing (Wilkinson, 1996, Wilkinson and Picket, 2010; Guy and McCandless, 2012). There are established methods for

327 incorporating variables that account for equity (e.g., the distribution of income) within social welfare 328 functions (SEN – REFS), but by design and intent, most valuation methods ignore distributional 329 issues. In CBA, it is generally assumed that a net social benefit represents a potential Pareto *improvement*—with net social benefit represented as the sum of individually constructed benefits. It 330 has been shown that raising the income (rewards) of one individual without lowering the income 331 332 (rewards) of another can generate significant discord of individuals who do not receive the higher income (reward) (Brosnan and De Waal, 2003). Unless monetary estimates of the 'costs' of social 333 334 discord and 'benefits' related to equality are included in CBAs, one cannot assume that the 335 measured net benefits represent a genuine Pareto improvement (since certain costs and benefits 336 have been omitted from the assessment).

337

338 5 Conclusion

339 The social estimation of value has been long unbound from the concept of 'price' that characterised economics until the mid-19th century. A dawning recognition of the non-market value of ecosystem 340 341 services, bolstered by Hick's notion of compensating income, has inspired the burgeoning field of 342 environmental economics and critically enhanced sustainable management of natural resources. 343 Passage of the Flood Control Act further rooted the assessment of environmental values within 344 mainstream natural resource management policy. Subsequent development of the TEV helped to 345 elucidate many of the natural environment's non-use values, including recreational, cultural, non-346 use, bequest and existence values. In turn, society's expanding comprehension of our innate inter-347 connectedness with the environment has been complemented and further strengthened by the 348 development of novel economic tools for assessing different types of use and non-use values, 349 including, among others, travel cost (for recreational use-values), contingent valuation and 350 contingent behaviour methods (arguably developed to assess non-use values, but also capable of 351 assessing use-values).

352 As a conservation initiative, estimating the value of ecosystem services has done much to illuminate 353 the benefits individuals derive from nature. But the emphasis on goods that generate individual 354 benefits may serve to erode the values, institutions and norms that enhance and protect the 355 environment, individual and community wellbeing. Whilst valuation practitioners have within their 356 'tool kit' a diverse array of models for estimating nature's contribution to individual utility, methods 357 for highlighting the socially defined values of complex goods are relatively less well developed, and 358 less politically accepted. So too are socially constructed methods for making decisions related to the 359 environment. To continue to obscure these values within the public discourse, and (in the US) to rely 360 upon CBA as the 'preferred' mechanism for assessing change, risks further erosion of the norms and 361 behaviours upon which effective natural resource management depends. Additional research is 362 therefore needed to improve our methods of enumerating the value of complex goods and for assessing the desirability of changes that may impact them. 363

Ostrom (1990) highlights the numerous examples of situations where non-individualistic approaches (such as those requiring private property) have successfully managed natural resources; evidently communal approaches can be successful. In Indigenous communities, some people retain dynamic traditional knowledge, practices and beliefs, evolved over thousands of years, transmitted from one generation to the next (Berkes, 2008). The authority to speak about (or to 'value') particular goods or services is often vested solely in community Elders (Venn and Quiggin, 2007). In these communities, it may thus be more appropriate to assess complex social values through community-

- driven group and deliberative approaches (Wilson and Howarth, 2002), than using the non-market
- valuation approaches so commonly applied in other settings. As is true for neo-classical non-market
 valuation approaches, no single approach is problem free, but we must give them more attention,
- identifying, for example, the contexts in which these other approaches are most/least appropriate.

To conclude, we note that CBA does not ask, "What is right for society as a whole?" but rather, "What would generate the greatest (net) benefit for individuals within society?" To focus exclusively on what generates the greatest net benefit for individuals risks a crowding-out of social goods, institutions and norms that support the environment and individual and community wellbeing. The importance of these social constructs calls upon us to consider principles of public interest, not just principals of private/individual gain or loss. The challenge, of course, is to work out what those

381 principles are (or once were).

382

383 Acknowledgements

- We would like to acknowledge the financial support provided to us by the Australian
- 385 Government's National Environmental Science Program (Northern Australia Environmental
- Resources Hub), by James Cook University and by the University of Lancaster.

387 References

- Achor S. 2011. The happiness advantage: The seven principles of positive psychology that
 fuel success and performance at work. New York, NY: Virgin Books.
- Adamowicz W, Boxall P, Williams M, and Louviere J. 1998. Stated preference approaches for measuring passive use values: choice experiments and contingent valuation. *Am J Agr Econ* 80: 64-75.
- Agrawal, A., A. Chhatre, and E.R. Gerber. 2015. Motivational Crowding in Sustainable
 Development Interventions. *American Political Science Review* 109 (3):470-487.
- Altman, J., & Whitehead, P. 2003. Caring for country and sustainable Indigenous
 development: Opportunities, constraints and innovation. Working Paper No. 20/2003:
 CAEPR. Retrieved from http://www.anu.edu.au/caepr
- 398 5. Arrow, K.1950. A difficulty in the concept of social welfare. The Journal of Political Economy,
 328-346.
- 400 6. Awatere, S.B. 2008. The Price of Mauri Exploring the validity of Welfare Economics when
 401 seeking to measure Mātauranga Māori. A thesis submitted in partial fulfilment of the
 402 requirements for the degree of PhD, The University of Waikato, NZ.
- 403
 403
 7. Baker, R., & Ruting, B. 2014. Environmental Policy Analysis: A Guide to Non-Market
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404</
- 8. Barberis NC. 2013. Thirty years of prospect theory in economics: A review and assessment. J
 Econ Perspect 27: 173-195.
- 407 9. Barbier, E. B. 1994. Valuing environmental functions: tropical wetlands. Land Economics,
 408 155-173.
- 409 10. Barbier, E. B. 2007. Valuing ecosystem services as productive inputs. Economic Policy,
 410 22(49), 177-229.
- 411 11. Bateman, I. J., Carson, R. T., Day, B., Hanemann, M., Hanley, N., Hett, T., ... Özdemiroglu, E.
 412 2002. Economic valuation with stated preference techniques: a manual. Economic valuation
 413 with stated preference techniques: a manual, Cheltenham: Edward Elgar.
- 414 12. Berkes F. 2008. Sacred Ecology. Second Edition, New York, NY: Routledge.
- 415 13. Boadway, R.W., 1974. The welfare foundations of cost-benefit analysis. *The Economic*416 *Journal*, *84*(336): 926-939.
- 417 14. Brosnan S and de Waal F. 2003. Monkeys reject unequal pay. *Nature* **425**: 297-299.
- 418
 15. Burke L, Greenhalgh S, Prager D and Cooper E 2008 Coastal Capital Economic Valuation of
 419
 Coral Reefs in Tobago and St. Lucia, World Resources Institute
- 420 16. Chan K, Satterfield T, and Goldstein J. 2012. Rethinking ecosystem services to better address
 421 and navigate cultural values. *Ecol Econ* 74: 8-18.

- 422 17. Ciriacy-Wantrup, S.V., 1955. Benefit-cost analysis and public resource development. *Journal* 423 of Farm Economics, **37(4)**: 676-689.
- 424 18. Commonwealth of Australia, 2006. *Handbook of Cost-benefit analysis*. ISBN 1 921182 03 2.
- 425
 426
 426
 426
 426
 426
 426
 426
 426
 427
 428
 429
 429
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
- 427 20. Czembrowski, Piotr, and Jakub Kronenberg. 2016. "Hedonic pricing and different urban
 428 green space types and sizes: Insights into the discussion on valuing ecosystem
 429 services." Landscape and Urban Planning 146: 11-19
- 430 21. Daw T, Coulthard S, Cheung W, et al. 2015. Evaluating taboo trade-offs in ecosystems
 431 services and human well-being. PNAS 112: 6949-6954.
- 22. Day, B., Bateman, I. J., Carson, R. T., Dupont, D., Louviere, J. J., Morimoto, S., . . . Wang, P.
 2012. Ordering effects and choice set awareness in repeat-response stated preference
 studies. Journal of Environmental Economics and Management, 63(1), 73-91.
- 23. Delisle, A. 2013. A socio-economic investigation of the Torres Strait Indigenous dugong and
 turtle fisheries. (PhD Thesis), James Cook University, Townsville.
- 437 24. Farr, M., Stoeckl, N. Esparon, M., Grainger, D., and Larson, S. 2016. *Economic values and*438 *Indigenous protected areas across Northern Australia*. Darwin: Charles Darwin University. 67
 439 pages.
- 440 25. Flood Control Act of 1936, H.R. 8455 C.F.R. § 688 1936.
- 441 26. Frey B, Luechinger S, and Stutzer A. 2009. The life satisfaction approach to valuing public
 442 goods: The case of terrorism. *Public Choice* **138**: 317-345.
- 443 27. Gneezy U, Meier S, and Rey-Biel P. 2011. When and why incentives (don't) work to modify
 444 behavior. *J Econ Perspect* 25: 191-209.
- 445 28. Gowdy, J.M., 2005. Toward a new welfare economics for sustainability. Ecological Economics
 446 53, 211-222
- 447 29. Guy, M.E., and S.A. McCandless. 2012. Social equity: Its legacy, its promise. *Public* 448 *Administration Review* 72 (s1):S5-S13.
- 30. H.M. Treasury. 2003. *The Green book: Appraisal and evaluation in central government.*London: The stationery office.
- 451 31. Hanley N and Barbier E. 2009. Pricing nature: cost-benefit analysis and environmental policy.
 452 Cheltenham: Edward Elgar Publishing.
- 453 32. Hanley, N., and C.L. Spash. 1993. *Cost-benefit analysis and the environment*. Cheltenham,
 454 UK: Edward Elgar Aldershot.
- 455 33. Hein L, Van Koppen K, De Groot R, and Van Ierland E. 2006. Spatial scales, stakeholders and
 456 the valuation of ecosystem services. *Ecol Econ* 57: 209-228.

- 457 34. Hicks C, Stoeckl N, Cinner J, and Robinson J. 2014. Fishery benefits and stakeholder priorities
 458 associated with a coral reef fishery and their implications for management. *Environ Sci Policy*459 44: 258-270.
- 460 35. Hicks, J. R. 1939. *Value and Capital*. Oxford: The Clarendon Press.
- 36. Jacobs M. 1997. Environmental valuation, deliberative democracy and public decisionmaking institutions. In: Forester J (*Ed*). Valuing Nature: Economics, Ethics and Environment.
 London: Routledge.
- 37. Jacobsen J and Hanley N. 2009. Are there income effects on global willingness to pay for
 biodiversity conservation? *Environ Resour Econ* 43: 137-160.
- 38. Jaumotte F, Lall S, and Papageorgiou C. 2013. Rising income inequality: technology, or trade
 and financial globalization? *IMF Econ Rev* 61: 271-309.
- 468 39. Kallis, G., Gómez-Baggethun, E., and Zografos, C. 2013. "To value or not to value? That is not
 469 the question." Ecological Economics, 94: 97-105.
- 470 40. Kenter JO, O'Brien L, Hockley N, *et al.* 2015. What are shared and social values of
 471 ecosystems? *Ecol Econ* 111: 86-89.
- 472 41. Kerr, G. N., & Swaffield, S. R. 2012. Identifying cultural service values of a small river in the
 473 agricultural landscape of Canterbury, New Zealand, using combined methods. Society &
 474 Natural Resources, 25(12), 1330-1339.
- 475 42. Kragt, M., Bennett, J., Lloyd, C., & Dumsday, R. 2007. Comparing choice models of river
 476 health improvement for the Goulburn River. Paper presented at the 51st AARES Conference.
 477 Australia Queenstown.
- 478
 43. Kristoffersen, I. 2010. The metrics of subjective wellbeing: Cardinality, neutrality and additivity. *Economic Record*, *86*(272): 98-123.
- 480 44. Krutilla, J. 1967. Conservation reconsidered. *The American Economic Review*, **57(4)**: 777-786.
- 481 45. Larson S and Brake L. 2011. Natural resources management arrangements in the Lake Eyre
 482 Basin: An enabling environment for community engagement? *Rural Society* 21: 32-43.
- 46. Livermore, M., & Revesz, R. 2013. *The globalization of cost-benefit analysis in environmental policy* (M. Livermore & R. Revesz Eds.). New York: Oxford University Press.
- 485 47. Loomis J. 2011. Incorporating distributional issues into benefit cost analysis: why, how, and 486 two empirical examples using non-market valuation. *J BCA* **2**: 1-24.
- 48. Ostrom, E., Burger, J., Field, C.B., Norgaard, R.B. and Policansky, D., 1999. Revisiting the commons: local lessons, global challenges. *science*, *284*(5412), pp.278-282.
- 489 49. Ostrom, E., 2015. *Governing the commons*. Cambridge university press.
- 490 50. Pascual, Unai, Mette Termansen, Katarina Hedlund, Lijbert Brussaard, Jack H. Faber,
 491 Sébastien Foudi, Philippe Lemanceau, and Sisse Liv Jørgensen. 2015. "On the value of soil
 492 biodiversity and ecosystem services." Ecosystem Services 15: 11-18.

- 493 51. Prayaga, P., Rolfe, J., and Stoeckl, N. 2010, "The value of recreational fishing in the Great
 494 Barrier Reef, Australia: A pooled revealed preference and contingent behaviour model".
 495 Marine Policy 34(2): 244 251
- 496 52. Rolfe, J., & Windle, J. 2003. Valuing the protection of Aboriginal cultural heritage sites.
 497 Economic Record, 79 (Special issues), S85-S95.
- 498 53. Schwartz, S.H., 2015. Basic individual values: Sources and consequences. Handbook of value:
 499 Perspectives from economics, neuroscience, philosophy, psychology and sociology, pp.63500 84.
- 501 54. Spash C. 2008. Deliberative Monetary Valuation and the Evidence for a New Value Theory,
 502 Land Econ 84: 469-448.
- 503 55. Spash C. 2009. The new environmental pragmatists, pluralism and sustainability. *Environ* 504 Value 18: 253-256.
- 505 56. Turner, R. K., Paavola, J., Cooper, P., Farber, S., Jessamy, V., & Georgiou, S. 2003. Valuing
 506 nature: lessons learned and future research directions. Ecological economics, 46(3): 493507 510. doi:http://dx.doi.org/10.1016/S0921-8009(03)00189-7
- 508 57. Van der Ploeg S and de Groot R. 2010. The TEEB Valuation Database–a searchable database
 509 of 1310 estimates of monetary values of ecosystem services. Wageningen, The Netherlands:
 510 Foundation for Sustainable Development.
- 511 58. Vatn A. 2009. An institutional analysis of methods for environmental appraisal. *Ecol Econ* 68:
 512 2207-2215.
- 513 59. Venn T and Quiggin J. 2007. Accommodating indigenous cultural heritage values in resource
 514 assessment: Cape York Peninsula and the Murray–Darling Basin, Australia. *Ecol Econ* 61: 334515 344.
- 51660. Watkin Lui F, Stoeckl N, Delisle A, et al . 2016. Motivations for Sharing Bushmeat with an517Urban Diaspora in Indigenous Australia. Hum Dimen Wildlife 21: 345-360.
- 518 61. Weisbrod, B. 1964. Collective-consumption services of individual-consumption goods. *The* 519 *Quarterly Journal of Economics*, **78(3):** 471-477.
- 520 62. Wilkinson R. 1996. Unhealthy societies The afflictions of inequality. London: Routledge.
- 521 63. Wilkinson, R., & Pickett, K. 2010. *The spirit level Why equality is better for everyone*.
 522 London: Penguin Books Ltd.
- 64. Wilson M and Howarth R. 2002. Discourse-based valuation of ecosystem services:
 establishing fair outcomes through group deliberation. *Ecol Econ* 41: 431-443.

APPENDIX A: Overview of traditional (neoclassical) non-market valuation techniques

General approach	Specific examples	Comments
Valuation techniques that use market prices: Market prices exist only for goods which are bought and sold. So these techniques are only able to provide information about 'use-values' which are traded in the market and cannot quantify	Change in the value of output (increase or decreases in earning)	This technique simply estimates the extra earnings (or losses) associated with an environmental good or service (e.g., comparing farm production on soils with varying biodiversity to draw inferences about the value of biodiverse soil – Pascual et al., 2015).
many of the non-use values associated with the environment such as cultural, existence and bequest values.	Preventative expenditures (damage avoided)	This technique looks at how much people spend to prevent damages from occurring to draw inferences about the 'value' of an ecosystem service that does the same job (e.g., by estimating how much would be spent on constructing sea walls to prevent beach erosion and storm damage, one can estimate the 'value' of fringing coral reefs or mangroves which provide similar protection (Burke et al, 2008))
	Replacement cost or Expected cost	These approaches look at how much it does (or is expected to) cost to replace damaged items (e.g., the cost of repairing buildings and businesses after storm surge provides an estimate of the (regulating) value of wetlands which reduce storm surge damage - Barbier, 1994, 2007).
Valuation techniques that use surrogate markets: Revealed preference approaches do not require the goods that one wishes to 'value' to be exchanged in the market, but they require a strong connection between that good and the market (e.g., house prices and 'views'; salaries/wages and workplace safety).	Hedonic pricing (including wage differential and property or land value approaches)	This technique assumes that multiple things contribute to the 'value' of a house (or car, or job) – some of which are associated with the environment. Essentially, it is as if it compares the value of two houses which are identical in all respects (e.g., number of bedrooms, bathrooms) except for one: proximity to an urban park. The difference in house price between that which is near the park and that which is not, gives an indication of the 'value' of the park (Czembrowski and Kronenberg, 2016).
If one cannot establish a connection between the intangible good to be valued and the market then one cannot use these techniques. This is most likely to be the case for intangible benefits associated with IPAs such as spiritual/cultural, bequest and existence values, suggesting that these techniques cannot be	Travel cost	This technique notes that even if entry to a park is 'free', people must spend money travelling to and from it. The money spent travelling can be used to draw inferences about the value of a park, an activity related to the park (Prayaga et al., 2010), or the value of parks that are of different environmental 'quality' (e.g., people will travel further and spend more to visit a well maintained park than a degraded one).

General approach	Specific examples	Comments
used to monetise those benefits.	Acceptance of compensation	This technique considers how much people have been awarded, in the courts, as 'compensation' for damages – using those estimates as a proxy for 'value' (Kallis et al., 2013).
Stated preference techniques: In principal, these techniques are capable of estimating the monetary 'value' of anything, including use and non-use values.	Contingent valuation	Contingent Valuation (CV) involves the construction of 'hypothetical' markets. Individuals are asked to indicate their WTP to, for example, increase water quality/clarity to enjoy swimming, snorkelling or diving (Awatere, 2008).
People are asked how much they would be 'willing to pay' if a market did exist. The quality of the estimate is only as good as the quality of the experiment designed to elicit the 'value' – and there is a substantive body of literature that provides guidance on how best to describe the market and conduct the experiment. These techniques thus require the use of complex survey design, often draining to the respondents and requiring the use of sophisticated analytical procedures (Bateman et al., 2002; Day et al., 2012).	Choice Modelling	Choice modelling (CM) differs from CV, in that respondents are asked to choose between alternatives, rather than asked if they are willing to pay a price. CM involves the construction of numerous different 'choice-sets', each with different characteristics (e.g., differently levels of environmental amenity) and different prices. Individuals are asked to indicate which choice- set is preferred, and these preferences are used to draw inferences about the value of the different characteristics described in the choice-sets (Kerr and Swaffield, 2012; Kragt et al., 2007; Rolfe and Windle, 2003).

NB: Cost Benefit Analysis (CBA) and assessments of the Social Return on Investment (SROI) are occasionally referred to as non-market valuation methods. However, they are not, strictly speaking, non-market 'valuation' methods. Rather they are structured ways of aggregating monetised data about benefits and costs – weighting them against each other according to specific rules (e.g. including discount rates). In theory, a comprehensive CBA or SROI analysis includes monetised estimates of all benefits and all costs associated with the project/program being evaluated. Since many benefits and costs are not directly associated with the market, both CBA and SROI require researchers to undertake non-market valuation exercises (using techniques like those listed in the table above) to generate estimates of costs and benefits, for use in the wider analysis. See: Costa 2013 for further details on SROI. See Baker and Ruting 2014 for CBA.